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Abstract. In the present work, an analytical solution is presented for the scattering of transverse surface waves by a homoge-
neous piezoelectric fiber contained in a functionally graded piezoelectric half-space with exponential variation. The boundary
value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy: (a) the electrome-
chanical field equations in the half-space, (b) the boundary conditions along its free surface, and (c) the far-filed radiation
conditions. It is shown that the simple poles of these functions are related to the roots of the pertinent dispersion relation.
For the case of electrically short condition along the free surface of the inhomogeneous half-space, the analytical expressions
for the scattered electromechanical fields are derived. In the given numerical examples, the effects of such parameters as
the frequency, the distance of the fiber to the substrate’s free surface, and the coefficient in the exponent, indicating the
variation of the electromechanical properties of the substrate on the scattered fields are addressed in detail. It is seen that
these physical parameters have considerable effect on the dynamic response of the medium.
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1. Introduction

The problem of transverse surface wave propagation through piezoelectric materials or layered structures
has received significant attention due to its diverse engineering applications such as surface acoustic wave
(SAW) sensors, filters, and delay lines [1]. Special attention has been paid to the propagation of transverse
surface waves in typical SAW devices consisting of a piezoelectric layer overlying an elastic substrate or
vice versa [2].

Functionally graded piezoelectric materials (FGPMs) are a generation of multifunctional media and
play an important role in innovative technological developments. Piezoelectric materials/piezocomposites,
due to their electromechanical coupling, have certain advantages over purely elastic materials/composites.
FGPMs are designated as graded since their macroscopic properties such as elastic, piezoelectric, and
dielectric constants and mass density vary gradually and continuously with the spatial coordinates. This
class of smart materials exhibits certain desired functionality features over homogeneous piezoelectric
media and has progressively found more applications in industry in recent years. For instance, FGPMs
are manufactured and widely used as substrate in SAW devices to improve their efficiency and resolve
not only the residual stress problem encountered in layered structures but also the penetration depth
issue observed in the homogeneous piezoelectric substrate [3].

The dynamic stress response of media made of FGPMs to elastic waves, especially those containing
such defects as cracks and holes, is of particular interest. Du et al. [4] investigated Love waves propagation
in a FGPM layer bonded to a semi-infinite homogeneous solid. Qian et al. [5] studied the propagation
behavior of Love waves in a homogenous piezoelectric half-space carrying a functionally graded material
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layer of finite thickness. Eskandari and Shodja [6] investigated the features of Love waves in a FGPM half-
space with quadratically varying electromechanical properties. The problem of transverse surface wave
propagation in a FGPM substrate with exponentially varying electromechanical properties was studied
in the absence of any defect or inhomogeneity by Qian et al. [3]. Recently, Shodja et al. [7] obtained and
examined the dispersion relations for the propagation problem of shear horizontal surface acoustic waves
in a functionally graded magneto-electro-elastic half-space.

Using the wave function expansion method and the image technique, Fang et al. [8] presented an
analytical solution for the scattering problem of shear waves by a circular cavity in a semi-infinite func-
tionally graded piezoelectric material. Fang et al. [9] studied the scattering of electro-elastic waves by
two subsurface cavities in a FGPM layer bonded to a homogeneous piezoelectric material. But, to date,
the scattering problem of transverse surface waves by a piezoelectric fiber embedded in a functionally
graded piezoelectric half-space with exponential variation has not been studied yet. The treatment of this
problem is the focus of the current paper. In order to present the scattered electromechanical fields, the
multipole expansion method has been used. This method has already been successfully utilized to study
the scattering problem of SH-waves by a circular cavity, nano-fiber, and elliptic cavity/crack [10–12].

The paper is organized as follows. In Sect. 2, the problem statement is described and the governing
electromechanical field equations are presented. Section 3 is devoted to the formulations of anti-plane
scattering of transverse surface waves by a piezoelectric fiber which is located near the free surface of a
FGPM half-space with perfect interface—the free surface is assumed to be electrically short. The pertinent
electromechanical conditions needed for the well posedness of the proposed problem are presented in this
section as well. The exact analytical expressions for the scattered electromechanical fields are derived.
Several descriptive examples are provided in Sect. 4. The conclusion is given in Sect. 5.

2. Problem statement and the governing equations

Consider a transversely isotropic functionally graded piezoelectric material (FGPM) half-space, desig-
nated as region 1 (Ω ≡ 1), containing a cylindrical piezoelectric fiber of radius a, designated as region 2
(Ω ≡ 2). The origin of the Cartesian coordinates (x, y, z) is set on the surface of the FGPM half-space
in such way that the z-axis is directed along the poling direction perpendicular to the xy-plane and the
x-axis points down into the substrate and passes through the center of the fiber. A polar coordinate
system (r, θ) with origin at the center of the fiber is also considered. The fiber is perfectly bonded to the
inhomogeneous substrate at a depth of h beneath its surface, x = 0 as depicted in Fig. 1. A time-harmonic
transverse surface wave propagating in the positive y-direction is incident upon the fiber.

