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Traveling waves in the Kermack–McKendrick epidemic model with latent period
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Abstract. We study traveling waves for a diffusive susceptible–infected–recovery model, due to Kermack and McKendrick,
of an epidemic with standard incidence and latent period included. In contrast to the classical case where the mass action
incidence is employed, the total population is varied in the present model. It turns out that the governing equation for the
recovery species cannot be decoupled from the other two equations for the susceptible and the infected species, and hence
that the present model cannot be reduced to a two-component system as the classical one does. The existence of traveling
waves of the model in this study can be completely characterized by the basic reproduction number of the system of ordinary
differential equations associated with the present model. The model admits a continuum of traveling waves parameterized
by wave speed c when waves do exist. Our approach is based on the fixed point theory and a delicately designed pair of
super-/sub-solutions. This set of super-/sub-solutions also allows us to completely answer two unsolved questions in the
existing literatures where the latent period is zero: (i) the existence of the minimal-speed wave which is believed to play a
key role in the evolution of epidemic diseases and (ii) the existence of traveling waves does not depend on the relative ratio
of the diffusivity of the infected species to the one of the recovery species.
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1. Introduction

Ross [28], in his pioneering work on epidemic modeling, introduced ordinary differential equations to
describe the disease transmission between susceptible and infected individuals. Since then, there are a
large number of works on epidemics modeling. Among them, the Kermack–McKendrick model [17–19]
was successfully proposed to explain the rapid rise and fall in the number of infected individuals in
the community during the course of epidemics [16, Chapter 2]. The Kermack–McKendrick model is a
three-component system of ordinary differential equations:

S′ = −κ(I,N)S,

I ′ = κ(I,N)S − γI,

R′ = γI,

(1.1)

where the prime denotes the differentiation with respect to time t, S, I, and R are the number of
susceptible individuals, the number of infected individuals, and the number of recovered individuals,
respectively, at time t, N = S + I + R is the total population size, and γ is the recovery rate. Here
the function κ(I,N) is termed as the force of infection in epidemiology, and the function κ(I,N)S is
called incidence which is the number of individuals becoming infected per unit of time [4,6,8,16,23].
Depending on the nature of disease-relevant contact within the population, there are two plausible types
of incidence [11,16,23,24]: (i) the mass action incidence (κ(I,N)S = βSI) and (ii) the standard incidence
(κ(I,N)S = βSI/N). Here β > 0 is a constant. Mass action incidence is used in the case where the number
of disease-relevant contact increases as the population size increases (e.g., influenza), while standard
incidence is employed in the case where the number of disease-relevant contact cannot increase indefinitely
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even if the population size increases indefinitely (e.g., sexually transmitted diseases) [11,16,23]. Note that
system (1.1) with the mass action incidence is a special case of the model formulated by Kermack and
McKendrick in [17].

The Kermack–McKendrick model (1.1) focuses on the behavior of an epidemic only in a single spatial
location and ignores the possible movement into and out of the population. However, there is an increasing
interest to use spatially dependent models such as reaction–diffusion models to study disease transmission
[5,23,25]. Moreover, due to the well-developed modern transportation, the mobility of populations seems
to be essential in the study of epidemics since it allows for the rapid transfer of diseases. The second
missing factor in (1.1) is the latent period [14]. It is reported that many types of infectious diseases have
so-called latent period. That is, it takes time for an individual who gets infection to become infective
for the other individuals. Thus, the standard incidence assumption, the mobility of the population, and
the existence of latent period together lead us to the consideration of the following spatially dependent
Kermack–McKendrick model:

∂S

∂t
(t, x) = d1

∂2S

∂x2
(t, x) − βI(t − τ, x)

N(t, x)
· S(t, x),

∂I

∂t
(t, x) = d2

∂2I

∂x2
(t, x) +

βI(t − τ, x)
N(t, x)

· S(t, x) − (γ + δ)I(t, x),

∂R

∂t
(t, x) = d3

∂2R

∂x2
(t, x) + γI(t, x),

(1.2)

where S(t, x), I(t, x), and R(t, x) denote the density of susceptible individuals, the density of infected
individuals, and the density of recovery individuals, respectively, at time t ≥ 0 and spatial position x ∈ R,
and N(t, x) := S(t, x)+ I(t, x)+R(t, x) is the total population size at time t and spatial location x. Here
the constants d1, d2, and d3 are the diffusion rates of the susceptible individual, the infected individual,
and the recovered individual, respectively. The parameter β is the transmission rate constant, γ > 0 is
the recovery rate, δ ≥ 0 is the death/quarantine rate of infected individuals, and τ ≥ 0 is the latent
period of the disease.

As explained in [5], a number of epidemic models in the setting of reaction–diffusion equations admit a
continuum of traveling waves parameterized by the associated wave speed. Traveling waves are important
in epidemiology since they can describe the spread of diseases into uninfected regions. Moreover, the
so-called spreading speed of diseases is closely related to the minimal wave speed (see [5, Chapter 8] and
[20,21]). A traveling wave solution of system (1.2) is a solution of system (1.2) in the form (S, I,R)(x−ct)
where the functions S, I, and R, termed as wave profiles, are the triple of nonnegative smooth functions
defined on R, and the constant c is the wave speed. Substituting (S, I,R)(x − ct) into system (1.2), one
can see that the wave solution (S(z), I(z), R(z))(z = x − ct) solves the following system of ordinary
differential equations:

d1S
′′(z) + cS′(z) − βI(z + cτ)S(z)

S(z) + I(z) + R(z)
= 0,

d2I
′′(z) + cI ′(z) +

βI(z + cτ)S(z)
S(z) + I(z) + R(z)

− (γ + δ)I(z) = 0,

d3R
′′(z) + cR′(z) + γI(z) = 0.

(1.3)

Next, we turn to discuss the boundary conditions for solutions of system (1.3). For this, we follow
the discussion of Kermack and McKendrick [17, p. 701] to formulate the boundary conditions. Indeed,
as Kermack and McKendrick [17] suggested, if a group of infected individuals are introduced into the
population where all of individuals are initially susceptible to the disease and a disease outbreak is
assumed, then one of the important questions in epidemiology is to decide which of the following two
cases can occur when the termination of epidemics is reached: (i) no susceptible individuals are left or
(ii) many susceptible individuals are still present in the affected population. Mathematically, we can
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formulate these two cases as follows: Given S∞ > 0, determine constants S−∞ ∈ [0, S∞) and R−∞ ≥ 0
such that system (1.3) admits a solution (S, I,R) satisfying the following boundary conditions

S(−∞) = S−∞, S(+∞) = S∞,

I(±∞) = 0,

R(−∞) = R−∞, R(+∞) = 0.
(1.4)

In this setting, for a wave to be biologically acceptable, the wave speed c must be positive (i.e., the
wave must propagate from the left to the right). Hence, a traveling wave solution of (1.2) is a solu-
tion of (1.2) connecting the initial disease-free equilibrium (S∞, 0, 0) to another disease-free equilibrium
(S−∞, 0, R−∞).

Now we briefly review previous studies on traveling wave solutions of the variants of system (1.2).
First, for the case of mass action incidence, Hosono and Ilyas [13] showed that the corresponding system
admits a continuum of traveling wave solutions with the minimal speed if and only if the corresponding
reproduction number is larger than one (see also [12] for the extreme case of non-diffusive infected
individuals, [15] for the other extreme case of non-diffusive susceptible individuals, and [1] for the case
where the latent period is included). Second, for the case of saturate incidence (κ(I,N) = βI/(1 + αI)
with positive constants β and α), Xu [31] (see also [9] for the existence of minimal-speed wave, and
[22] for a relevant system) proved that similar results also hold for the corresponding system. Third, to
incorporate the effect of non-local interaction and latent period on the spread of diseases, Wang and
Wu [32] studied the Kermack and McKendrick model with non-local delayed transmission and showed
that similar results hold for their system. We remark that for the aforementioned cases, the governing
equation for the recovery individual is decoupled from the other two equations, and so the governing
system for traveling waves is in fact a two-component system, not a three-component system as it is in
this study.

For system (1.2) with the zero latent period (τ = 0), Wang and Wang in [29] (see also [30] for a
simplified two-component system) showed that (i) if the basic reproduction number R0 := β/(γ + δ) > 1
and d3 < 2d2, then for each given c > c� := 2

√
d2(β − (γ + δ)) and S∞ > 0, system (1.3) with boundary

conditions (1.4) and τ = 0 admits a solution, and (ii) if (R0, c) ∈ (1,+∞) × (0, c�) ∪ (0, 1] × R, then
there are no nonnegative solutions for system (1.3) with the boundary conditions (1.4) and τ = 0. We
remark that the existence of traveling wave solutions with the minimal speed c� is unsolved in [29] and
that whether the assumption d3 < 2d2 is a technical assumption for the existence of traveling waves is
not understood there. Note that the existence of the minimal-speed wave is believed to play an important
role in the determination of spreading speed of epidemic models [5]. Motivated by the above discussion,
in this study we will give a complete characterization on the existence of traveling wave solutions for (1.2)
with the latent period (τ ≥ 0) and any positive diffusion coefficients di(i = 1, 2, 3), and, in particular,
the existence of minimal-speed wave. Thus, our results also solve the aforementioned unsolved problem
for the case that τ = 0.
Main results

It is known that traveling wave solutions of the Kermack–McKendrick model are closely related to
their behaviors around their tails. Hence, before stating our main results, we first give an intuitive
description about the decaying rates of traveling wave solutions. Indeed, linearizing system (1.3) at
disease-free equilibrium (S∞, 0, 0), the I-component of the solution (S, I,R) of the resulting linearized
system satisfies the following equation

d2I
′′(z) + cI ′(z) + βI(z + cτ) − (γ + δ)I(z) = 0.