In the absence of body forces and free charges, the equations of motion and charge equation of
electro-statics for a piezoelectric linearly elastic material with varying electromechanical properties are,
respectively, given by:

σij,j = ρ(x)üi, i = 1, 2, 3, (1a)

Dj,j = 0, (1b)

and the pertinent constitutive equations are:
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Fig. 1. A homogeneous piezoelectric fiber surrounded by an exponentially graded piezoelectric substrate incident upon by
transverse surface waves
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where

εij =
1
2

(ui,j + uj,i) . (3)

In the above equations, u and D are the mechanical and electrical displacement vectors, respectively. σ
and ε are the stress and strain tensors, respectively. φ denotes the electric potential function, ρ is the
mass density, and ü is the acceleration vector. C(x), e(x), and κ(x) are the elastic, piezoelectric, and
dielectric moduli tensors, respectively. Einsteins summation convention on repeated indices holds.
Further discussion in this section is restricted to anti-plane problems, so that the mechanical displacement
field and the electric potential function have the following forms:

ux = uy = 0, uz = uz(x, y, t),

φ = φ(x, y, t).
(4)
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By utilization of Eqs. (2)–(4), and assuming that the electromechanical properties are only a function of
the coordinate x, it can be shown that Eqs. (1a) and (1b) reduce to [3]:

∂μ(x)
∂x

∂uz

∂x
+ μ(x)∇2uz +

∂e(x)
∂x

∂φ

∂x
+ e(x)∇2φ = ρ(x)üz,

∂e(x)
∂x

∂uz

∂x
+ e(x)∇2uz − ∂κ(x)

∂x

∂φ

∂x
− κ(x)∇2φ = 0,

(5)

respectively, where for brevity μ(x) ≡ C44(x), e(x) ≡ e15(x), and κ(x) ≡ κ11(x). Moreover, utilizing
Eqs. (2)–(4) the nonzero components of the stress and electric displacement fields are obtained as:

σxz = μ(x)
∂uz

∂x
+ e(x)

∂φ

∂x
, (6a)

σyz = μ(x)
∂uz

∂y
+ e(x)

∂φ

∂y
, (6b)

Dx = e(x)
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∂φ

∂x
, (6c)

Dy = e(x)
∂uz
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∂φ

∂y
, (6d)

The electromechanical field equations and the constitutive relations for both domains are similar except,
the electromechanical properties of the half-space are variable, whereas those of the fiber are constant.
Let μ1(x), e1(x), and κ1(x) denote the electromechanical properties of the inhomogeneous medium, while
those of the homogeneous piezoelectric fiber are denoted by μ2, e2, and κ2. Moreover, ρ1(x) and ρ2 are
the mass densities of the FGPM half-space and the fiber, respectively. Here, it is assumed that all the
electromechanical properties pertinent to the inhomogeneous functionally graded piezoelectric domain,
Ω = 1 vary exponentially with the coordinate x as:

μ1(x) = μ0
1 eαx, e1(x) = e0

1 eαx, κ1(x) = κ0
1 eαx, ρ1(x) = ρ0

1 eαx, (7)

where μ0
1, e0

1, κ0
1, and ρ0

1 are the values of μ1(x), e1(x), κ1(x), and ρ1(x) at the surface as x → 0+,
respectively, and α is a constant coefficient in the exponent, affecting the profile of the material gradient
along the coordinate x. It is worth mentioning that the exponentially varying electromechanical properties
for the half-space have been previously employed in several studies (e.g., [3–5,8,9]). As it will be shown
in Sect. 3.1, for the existence of the transverse surface waves in the FGPM half-space, the condition α < 0
must hold. It should also be noted that associated with the transverse surface waves of interest, the
incident displacement and electric potential fields decay rapidly with depth. Hence, the presence of the
fiber is meaningful when it is placed near the free surface. In Sect. 3, it is readily revealed that the velocity
of the surface shear waves in the matrix depends on the properties of the free surface, i.e., μ0

1, e0
1, κ0

1, and
ρ0
1. Thus, the values of the properties at x → ∞ are of no great concern.

3. Formulations and the treatment using multipole expansion

As described in Sect. 2, suppose a time-harmonic transverse surface wave propagating with frequency ω in
the positive y-direction is incident upon a piezoelectric fiber which is embedded in a FGPM half-space as
shown in Fig. 1. The total displacement field and the total electric potential within the domains Ω = 1, 2
represented, respectively, by u(Ω) = u

(Ω)
z ez and φ(Ω), where ez is the base vector along the z-axis may

be expressed as:

u(x, y, t) =
{

ui(1)(x, y, t) + us(1)(x, y, t), x ≥ 0 , r > a,
ur(2)(x, y, t), r < a,

(8)



ZAMP Scattering of transverse surface waves Page 5 of 19 66

φ(x, y, t) =
{

φi(1)(x, y, t) + φs(1)(x, y, t), x ≥ 0 , r > a,
φr(2)(x, y, t), r < a,

(9)

In the above equation and the remainder of this paper, the superscripts “i”, “s”, and “r” over a field
quantity indicate that the quantity corresponds to the incident, scattered, and refracted wave fields,
respectively. The scattered fields, u

s(1)
z and φs(1), are induced within the inhomogeneous region, Ω = 1

due to the presence of the piezoelectric fiber. Utilizing Eqs. (5) and (7)–(9) the coupled electromechanical
governing differential equations pertinent to the exponentially graded piezoelectric substrate become:

μ0
1

(

∇2 + α
∂

∂x
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z

}
+ e0

1

(
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∂
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1
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∂
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}
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(10)

With the aids of Eqs. (5), (8), and (9), the coupled electromechanical field equations for the displacement
field, u

r(2)
z (x, y, t), and the electric potential field, φr(2)(x, y, t) within the piezoelectric fiber take on the

following forms:
μ2∇2ur(2)

z + e2∇2φr(2) = ρ2ü
r(2)
z ,

e2∇2ur(2)
z − κ2∇2φr(2) = 0,

(11)

In order to solve the coupled system of partial differential equations, (10) and (11), the following mixed
potential functions are introduced:

ψi(1) = φi(1) − e0
1

κ0
1

ui(1)
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1

κ0
1
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z ,

(12)

By substituting Eq. (12)1 into Eq. (10), and Eq. (12)2 into Eq. (11) and, moreover, assuming time-
harmonic solutions χ(x, y, t) = χ̃(x, y)e−iωt in which χ may represent any of the field variables, the
field equations are decoupled as:

(
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∂
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)
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For convenience, in the above equations and in the subsequent developments, the symbol “∼” over the
field quantities is omitted. kΩ = ω/c

(Ω)
sh , Ω = 1, 2 denotes the wave number pertinent to the region Ω, in

which c
(Ω)
sh is the propagation velocity of shear waves within the corresponding medium:

c
(1)
sh =

√
p0
1

ρ0
1

, (14)

c
(2)
sh =

√
p2

ρ2
, (15)

where p0
1 = μ0

1 + e0
1

2
/κ0

1 and p2 = μ2 + e 2
2 /κ2 are the equivalent shear modulus of the inhomogeneous

substrate and the homogeneous piezoelectric fiber, respectively.



66 Page 6 of 19 A. Ghafarollahi and H. M. Shodja ZAMP

3.1. Dispersion relation

Assume that the solutions to Eqs. (13)1 and (13)2 pertinent to the incident displacement and electric
potential fields can be expressed as u

i(1)
z (x, y) = f (1)(x) exp[i k y] and ψi(1)(x, y) = g(1)(x) exp[i k y],

respectively, in which k = ω/c denotes the wave number and c is the phase velocity of the transverse
surface wave. The boundary conditions associated with the incident wave fields are:
(1) The traction free condition at x = 0,

σi(1)
xz (0, y) = 0. (16)

(2) The electrically short condition at x = 0,

φi(1)(0, y) = 0. (17)

(3) The attenuation conditions as x → ∞,

ui(1)
z , φi(1) → 0, as x → ∞. (18)

Substituting the assumed mechanical displacement and electric potential fields into Eqs. (13)1 and
(13)2, yields the following expressions for f (1)(x) and g(1)(x):

f (1)(x) = A1 e−β(k) x, (19)

g(1)(x) = A2 e−γ(k) x, (20)

where the attenuation conditions (18) have been used and, moreover, β(k) > 0 and γ(k) > 0 are
defined as:

β(k) =
α

2
+

√
√
√
√
√

α2

4
+ k2

⎛

⎝1 − c2

c
(1)
sh

2

⎞

⎠,

γ̂(k) =
α

2
+

√
α2

4
+ k2.

(21)

The unknown coefficients A1 and A2 are determined by satisfying the boundary conditions. It is
worth noting that the assumption α < 0 gives rise to the condition c < csh, needed for the existence
of the transverse surface waves in the FGPM substrate of interest [3]. Consequently, the incident
displacement and electrical potential fields induced within the inhomogeneous domain, Ω = 1 can
be written as:

ui(1)
z (x, y) = A1e

−β(k)x exp[i k y], (22)

φi(1)(x, y) =
(

A2e
−γ(k)x +

e0
1

κ0
1

A1e
−β(k)x

)

exp[i k y]. (23)

Theses equations together with Eqs. (6)1, (7)1, (7)2, (16), and (17) lead to the following equations
for the unknown coefficients A1 and A2:

p0
1β(k)A1 + e0

1γ(k)A2 = 0, (24)

e0
1

κ0
1

A1 + A2 = 0. (25)

Solving Eqs. (24) and (25) for the unknown coefficients, the incident displacement and electrical
potential fields given by Eqs. (22) and (23) are expressed as:

ui(1)
z (x, y) = u0e

−β(k)x exp[i k y], (26)

φi(1)(x, y) = u0
e0
1

κ0
1

(
e−β(k)x − e−γ(k)x

)
exp[i k y], (27)
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where u0 = A1 is the amplitude of excitation. It should be mentioned that for nontrivial solution, the
determinant of the coefficient matrix must be equal to zero, which leads to the following dispersion
relation:

β(k)
γ(k)

=
e0
1

2

κ0
1p

0
1

. (28)

Clearly, in the absence of the gradient coefficient, i.e., α = 0, Eq. (28) leads to the dispersion relation
corresponding to transverse surface waves in a homogeneous piezoelectric half-space:

√

1 − c2

c2
sh

=
e0
1

2

κ0
1 p0

1

. (29)

3.2. Scattered wave fields

Up to this point, the incident mechanical displacement and electrical potential fields associated with the
modeled problem have been determined. This section is concerned with the scattered wave fields generated
due to the presence of the homogeneous piezoelectric fiber, Ω = 2 surrounded by the inhomogeneous
substrate, Ω = 1. The governing equations for the scattered wave fields within the inhomogeneous domain
are given by Eqs. (13)1 and (13)2. These equations will take on a more convenient form if we write:

us(1)
z (x, y) = e− α

2 xws(1)(x, y),

ψs(1)(x, y) = e− α
2 xϕs(1)(x, y).

(30)

Upon substitution of Eqs. (30)1 and (30)2, respectively, into Eqs. (13)1 and (13)2 we find that ws(1)(x, y)
and ϕs(1)(x, y) satisfy the following equations:

(
∇2 + k̄2

1

)
ws(1) = 0, (31a)

(
∇2 − k2

α

)
ϕs(1) = 0, (31b)

where k̄2
1 = k2

1 − α2/4 and kα = (α2/4)1/2. For the sake of simplicity, we assume that k2
1 > α2/4. For the

refracted waves within the fiber the governing equations are expressed by Eqs. (13)3 and (13)4.
The boundary conditions associated with the scattered field along the free surface of the FGPM half-space
can be expressed as:

σs(1)
xz = 0, on x = 0,

φs(1) = 0, on x = 0.
(32)

Moreover, the continuity of the mechanical displacement, electrical potential field, mechanical traction,
and electrical displacement fields, associated with the scattered fields, across the piezoelectric fiber-
inhomogeneous matrix interface, respectively, gives:

us(1)
z + ui(1)

z − ur(2)
z = 0, on r = a, (33a)

φs(1) + φi(1) − φr(2) = 0, on r = a, (33b)