A direct computation indicates that for a given c ∈ R, the decaying rate λ > 0 of a solution e−λz of the
above linear equation is a zero of the corresponding characteristic function f(·, c) defined by

f(λ, c) = d2λ
2 − cλ + βe−λcτ − (γ + δ).
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One can show (see Lemma 2.1) that if the basic reproduction number R0 := β
γ+δ > 1, then there exists

a unique c∗ > 0 such that for c = c∗, f(·, c) has a unique zero λ∗ > 0; for c > c∗, f(·, c) has exactly two
zeros 0 < λ1 = λ1(c) < λ∗ < λ2 = λ2(c); and for c ∈ [0, c∗), f(·, c) has no real zeros.

In this paper, our main results can be stated as follows.

Theorem 1.1. (Traveling wave solutions of system (1.2) for R0 ∈ (0, 1])
Assume that R0 ∈ (0, 1]. Then there are no nonnegative solutions of problem (1.3)-(1.4).

Theorem 1.2. (Traveling wave solutions of system (1.2) for R0 > 1)
Assume that R0 > 1. Then the following hold:
(I) For each c ∈ (0, c∗), there are no nonnegative solutions of problem (1.3)-(1.4).

(II) Let S∞ > 0 be given. Then for each c ≥ c∗, there exist constants S−∞ ∈ [0, S∞) and R−∞ > 0 such
that (1.3) and (1.4) admit a nonnegative solution (Sc, Ic, Rc) with the following properties:

(i)

R−∞ =
γ

γ + δ
(S∞ − S−∞), (1.5a)

∫

R

(γ + δ)Ic(y)dy =
∫

R

βIc(y + cτ)Sc(y)
Sc(y) + Ic(y) + Rc(y)

dy = c(S∞ − S−∞). (1.5b)

(ii) 0 < Ic ≤ (R0 − 1)S∞, (Sc)′ > 0 and (Rc)′ < 0 in R.
(iii) The function Ic(z) has the following asymptotical behavior:

Ic(z) = O(e−λ1z) (resp. O(ze−λ∗z)), as z → +∞, for c > c∗ (resp. for c = c∗).

We make remarks before proceeding further. First, a careful examination of the argument (the proofs
of Lemmas 2.13 and 2.14 and the asymptotical behavior of the functions Rc

± given in Sect. 2.1) reveals that
the obtained wave solution is sandwiched between a pair of sub-/super-solutions, and the R-component
of the sub-solution (resp. super-solution) is of order O(e−(max{λ1,c/d3})z) (resp. O(e−(min{λ1,c/d3})z) as
z → ∞, where λ1 = λ1(c) is defined as above. Thus, we cannot deduce the exact asymptotical behavior
of the R-component of wave solutions from those of this pair of sub-/super-solutions. However, for the
case that λ1 < c/d3 (e.g., d3 < 2d2/(1 + βτ) meets this condition), a suitable modification of the above
sub-/super-solutions can be made in the way that the R-components of the resulting pair of sub-/super-
solutions have the same asymptotical behavior (see Remark 2.7), and thus, the asymptotical behavior for
the R-components of wave solutions can be deduced. However, for the case that λ1 ≥ c/d3, this pair of
modified sub-/super-solutions fail to have the same asymptotical behavior of their R-components, and
thus, the asymptotical behavior for the R-components of wave solutions cannot be deduced. Second,
the characterization of the minimal wave speed c∗ implies that the minimum wave speed depends on the
diffusion rate of infected individuals, but neither on that of susceptible individuals nor on that of recovery
individuals. Moreover, our results indicate that traveling wave solutions of system (1.2) with τ = 0 can
exist for the parameter region {d3 ≥ 2d2}, and hence that the assumption d3 < 2d2 made in [29] is a
technical assumption for the existence of traveling waves for system (1.2) with τ = 0. Also our results
confirm the existence of minimal-speed wave for system (1.2) with τ = 0, which is unsolved in [29].

Finally, the remaining of this paper is organized as follows: Sect. 2 is devoted to the proof of Theo-
rem 1.2(II), while Sect. 3 is devoted to the proofs of Theorems 1.1 and 1.2(I).

2. Existence of traveling waves

In this section, we will establish the existence of traveling waves of system (1.2). The proof follows the
framework of Berestycki et al. [3]. Indeed, we first apply the Schauder fixed point theorem and a suitable
super-/sub-solution triple (see Sect. 2.1) to construct approximated wave solutions on the finite interval
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[−n, n] for each n ∈ N (see Sect. 2.2). Then we pass to the limit as n → +∞ to obtain wave solutions on
R (see Sect. 2.3). In the remaining of this section, we always assume that R0 > 1.

2.1. Construction of super-/sub-solutions

We begin with the following lemma which characterizes the distribution of the zeros of the function f(·, c)
for each given c ≥ c∗. The proof is standard (e.g., see [31]), and so we omit it.