σs(1)
rz + σi(1)

rz − σr(2)
rz = 0, on r = a, (33c)

Ds(1)
r + Di(1)

r − Dr(2)
r = 0, on r = a. (33d)

Let the functions u
s(1)
z and φs(1) be expressed as:

us(1)
z =

∑

ζ=c,s

∞∑

n=0

(
aζ

nWuζ
n + bζ

nWφζ
n

)
, (34a)
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φs(1) =
∑

ζ=c,s

∞∑

n=0

(
aζ

nΦuζ
n + bζ

nΦφζ
n

)
, (34b)

where

Φuζ
n = Ψuζ

n +
e0
1

κ0
1

Wuζ
n , (35a)

Φφζ
n = Ψφζ

n +
e0
1

κ0
1

Wφζ
n , (35b)

with

Wuζ
n = e− α

2 x
{

H(1)
n (k̄1r)Tζ(nθ) + Fuζ

n

}
, (36a)

Ψuζ
n = e− α

2 xGuζ
n , (36b)

Ψφζ
n = e− α

2 x
{
Kn(kαr)Tζ(nθ) + Gφζ

n

}
, (36c)

Wφζ
n = e− α

2 xFφζ
n . (36d)

In the above equations, H
(1)
n and Kn are Hankel function of the first kind and modified Bessel function

of the second kind, of order n, respectively. aζ
n and bζ

n are the unknown constants. Tζ(nθ) = cos(nθ)
if ζ ≡ c and Tζ(nθ) = sin(nθ) if ζ ≡ s. It is required that Fuζ

n and Fφζ
n satisfy the wave equation

(31a), and Guζ
n and Gφζ

n satisfy the wave equation (31b). Moreover, the pair Wuζ
n and Φuζ

n must satisfy
the free surface conditions, Eq. (32). Similarly, the pair Wφζ

n and Φφζ
n must satisfy the free surface

conditions, (32). In addition, Fuζ
n , Fφζ

n , Guζ
n , and Gφζ

n must satisfy the radiation conditions at infinity.
The functions H

(1)
n (k̄1r)Tζ(nθ) and Kn(kαr)Tζ(nθ) appeared, respectively, in Eqs. (36a) and (36c) are

convenient for handling the boundary conditions on the substrate–fiber interface, r = a. They are,
however, inconvenient when trying to impose the pertinent boundary conditions along the free surface
of the substrate, x = 0. To overcome this difficulty, we convert the functions H

(1)
n

(
k̄1r

)
Tζ(nθ) and

Kn (kαr) Tζ(nθ) from polar coordinates to Cartesian coordinates by employing the following integral
representations for H

(1)
n (k̄1r)Tζ(nθ) and Kn(kαr)Tζ(nθ) [13]:

H(1)
n (k̄1r)Tζ(nθ) =

(−1)n

π i
χζ

∞+πi∫

−∞
e−k̄1x sinh τek̄1h sinh τ−nτTζ(k̄1y cosh τ)dτ, x < h, |y| < ∞, (37a)

Kn(kαr)Tζ(nθ) =
(−1)n

2

∞∫

−∞
ekαx cosh υe−kαh cosh υ−nυTζ(kαy sinh υ)dυ, x < h, |y| < ∞, (37b)

which can conveniently be used on the substrate’s free surface (x = 0). In the above relations χζ = 1 if
ζ ≡ c and χζ = −1 if ζ ≡ s. Subsequently, the following integral representations for Fuζ

n , Fφζ
n , Guζ

n , and
Gφζ

n are considered:

Fuζ
n (x, y) =

(−1)n

π i
χζ

∞+πi∫

−∞
A(τ)ek̄1x sinh τek̄1h sinh τ−nτTζ(k̄1y cosh τ)dτ, x > 0, (38a)

Guζ
n (x, y) =

(−1)n

π i
χζ

∞+πi∫

−∞
B(τ)e−xΔ(τ)ek̄1h sinh τ−nτTζ(k̄1y cosh τ)dτ, x > 0, (38b)

Gφζ
n (x, y) =

(−1)n

2

∞∫

−∞
C(υ)e−kαx cosh υe−kαh cosh υ−nυTζ(kαy sinh υ)dυ, x > 0, (38c)
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Fφζ
n (x, y) =

(−1)n

2

∞∫

−∞
D(υ)e−xΓ(υ)e−kαh cosh υ−nυTζ(kαy sinh υ)dυ, x > 0. (38d)

In the above equations, A(τ), B(τ), C(υ), and D(υ) are the unknown functions to be determined through
the enforcement of the pertinent boundary conditions along the free surface of the FGP half-space.
Fuζ

n and Gφζ
n satisfy Eqs. (31a) and (31b) automatically for any reasonable choice of A(τ) and C(υ),

respectively. Moreover, Fφζ
n and Guζ

n must satisfy Eqs. (31a) and (31b), respectively, which yields:

Δ2(τ) = k̄2
1 cosh2 τ + k2

α, (39a)

Γ2(υ) = k2
α sinh2 υ − k̄2

1. (39b)

Depending on the values of k̄1, kα, and υ, Γ(υ) may be real or pure imaginary, whereas Δ(τ) is always
real. It should be noted that Guζ

n and Fφζ
n must be bounded as x → ∞, and thus, Δ(τ) and Γ(υ) cannot

take on negative real values. Moreover, to ensure that the scattered waves propagate away from the free
surface, it is required that Im[Γ(υ)] < 0.
With the aids of Eqs. (32) and (56)–(38), the following expressions for A(τ), B(τ), C(υ), and D(υ) are
found:

A(τ) = −
κ0

1p
0
1

(
α + 2k̄1 sinh τ

)
− e0

1
2 (α + 2Δ(τ))