Lemma 2.1. Assume that R0 > 1. There exists a unique c∗ > 0 such that for c = c∗, f(·, c) has a unique
zero λ∗ > 0; for c > c∗, f(·, c) has exactly two zeros 0 < λ1(c) < λ∗ < λ2(c); and for c ∈ [0, c∗), f(·, c)
has no real zeros. Moreover, we have

∂f

∂λ
(λ1(c), c) < 0 and

∂f

∂λ
(λ2(c), c) > 0 for c > c∗, (2.1)

∂f

∂λ
(λ∗, c∗) = 2d2λ∗ − c∗ − βc∗τe−λ∗c∗τ = 0. (2.2)

2.1.1. The component Sc
+ of the super-solution (Sc

+, Ic
+, Rc

+). In the following, we shall construct the
super-/sub-solutions of (1.3) for each c ≥ c∗. We first define the component Sc

+ of the super-solution
(Sc

+, Ic
+, Rc

+) as follows. Set

Sc
+ ≡ S∞ on R for c ≥ c∗.

2.1.2. The component Ic
+ of the super-solution (Sc

+, Ic
+, Rc

+). Now we define the component Ic
+ of the

super-solution (Sc
+, Ic

+, Rc
+) as follows. For c > c∗, set

Ic
+(z) =

{
L0, z ≤ zc

0,

e−λ1z, z > zc
0,

where λ1 is defined in Lemma 2.1, L0 =
(

β
γ+δ − 1

)
S∞ and zc

0 = − lnL0
λ1

. For c = c∗, set

Ic∗
+ (z) =

{
L0, z ≤ zc∗

0 ,

Lc∗
1 ze−λ∗z, z > zc∗

0 ,

where λ∗ is defined in Lemma 2.1, Lc∗
1 = eλ∗L0 and zc∗

0 = λ−1
∗ . Note that Ic

+(z) ≤ L0 for z ∈ R and
c > c∗. A direct computation yields

max
z≥zc∗

0

ze−λ∗z = ze−λ∗z
∣∣
z=zc∗

0
= (eλ∗)−1.

Together with the relation Lc∗
1 = eλ∗L0, we thus have

Ic
+(z) ≤ L0 for z ∈ R and c ≥ c∗. (2.3)

We remark that the form of Ic∗
+ is motivated by [9].

Lemma 2.2. For c ≥ c∗ and any nonnegative function R(z) defined on R, the function Ic
+(z) satisfies the

inequality

d2(Ic
+)′′(z) + c(Ic

+)′(z) +
βIc

+(z + cτ)Sc
+(z)

Sc
+(z) + Ic

+(z) + R(z)
− (γ + δ)Ic

+(z) ≤ 0 for z 	= zc
0.

Proof. To begin with, let R(z) be a nonnegative function on R. We first consider the case that c > c∗.
Then a direction computation indicates that for z > zc

0, we have

d2(Ic
+)′′(z) + c(Ic

+)′(z) +
βIc

+(z + cτ)Sc
+(z)

Sc
+(z) + Ic

+(z) + R(z)
− (γ + δ)Ic

+(z)

≤ d2(Ic
+)′′(z) + c(Ic

+)′(z) + βIc
+(z + cτ) − (γ + δ)Ic

+(z) = f(λ1, c)e−λ1z = 0.
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For z < zc
0, we have Ic

+(z) = L0, and, by (2.3), Ic
+(z + cτ) ≤ L0. Then it follows that

d2(Ic
+)′′(z) + c(Ic

+)′(z) +
βIc

+(z + cτ)Sc
+(z)

Sc
+(z) + Ic

+(z) + R(z)
− (γ + δ)Ic

+(z) ≤
[ βS∞
S∞ + L0

− (γ + δ)
]
L0 = 0,

where we have used the definition of L0 in the last equality.
Next, we turn to the case that c = c∗. We first consider the case that z > zc∗

0 . For this case,
Ic∗
+ (z) = Lc∗

1 ze−λ∗z. Then for any R(z) ≥ 0, we have

d2(Ic∗
+ )′′(z) + c∗(Ic∗

+ )′(z) +
βIc∗

+ (z + c∗τ)Sc∗
+ (z)

Sc∗
+ (z) + Ic∗

+ (z) + R(z)
− (γ + δ)Ic∗

+ (z)

≤ d2(Ic∗
+ )′′(z) + c∗(Ic∗

+ )′(z) + βIc∗
+ (z + c∗τ) − (γ + δ)Ic∗

+ (z)

≤ Lc∗
1

[
f(λ∗, c∗)ze−λ∗z − (2d2λ∗ − c∗ − βc∗τe−λ∗c∗τ )e−λ∗z

]
= 0 (by (2.2)).

Finally, for the case that c = c∗ and z < zc∗
0 , the proof follows the same lines for the case that c > c∗ and

z < zc
0. Thus, the proof of this lemma is completed. �

2.1.3. The component Rc
+ of the super-solution (Sc

+, Ic
+, Rc

+). For each c ≥ c∗, fix a λR
1 = λR

1 (c) ∈(
0,min{λ1, c/d3}

)
close to min{λ1, c/d3}. From the choice of λR

1 , we have cλR
1 − d3(λR

1 )2 > 0 for c ≥ c∗.
Recall that

λ1 < λ∗ < λ2 for c > c∗ and λ∗ = λ1 = λ2 for c = c∗.
For c > c∗ and z ∈ R, define

Rc
+(z) =

γKc
0

cλR
1 − d3(λR

1 )2
· e−λR

1 z with Kc
0 = max

{
1, L

1−(λR
1 /λ1)

0

}
.

For c = c∗ and z ∈ R, set

Rc∗
+ (z) =

γKc∗
0

c∗λR
1 − d3(λR

1 )2
· e−λR

1 z with Kc∗
0 = max

{
Lc∗
1 max

z≥zc∗
0

ze−(λ∗−λR
1 )z, L0eλR

1 /λ∗

}
,

where zc∗
0 is defined in Lemma 2.2.

Lemma 2.3. For each c ≥ c∗, the function Rc
+ satisfies the inequality

d3(Rc
+)′′(z) + c(Rc

+)′(z) + γIc
+(z) ≤ 0 for z ∈ R.

Proof. First, we consider the case that c > c∗. Indeed, one can verify that Kc
0 ≥ e(λ

R
1 −λ1)z for z ≥ zc

0,
and Kc

0 ≥ L0eλR
1 z for z ≤ zc

0. Then it follows from the definition of I+(z) that it holds

d3(Rc
+)′′(z) + c(Rc

+)′(z) + γIc
+(z) = −γe−λR

1 z
[
Kc

0 − eλR
1 zIc

+(z)
] ≤ 0, z ∈ R.

Next, we turn to the case that c = c∗. We first treat the case that z > zc∗
0 . For this case, we have

Ic∗
+ (z) = Lc∗

1 ze−λ∗z. Then a direct computation gives

d3(Rc∗
+ )′′(z) + c∗(Rc∗

+ )′(z) + γIc∗
+ (z) = − γe−(λR

1 )z
[
Kc∗

0 − Lc∗
1 ze−(λ∗−λR

1 )z
]

≤ − γe−(λR
1 )z

[
Kc∗

0 − Lc∗
1 max

z≥zc∗
0

ze−(λ∗−λR
1 )z

] ≤ 0,

which establishes the assertion for z > zc∗
0 . Now, we treat the case that z ≤ zc∗

0 . For this case, we have
Ic∗
+ (z) = L0. Using the relation that zc∗

0 = 1/λ∗, a direct computation yields

d3(Rc∗
+ )′′(z) + c∗(Rc∗

+ )′(z) + γIc∗
+ (z) = −γe−(λR

1 )z
[
Kc∗

0 − L0e(λ
R
1 )z

]

≤ −γe−(λR
1 )z

[
Kc∗

0 − L0e(λ
R
1 )zc∗

0
] ≤ 0.

This proves the assertion for z ≤ zc∗
0 , thereby completing the proof of this lemma. �
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2.1.4. The component Sc
− of the sub-solution (Sc

−, Ic
−, Rc

−). Now, for any given c ≥ c∗, we choose an
εc
0 ∈ (0,min{λ1, c/d1}). Recall that λ1(c∗) = λ∗. Thus, both e−(λ1−εc0)z and ze−(λ∗−εc∗

0 )z tend to 0 as
z → +∞. For c > c∗, we choose a large zc

1 > zc
0 such that βe−λ1zc

1 ≤ S∞εc
0(c − d1ε

c
0). Set M c

0 = eεc0zc
1 .

Note that −λ1 + εc
0 < 0. Then it follows

βe(−λ1+εc0)ze−λ1cτ ≤ M c
0βe−λ1zc

1 ≤ M c
0S∞εc

0(c − d1ε
c
0), z ≥ zc

1. (2.4)

Similarly, for c = c∗, we choose a large zc∗
1 > zc∗

0 such that

ze−(λ∗−εc∗
0 )z is decreasing in z ≥ zc∗

1 , (2.5)

and that βLc∗
1 zc∗

1 e−λ∗zc∗
1 ≤ S∞εc∗

0 (c∗ − d1ε
c∗
0 ). Set M c∗

0 = eεc∗
0 zc∗

1 . Then we have

βLc∗
1 ze(−λ∗+εc∗

0 )z ≤ βLc∗
1 zc∗

1 e−λ∗zc∗
1 eεc∗

0 zc∗
1 ≤ M c∗

0 S∞εc∗
0 (c∗ − d1ε

c∗
0 ), z ≥ zc∗

1 . (2.6)

For c ≥ c∗, define

Sc
−(z) =

{
0, z ≤ zc

1,

S∞(1 − M c
0e−εc0z), z > zc

1.

Lemma 2.4. For each c ≥ c∗ and each pair of nonnegative functions (I,R) defined on R such that I+R > 0
on (−∞, zc

1], the function Sc
− satisfies the inequality

d1(Sc
−)′′(z) + c(Sc

−)′(z) − βIc
+(z + cτ)Sc

−(z)
Sc−(z) + I(z) + R(z)

≥ 0 for z 	= zc
1. (2.7)

Proof. Note that Sc
−(z) = 0 for c ≥ c∗ and z ≤ zc

1. Thus, it suffices to prove that (2.7) holds for z > zc
1

and R(z) + I(z) > 0 on (−∞, zc
1].