κ0
1p

0
1

(
α − 2k̄1 sinh τ

)
− e0

1
2 (α + 2Δ(τ))

, (40a)

B(τ) =
4e0

1p
0
1k̄1 sinh τ

κ0
1p

0
1

(
α − 2k̄1 sinh τ

)
− e0

1
2 (α + 2Δ(τ))

, (40b)

C(υ) = −e0
1

2 (α − 2kα cosh υ) − κ0
1p

0
1 (α + 2Γ(υ))

e0
1

2 (α + 2kα cosh υ) − κ0
1p

0
1 (α + 2Γ(υ))

, (40c)

D(υ) = − 4e0
1κ

0
1kα cosh υ

e0
1

2 (α + 2kα cosh υ) − κ0
1p

0
1 (α + 2Γ(υ))

. (40d)

Now, let

κ0
1p

0
1

(
α − 2k̄1 sinh τ

)
− e0

1
2
(α + 2Δ(τ)) ≡ H(k̄1 cosh τ), (41a)

e0
1

2
(α + 2kα cosh υ) − κ0

1p
0
1 (α + 2Γ(υ)) ≡ R(kα sinh υ), (41b)

where

H(λ) =
κ0

1 p0
1

2
β(λ) − e0

1
2

2
γ(λ), (42a)

R(λ) =
e0
1

2

2
γ(λ) − κ0

1 p0
1

2
β(λ). (42b)

It can be observed that H(λ) = 0 and R(λ) = 0 are identical to the dispersion relation given by Eq. (28).
Therefore, H(λ) and R(λ) have only two zeros, ±λ0, where λ0 is real and positive. Hence, H(k̄1 cosh τ) has
two simple poles, −τ0 and τ0 +π i on the contour of integration, where τ0 = cosh−1(λ0/k̄1), Fig. 2a. Simi-
larly, R(kα sinh υ) has simple poles −υ0 and υ0 on the contour of integration, where υ0 = sinh−1(λ0/kα),
Fig. 2b.
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(a)

(b)

Fig. 2. Contour of integration and the simple poles pertinent to the integral expressions of a F uζ
n and Guζ

n , and b Gφζ
n and

F φζ
n

The refracted waves inside the piezoelectric fiber which satisfy the wave Eqs. (13)3 and (13)4 are
standing waves and can be expressed as:

ur(2)
z =

∑

ζ=c,s

∞∑

n=0

cζ
nJn(k2r)Tζ(nθ),

ψr(2) =
∑

ζ=c,s

∞∑

n=0

dζ
nrnTζ(nθ).

(43)

Substituting the above relations into Eq. (12)2, the refracted electric potential field within the piezoelectric
fiber can be obtained as:

φr(2) =
∑

ζ=c,s

∞∑

n=0

(
e2

κ2
cζ
nJn(k2r) + dζ

nrn

)

Tζ(nθ). (44)

In the above equations, cζ
n and dζ

n are the unknown constants and Jn is the Bessel function of the first
kind of order n. It remains to determine the coefficients aζ

n, bζ
n, cζ

n, and dζ
n by imposing the boundary

conditions along the homogeneous piezoelectric fiber-inhomogeneous substrate interface, Eqs. (33). To
this end, at first, the mechanical displacement and electrical potential fields pertinent to the incident and
scattered waves are represented as Fourier series in θ. Thus, u

i(1)
z and φi(1) which are given by Eqs. (26)

and (27), respectively, may be written as:
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ui(1)
z = u0e

−β(k)x+ikr sin θ

= u0e
−β(k)x

∑

ζ=c,s

∞∑

m=0

εm

2
ςζ
{
Jm (kr) + χζJ−m (kr)

}
Tζ(mθ), (45)

φi(1) = u0
e0
1

κ0
1

(
e−β(k)x − e−γ(k)x

)
eikr sin θ

= u0
e0
1

κ0
1

(
e−β(k)x − e−γ(k)x

) ∑

ζ=c,s

∞∑

m=0

εm

2
ςζ
{
Jm (kr) + χζJ−m (kr)

}
Tζ(mθ), (46)

respectively, where ςζ = 1 if ζ = c and ςζ = i if ζ = s. Furthermore, Eqs. (45) and (46) are reduced to:

ui(1)
z (r, θ) =

∑

ζ=c,s

∞∑

m=0

(−1)m εm

2
Qζ

m(r)Tζ(mθ), (47a)

φi(1)(r, θ) =
e0
1

κ0
1

∑

ζ=c,s

∞∑

m=0

(−1)m εm

2
{
Qζ

m(r) − Zζ
m(r)

}
Tζ(mθ), (47b)

where

Qζ
m(r) = u0e

−β(k)h
∞∑

p=0

(−1)p εp

2
ςζ
{
Im−p(β(k)r) + χζI−m−p(β(k)r)

}

×
{
Jp (kr) + χζJ−p (kr)

}
, (48)

Zζ
m(r) = u0e

−γ(k)h
∞∑

p=0

(−1)p εp

2
ςζ
{
Im−p(γ(k)r) + χζI−m−p(γ(k)r)

}

×
{
Jp (kr) + χζJ−p (kr)

}
. (49)

In the above equations, Im is the modified Bessel function of the first kind of order m, ε0 = 1 and εm = 2
for m = 1, 2, 3, . . .. In arriving at expressions (47a) and (47b), the following series representation of e−γx

for constant γ has been employed:

e−γx = e−γh
∞∑

p=0

(−1)p εp

2
{Ip(γr) + I−p(γr)} cos(pθ). (50)

In a similar way, utilizing the relations:

ek̄1x sinh τTζ(k̄1y cosh τ) = ek̄1h sinh τ
∞∑

m=0

(−1)m εm

2
{
χζe−mτ + (−1)memτ

}

×Jm(k̄1r)Tζ(mθ), (51a)

e−kαx cosh υTζ(kαy sinh υ) = e−kαh cosh υ
∞∑

m=0

(−1)m εm

2
{
e−mυ + χζemυ

}

×Im(kαr)Tζ(mθ), (51b)

and Eqs. (38) we obtain:

Fuζ
n (r, θ) =

∞∑

m=0

(−1)m εm

2
fuζ

mnJm

(
k̄1r

)
Tζ(mθ), 0 < r < b, (52a)

Guζ
n (r, θ) =

∞∑

m=0

(−1)m εm

2
guζ

mnIm (kαr) Tζ(mθ), 0 < r < b, (52b)
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Gφζ
n (r, θ) =

∞∑

m=0

(−1)m εm

2
gφζ

mnIm (kαr) Tζ(mθ), 0 < r < b, (52c)

Fφζ
n (r, θ) =

∞∑

m=0

(−1)m εm

2
fφζ

mnJm

(
k̄1r

)
Tζ(mθ), 0 < r < b, (52d)

where

fuζ
mn =

(−1)n

π i
χζ

∞+πi∫

−∞
A(τ)e2k̄1h sinh τ

{
χζe−(m+n)τ + (−1)me(m−n)τ

}
dτ, (53a)

guζ
mn =

(−1)n

π i
χζ

∞∫

−∞
B̃(υ)e−h(Γ(υ)+kα cosh υ)

(
Γ(υ) + kα sinh υ

k̄1

)n

×
{
e−mυ + χζemυ

} kα cosh υ

Γ(υ)
dυ, (53b)

gφζ
mn =

(−1)n

2

∞∫

−∞
C(υ)e−2kαh cosh τ

{
e−(m+n)υ + χζe(m−n)υ

}
dυ, (53c)

fφζ
mn =

(−1)n

2

∞+πi∫

−∞
D̃(τ)eh(k̄1 sinh τ−Δ(τ))

(
Δ(τ) − k̄1 cosh τ

kα

)n

×
{
χζe−mτ + (−1)memτ

} k̄1 sinh τ

Δ(τ)
dτ, (53d)

with

B̃(υ) =
4 e0

1 p0
1 Γ(υ)

e0
1

2 (α + 2kα cosh υ) − κ0
1p

0
1 (α + 2Γ(υ))

, (54)

D̃(τ) = − 4 e0
1 κ0

1 Δ(τ)

κ0
1p

0
1

(
α − 2k̄1 sinh τ

)
− e0

1
2 (α + 2Δ(τ))

, (55)

It is worth mentioning that in arriving at expressions (52b) and (52d), the change of variable k̄1 cosh τ =
kα sinh υ has been made. Employing Eqs. (56)–(36) along with the expansion relation (50), we find the
following expressions for the scattered displacement pertinent to the inhomogeneous half-space:

us(1)
z = e− α

2 h
∑

ζ=c,s

∞∑

n=0

∞∑

m=0

(−1)m εm

2
(
aζ

nFuζ
mn(r) + bζ

nFφζ
mn(r)

)
Tζ(mθ),

φs(1) = e− α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

(−1)m εm

2

(

aζ
n

{

Guζ
mn(r) +

e0
1

κ0
1

Fuζ
mn(r)

}

+bζ
n

{

Gφζ
mn(r) +

e0
1

κ0
1

Fφζ
mn(r)

})

Tζ(mθ), (56a)

where

Fuζ
mn(r) = (−1)n

{
Im−n

(α

2
r
)

+ χζI−m−n

(α

2
r
)}

H(1)
n

(
k̄1r

)

+
∞∑

p=0

εp

2
fuζ

pn

{
Im−p

(α

2
r
)

+ χζI−m−p

(α

2
r
)}

Jp

(
k̄1r

)
, (57a)
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Guζ
mn(r) =

∞∑

p=0

εp

2
guζ

pn

{
Im−p

(α

2
r
)

+ χζI−m−p

(α

2
r
)}

Ip (kαr) , (57b)

Gφζ
mn(r) = (−1)n

{
Im−n

(α

2
r
)

+ χζI−m−n

(α

2
r
)}

Kn (kαr)

+
∞∑

p=0

εp

2
gφζ

pn

{
Im−p

(α

2
r
)

+ χζI−m−p

(α

2
r
)}

Ip (kαr) , (57c)

Fφζ
mn(r) =

∞∑

p=0

εp

2
fφζ

pn

{
Im−p

(α

2
r
)

+ χζI−m−p

(α

2
r
)}

Jp

(
k̄1r

)
. (57d)

With the aids of Eqs. (6), (3), (7), (47), and (56), the stress components σ
i(1)
rz and σ

s(1)
rz , and the electric

displacement components D
i(1)
r and D

s(1)
r induced, respectively, by the incident and scattered waves

within the functionally graded half-space are also obtained:

σi(1)
rz (r, θ) = μ0

1e
α h

∑

ζ=c,s

∞∑

m=0

εm

2
Qζ

m(r)Tζ(mθ)

+
e0
1

2

κ0
1

eα h
∑

ζ=c,s

∞∑

m=0

εm

2
{
Qζ

m(r) − Zζ
m(r)

}
Tζ(mθ), (58a)

σs(1)
rz (r, θ) = μ0

1e
α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

εm

2
(
aζ

nF
uζ
mn(r) + bζ

nF
φζ
mn(r)

)
Tζ(mθ)

+ e0
1e

α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

εm

2

(

aζ
n

{

Guζ
mn(r) +

e0
1

κ0
1

Fuζ
mn(r)

}

+ bζ
n

{

Gφζ
mn(r) +

e0
1

κ0
1

Fφζ
mn(r)

})

Tζ(mθ), (58b)