We first consider the case that c > c∗. Recall that Ic
+(z) = e−λ1z for z > zc

1. Then we have

d1(Sc
−)′′(z) + c(Sc

−)′(z) − βIc
+(z + cτ)Sc

−(z)
Sc−(z) + I(z) + R(z)

≥ d1(Sc
−)′′(z) + c(Sc

−)′(z) − βIc
+(z + cτ)

= e−εc0z
[
M c

0S∞εc
0(c − d1ε

c
0) − βe−λ1cτ+(−λ1+εc0)z

]

≥ 0 (by (2.4)).

Next we consider the case that c = c∗. Using (2.5), it follows that for z > zc∗
1 ,

Ic∗
+ (z) = Lc∗

1 ze−(λ∗−εc∗
0 )ze−εc∗

0 z ≥ Lc∗
1 (z + c∗τ)e−(λ∗−εc∗

0 )(z+c∗τ)e−εc∗
0 (z+c∗τ) = Ic∗

+ (z + c∗τ).

Together with (2.6) and the fact that I(z) + R(z) ≥ 0 for z > zc∗
1 , we have that for z > zc∗

1 ,

d1(Sc∗− )′′(z) + c∗(Sc∗− )′(z) − βIc∗
+ (z + c∗τ)Sc∗− (z)

Sc∗− (z) + I(z) + R(z)

≥ e−εc∗
0 z

[
M c∗

0 S∞εc∗
0 (c∗ − d1ε

c∗
0 ) − βLc∗

1 ze(−λ∗+εc∗
0 )z

] ≥ 0.

Hence, (2.7) holds for z > zc∗
1 . This completes the proof of this lemma. �

2.1.5. The component Ic
− of the sub-solution (Sc

−, Ic
−, Rc

−). Next, we construct the I-component of the
sub-solution of (1.3). To begin with, we set some auxiliary quantities. Set

ηc := S∞(1 − e−εc0zc
1) > 0 for each c ≥ c∗. (2.8)

For any given c > c∗, by Lemma 2.1, there exists a small εc
1 ∈ (0,min{λR

1 , λ∗ − λ1(c)}) such that f(λ1 +
εc
1, c) < 0. Then we choose a large zc

2 > max{1, 2zc
1} such that

− f(λ1 + εc
1, c) ≥ βe−(λR

1 )z

ηc
· (γKc

0 + cλR
1 − d3(λR

1 )2)
cλR

1 − d3(λR
1 )2

for z ≥ zc
2. (2.9)
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To determine zc∗
2 , set

ϕ(z) :=
βe−λ∗c∗τ

ηc∗

[
(z + c∗τ)z

3
2
(
Lc∗
1 ze−λ∗z +

γKc∗
0

c∗λR
1 − d3(λR

1 )2
· e−(λR

1 )z
)]

for z ≥ 0. Since ϕ(z) → 0 as z → +∞, we can choose a large zc∗
2 > max{1, 2zc∗

1 } such that

d2
4

> ϕ(z) for z ≥ zc∗
2 . (2.10)

Set M c
1 = eεc1zc

2 (c > c∗). Now, for c > c∗, we define

Ic
−(z) =

{
0, z ≤ zc

2,

(1 − M c
1e−εc1z)e−λ1z, z > zc

2,

and for c = c∗, we set

Ic∗− (z) =

⎧
⎨

⎩

0, z ≤ zc∗
2 ,

Lc∗
1 [z −

√
zc∗
2

√
z ]e−λ∗z, z > zc∗

2 .

Lemma 2.5. For each c ≥ c∗, there exists zc
2 > zc

1 such that the function Ic
− satisfies the inequality

d2(Ic
−)′′(z) + c(Ic

−)′(z) +
βIc

−(z + cτ)Sc
−(z)

Sc−(z) + Ic−(z) + Rc
+(z)

− (γ + δ)Ic
−(z) ≥ 0 for z 	= zc

2. (2.11)

Proof. Since Ic
− ≡ 0 in (−∞, zc

2), it suffices to show that (2.11) holds for z > zc
2 and c ≥ c∗. To this end,

note that for c ≥ c∗, the left-hand side of (2.11) can be rewritten as follows:

d2(Ic
−)′′(z) + c(Ic

−)′(z) +
βIc

−(z + cτ)Sc
−(z)

Sc−(z) + Ic−(z) + Rc
+(z)

− (γ + δ)Ic
−(z)

=
[
d2(Ic

−)′′(z) + c(Ic
−)′(z) + βIc

−(z + cτ) − (γ + δ)Ic
−(z)

]

+
[ βIc

−(z + cτ)Sc
−(z)

Sc−(z) + Ic−(z) + Rc
+(z)

− βIc
−(z + cτ)

]
:= Ac + Bc.