Di(1)
r (r, θ) = e0

1e
α h

∑

ζ=c,s

∞∑

m=0

εm

2
Qζ

m(r)Tζ(mθ)

− e0
1

2
eα h

∑

ζ=c,s

∞∑

m=0

εm

2
{
Qζ

m(r) − Zζ
m(r)

}
Tζ(mθ), (58c)

Ds(1)
r (r, θ) = e0

1e
α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

εm

2
(
aζ

nF
uζ
mn(r) + bζ

nF
φζ
mn(r)

)
Tζ(mθ)

−κ0
1e

α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

εm

2

(

aζ
n

{

Guζ
mn(r) +

e0
1

κ0
1

Fuζ
mn(r)

}

+ bζ
n

{

Gφζ
mn(r) +

e0
1

κ0
1

Fφζ
mn(r)

})

Tζ(mθ), (58d)

in which

Qζ
m(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Qζ
s(r)

∂ r
, (59a)

Zζ
m(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Zζ
s (r)

∂ r
, (59b)
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Fuζ
mn(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Fuζ
sn (r)
∂ r

, (59c)

Fφζ
mn(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Fφζ
sn (r)
∂ r

, (59d)

Guζ
mn(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Guζ
sn (r)
∂ r

, (59e)

Gφζ
mn(r) =

∞∑

s=0

εs

2
(−1)s

{
Im−s(α r) + χζI−m−s(α r)

} ∂ Gφζ
sn (r)
∂ r

. (59f)

Subsequently, by employing Eqs. (6), (3), (33), (43), (44), (47), (56), (58) and the orthogonality conditions
associated to sin(mθ) and cos(mθ), the following system of linear algebraic equations for the coefficients
aζ

n, bζ
n, cζ

n, and dζ
n is inferred:

∞∑

n=0

⎡

⎢
⎢
⎢
⎣

Λc(11)
mn Λc(12)

mn Λc(13)
mn Λc(14)

mn

Λc(21)
mn Λc(22)

mn Λc(23)
mn Λc(24)

mn

Λc(31)
mn Λc(32)

mn Λc(33)
mn Λc(34)

mn

Λc(41)
mn Λc(42)

mn Λc(43)
mn Λc(44)

mn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ac
n

bc
n

cc
n

dc
n

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

Λc(1)
m

Λc(2)
m

Λc(3)
m

Λc(4)
m

⎤

⎥
⎥
⎥
⎦

, m = 0, 1, 2, . . . , (60a)

∞∑

n=1

⎡

⎢
⎢
⎢
⎣

Λs(11)
mn Λs(12)

mn Λs(13)
mn Λs(14)

mn

Λs(21)
mn Λs(22)

mn Λs(23)
mn Λs(24)

mn

Λs(31)
mn Λs(32)

mn Λs(33)
mn Λs(34)

mn

Λs(41)
mn Λs(42)

mn Λs(43)
mn Λs(44)

mn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

as
n

bs
n

cs
n

ds
n

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

Λs(1)
m

Λs(2)
m

Λs(3)
m

Λs(4)
m

⎤

⎥
⎥
⎥
⎦

, m = 1, 2, 3, . . . , (60b)

where

Λζ(11)
mn = e− α

2 h(−1)m εm

2
Fuζ

mn(a), Λζ(12)
mn = e− α

2 h(−1)m εm

2
Fφζ

mn(a), Λζ(13)
mn = −δmnJn(k2a), Λζ(14)

mn = 0,

Λζ(21)
mn = e− α

2 h(−1)m εm

2

{

Guζ
mn(a) +

e0
1

κ0
1

Fuζ
mn(a)

}

, Λζ(22)
mn = e− α

2 h(−1)m εm

2

{

Gφζ
mn(a) +

e0
1

κ0
1

Fφζ
mn(a)

}

,

Λζ(23)
mn = −δmn

e2

κ2
Jn(k2a), Λζ(24)

mn = −δmnan,

Λζ(31)
mn = e

α
2 h εm

2
{
e0
1G

uζ
mn(a) + p0

1F
uζ
mn(a)

}
, Λζ(32)

mn = e
α
2 h εm

2
{
e0
1G

φζ
mn(a) + p0

1F
φζ
mn(a)

}
,

Λζ(33)
mn = −δmnp2J

′
n(k2a), Λζ(34)

mn = −δmne2 nan−1,

Λζ(41)
mn = −e

α
2 h εm

2
κ0

1G
uζ
mn(a), Λζ(42)

mn = −e
α
2 h εm

2
κ0

1G
φζ
mn(a), Λζ(43)

mn = 0, Λζ(44)
mn = δmnκ2 nan−1,

Λζ(1)
m = −(−1)m εm

2
Qζ

m(a), Λζ(2)
m = −(−1)m εm

2
e0
1

κ0
1

{
Qζ

m(a) − Zζ
m(a)

}
,

Λζ(3)
m = −eα h εm

2

{

p0
1Q

ζ
m(a) − e0

1
2

κ0
1

Zζ
m(a)

}

, Λζ(4)
m = −eα h εm

2
e0
1Z

ζ
m(a).

(61)

4. Numerical results and discussion

Based on multipole expansion method, an analytical solution for the scattering problem of transverse
surface waves by a homogeneous circular piezoelectric fiber surrounded by an exponentially graded piezo-
electric half-space has been presented. In this section, several descriptive examples are provided to examine
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(a)

(b)

Fig. 3. a Distribution of the stress component |σ(1)
θz |/p01 along the FGPM substrate–fiber interface just inside the substrate

for different values of the normalized gradient coefficient, αa. Part b represents the corresponding polar distribution

the dynamic response of the medium. In particular, we intend to examine the effects of the exponential
coefficient, α the distance between the center of the fiber and the free surface of the half-space, b and the
frequency, ω on the normalized absolute value of the stress component, |σ(1)

θz |/p0
1 along the fiber–substrate

interface just inside the substrate. Utilizing Eqs. (6), (3), (7), (47), and (56) yields:

σ
i(1)
θz (a, θ) = μ0

1e
α h 1

a

∑

ζ=c,s

∞∑

m=0

εm

2
Q̄ζ

m(a)T̄ζ(mθ)

+
e0
1

2

κ0
1

eα h 1
a

∑

ζ=c,s

∞∑

m=0

εm

2
{
Q̄ζ

m(a) − Z̄ζ
m(a)

}
T̄ζ(mθ), (62a)

σ
s(1)
θz (a, θ) = μ0

1e
α
2 h

∑

ζ=c,s

∞∑

n=0

∞∑

m=0

εm

2
(
aζ

nF̄
uζ
mn(a) + bζ
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(a)

(b)

Fig. 4. a Distribution of the stress component |σ(1)
θz |/p01 along the FGPM substrate–fiber interface just inside the substrate

for different values of the normalized distance between the center of the fiber and the free surface, h/a. Part b represents

the corresponding polar distribution

+ bζ
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Ḡφζ
mn(a) +

e0
1

κ0
1

F̄φζ
mn(a)

})

T̄ζ(mθ), (62c)

in which T̄ζ(mθ) = sin(mθ) if ζ = c and T̄ζ(mθ) = cos(mθ) if ζ = s and
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εs
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}
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sn (a), (63d)
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(a)

(b)

Fig. 5. a Distribution of the stress component |σ(1)
θz |/p01 along the FGPM substrate–fiber interface just inside the substrate

for different values of the normalized wave number, k1a. Part b represents the corresponding polar distribution

Ḡuζ
mn(a) = −

∞∑

s=0

εs

2
(−1)s

{
Im−s(α a) + χζI−m−s(α a)

}
(χζs)Guζ

sn (a), (63e)

Ḡφζ
mn(a) = −

∞∑

s=0

εs

2
(−1)s

{
Im−s(α a) + χζI−m−s(α a)

}
(χζs)Gφζ

sn (a). (63f)

In all the examples given in this section, it is assumed that the piezoelectric fiber is made of BaTiO3

with electromechanical properties: μ2 = 43 × 109 N m−2; e2 = 11.6 C m−2; κ2 = 112 × 10−10 F m−1;
ρ2 = 5.7 × 103 kg m−3. Moreover, the electromechanical material properties of the exponentially graded
half-space at the free surface are: μ0

1 = 25.6 × 109 N m−2; e0
1 = 12.7 C m−2; κ0

1 = 64.64 × 10−10 F m−1;
ρ0
1 = 7.5×103 kg m−3. The frequency, the distance of the center of the fiber to the surface of the substrate,

and the exponential coefficient are normalized as ωa/c
(1)
sh , and αa, respectively.

In order to assess the influence of the dimensionless exponential coefficient, αa on the distribution of the
normalized stress component, |σ(1)

θz |/p0
1 along the FGP substrate–fiber interface just inside the substrate,

we keep ωa/c
(1)
sh = 0.5 and b/a = 2 fixed. Then, the distributions of |σ(1)

θz |/p0
1 for different values of

αa = 0,− 0.1,− 0.2,− 0.3 are plotted in Fig. 3a and b; Fig. 3b represents the polar plot. It is observed
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that, the gradient coefficient, αa has significant effect on the stress distribution. As it can be seen, |σ(1)
θz |

increases as absolute value of the gradient coefficient decreases.
Next, to examine the effect of the distance between the center of the piezoelectric fiber and the free

surface of the FGP half-space, we hold ωa/c
(1)
sh = 1 and αa = − 0.1 fixed. Subsequently, for various values

of b/a = 1.5, 2, 2.5, and 3 the corresponding distributions of |σ(1)
θz |/p0

1 along the FGP substrate–fiber
interface are plotted in Fig. 4a and b. From the polar distributions of |σ(1)

θz |/p0
1 shown in Fig. 4b, it is

clearly seen that as the fiber is located closer to the free surface it experiences larger absolute stress
value, and the associated stress distribution is skewed. While at larger distances where the surface effect
diminishes, the distribution becomes nearly symmetrical.

To assess the effect of the frequency on the absolute value of the stress component, |σ(1)
θz |/p0

1 along
the boundary of the piezoelectric fiber with its center at a depth of b/a = 1.5 beneath the free surface,
we keep αa = − 0.25 fixed. Then, for different values of ωa/c

(1)
sh = 0.5, 1, 3, and 5 the corresponding

distributions of the normalized magnitude of the stress component, |σ(1)
θz |/p0

1 along the fiber–substrate
interface just inside the substrate are calculated and plotted in Fig. 5a and b. It can be observed that,
the frequency of the propagating transverse surface waves has significant effect on the stress distribution.

5. Conclusion

Scattering of transverse surface waves by a circular piezoelectric fiber which is embedded near the free
surface of a FGPM half-space with exponentially varying electromechanical properties is addressed using
multipole expansion method. The scattered displacement and electric potential fields are expressed as
series expansion in terms of multipole functions which satisfy: (a) the electromechanical field equations in
the substrate, (b) the free traction and electrically short conditions along the free surface of the substrate,
and (c) the radiation conditions at infinity. The simple poles of these multipole functions are related to the
roots of the pertinent dispersion relation. By satisfying some appropriate boundary conditions peculiar to
the problem of interest, the analytical expressions for the pertinent electromechanical fields are derived. In
the section on the descriptive examples, the effects of several parameters on the scattered stress field have
been examined. It is realized that the inhomogeneity coefficient, the frequency of the incident transverse
surface waves, and the distance between the center of the fiber and the substrate’s free surface have
significant effect on the dynamic response of the medium.
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