Recall that f(λ1, c) = 0 for c ≥ c∗. Then for c > c∗, we have

Ac = − M c
1e−(λ1+εc1)z

[
d2(λ1 + εc

1)
2 − c(λ1 + εc

1) + βe−(λ1+εc1)cτ − γ − δ
]

= − M c
1e−(λ1+εc1)zf(λ1 + εc

1, c).
(2.12)

For c = c∗, using the fact that fλ(λ∗, c∗) = 0 (see (2.2)) and the definition of Ic∗− (z), we have

Ac∗ =
d2(

√
zc∗
2 Lc∗

1 )
4

· e−λ∗z

z
3
2

+ β(
√

zc∗
2 Lc∗

1 )e−λ∗(z+c∗τ)
[
c∗τ ·

√
z + c∗τ − √

z

2
√

z(
√

z + c∗τ +
√

z)

]

≥ d2L
c∗
1

4
· e−λ∗z

z
3
2

.

(2.13)

Now, we write the term Bc as follows:

Bc = −βIc
−(z + cτ)(Ic

−(z) + Rc
+(z))

Sc−(z) + Ic−(z) + Rc
+(z)

= −βIc
−(z + cτ)(Ic

−(z) + Rc
+(z))

N c(z)

with N c(z) := Sc
−(z)+Ic

−(z)+Rc
+(z). Recall that ηc is defined by (2.8). Then using the fact that zc

2 > 2zc
1

and that Sc
−(z) is increasing in z, we have that for any given c ≥ c∗,

N c(z) ≥ Sc
−(z) ≥ Sc

−(zc
2) ≥ Sc

−(2zc
1) = S∞(1 − e−εc0zc

1) = ηc, z ≥ zc
2. (2.14)
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Next, we estimate Ac + Bc. Recall that λ1 > λR
1 > εc

1 and that M c
1 = eεc1zc

2 for c > c∗. Hence, for
c > c∗, it follows from (2.12) and the definitions of Ic

− and Rc
+ that

Ac + Bc ≥ − M c
1e−(λ1+εc1)zf(λ1 + εc

1, c) − βe−(λ1+λR
1 )z

N c(z)

(
1 +

γKc
0

cλR
1 − d3(λR

1 )2

)

≥ e−(λ1+εc1)z

[

−M c
1f(λ1 + εc

1, c) − βe−(λR
1 −εc1)z

ηc
·
(
γKc

0 + cλR
1 − d3(λR

1 )2
)

cλR
1 − d3(λR

1 )2

]

(by (2.14))

≥ e−(λ1+εc1)z+εc1zc
2

[
− f(λ1 + εc

1, c) − βe−λR
1 zc

2

ηc
·
(
γKc

0 + cλR
1 − d3(λR

1 )2
)

cλR
1 − d3(λR

1 )2

]
≥ 0 (by (2.9))

for all z > zc
2. Thus, for c > c∗, the function Ic

− satisfies the inequality (2.11) for z > zc
2.

Now, we will show that Ac∗ + Bc∗ ≥ 0 for z > zc∗
2 . Indeed, using (2.13) and (2.14) and the definitions

of Ic
− and Rc

+, it follows that for z ≥ zc∗
2 , it holds

Ac∗ + Bc∗

≥ d2L
c∗
1

4
· e−λ∗z

z
3
2

− β

N c∗(z)

[
Lc∗
1 (z + c∗τ)e−λ∗(z+c∗τ)

]
·
(

Lc∗
1 ze−λ∗z +

γKc∗
0

c∗λR
1 − d3(λR

1 )2
e−(λR

1 )z

)

≥ Lc∗
1 · e−λ∗z

z
3
2

{
d2
4

− βe−λ∗c∗τ

ηc∗

[
(z + c∗τ)z

3
2

(
Lc∗
1 ze−λ∗z +

γKc∗
0

c∗λR
1 − d3(λR

1 )2
· e−(λR

1 )z

)]}

= Lc∗
1 · e−λ∗z

z
3
2

[
d2
4

− ϕ(z)
]

> 0 (by (2.10)).

Thus, the function Ic∗− satisfies (2.11) for z > zc∗
2 . This completes the proof of this lemma. �

2.1.6. The component Rc
− of the sub-solution (Sc

−, Ic
−, Rc

−). We first set up some auxiliary quantities.
For each c ≥ c∗, fix a λR

2 = λR
2 (c) > max{λ1, c/d3} close to max{λ1, c/d3}. Note that d3(λR

2 )2 − cλR
2 > 0

for c ≥ c∗. Next, for each c ≥ c∗, choose a small εc
2 ∈ (0, λR

2 −λ1). Then we have d3(λR
2 +εc

2)
2−c(λR

2 +εc
2) > 0

for c ≥ c∗. Now for each c ≥ c∗, in view of the relation λR
2 − λ1 > 0, we can fix a large zc

3 > zc
2 such that

for c > c∗ and z ≥ zc
3, it holds

[
d3

(
λR
2 + εc

2

)2 − c
(
λR
2 + εc

2

)]
e−(λR

2 −λ1)z + M c
1e−εc1z < 1, (2.15)

whereas for c = c∗ and z ≥ zc∗
3 , it holds

Lc∗
1 z > Lc∗

1

√
zc∗
2

√
z +

[
d3

(
λR
2 + εc∗

2

)2 − c∗
(
λR
2 + εc∗

2

)]
e−(λR

2 −λ∗)z. (2.16)

Next, for each c ≥ c∗, define the auxiliary function

R̃c
−(z) =

{
γ(1 − M c

2e−εc2z)e−(λR
2 )z, z > zc

3,

0, z ≤ zc
3,

where M c
2 = eεc2zc

3 . For c ≥ c∗, since R̃c
− > 0 in (zc

3,+∞) and R̃c
−(+∞) = R̃c

−(zc
3) = 0, the absolute

maximal value of the function R̃c
− on [zc

3,+∞) exists. Hence, for each c ≥ c∗, we can choose a zc
4 > zc

3

such that R̃c
−(zc

4) = maxz≥zc
3
R̃c

−(z) := Λc. With a direct computation, one can verify that the function
R̃c

−(z) takes its maximal value maxz∈R R̃c
−(z) at the unique point zc

4.
Now for each c ≥ c∗, we define the component Rc

− of the sub-solution (Sc
−, Ic

−, Rc
−) as follows:

Rc
−(z) =

{
γ(1 − M c

2e−εc2z)e−(λR
2 )z, z > zc

4,

Λc, z ≤ zc
4.
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Lemma 2.6. For c ≥ c∗, the function Rc
−(z) satisfies the inequality

d3(Rc
−)′′(z) + c(Rc

−)′(z) + γIc
−(z) ≥ 0 for z 	= zc

4. (2.17)

Proof. For c ≥ c∗, since Rc
− ≡ Λc and Ic

− ≥ 0 in (−∞, zc
4), (2.17) holds for z < zc

4. Hence, it remains to
show that the inequality (2.17) holds for z > zc

4.
We first consider the case that c > c∗. Recall that for c > c∗, Ic

−(z) = (1 − M c
1e−εc1z)e−λ1z for z > zc

2.
Then for z > zc

4, using (2.15), M c
2 = eεc2zc

3 and zc
4 > zc

3, we have

d3(Rc
−)′′(z) + c(Rc

−)′(z) + γIc
−(z)

= γe−λ1z
{[(

d3(λR
2 )2 − cλR

2

)
e−(λR

2 −λ1)z

− M c
2

(
d3(λR

2 + εc
2)

2 − c(λR
2 + εc

2)
)
e−(λR

2 −λ1+εc2)z
]

+ (1 − M c
1e−εc1z)

}

≥ γe−λ1z
{

1 − M c
1e−εc1zc

3 − M c
2

[
d3(λR

2 + εc
2)

2 − c(λR
2 + εc

2)
]
e−(λR

2 −λ1+εc2)z
c
3

}
≥ 0.

Hence, for c > c∗, the function Rc
− satisfies the inequality (2.17) for z > zc

4.
Now we treat the case that c = c∗. Recall that Ic∗− (z) = Lc∗

1 [z − √
zc∗
2

√
z ]e−λ∗z for z > zc∗

2 . Then for
z > zc∗

4 , using (2.16), M c∗
2 = eεc∗

2 zc∗
3 and zc∗

4 > zc∗
3 , we have

d3(Rc∗− )′′(z) + c∗(Rc∗− )′(z) + γIc∗− (z)

= γe−λ∗z
{[(

d3(λR
2 )2 − c∗λR

2

)
e−(λR

2 −λ∗)z

− M c∗
2

(
d3(λR

2 + εc∗
2 )2 − c∗(λR

2 + εc∗
2 )

)
e−(λR

2 −λ∗+εc∗
2 )z

]
+Lc∗

1 [z −
√

zc∗
2

√
z ]

}

≥ γe−λ∗z
{

Lc∗
1 [z −

√
zc∗
2

√
z ] − M c∗

2

[
d3(λR

2 + εc∗
2 )2 − c∗(λR

2 + εc∗
2 )

]
e−(λR

2 −λ∗+εc∗
2 )z

}
≥ 0.

Thus, for c = c∗, Rc∗− satisfies (2.17) for z > zc∗
4 . This completes the proof of this lemma. �

Remark 2.7. Now we have constructed a pair of super-/sub-solution triples (Sc
±, Ic

±, Rc
±) for the system

(1.3). In the coming sections, we will show that the traveling waves (Sc, Ic, Rc) are sandwiched between
this pair of super-/sub-solutions, and that for a given small positive ε, up to a multiplicative constant,
the function Rc is sandwiched between e−(max{λ1,c/d3}+ε)z and e−(min{λ1,c/d3}−ε)z as z → +∞. It is worth
remarking that for the case that λ1 < c/d3 (e.g., we can assume that d3 < 2d2/(1 + βτ)) and c > c∗,
there exists a small ε̂c

2 ∈ (0,min{εc
1, c/d3 − λ1}) with εc

1 defined in Sect. 2.1.5 and ẑc
3 > 0 such that it

holds

d3(λ1 + ε̂c
2)

2 − c(λ1 + ε̂c
2)

d3λ2
1 − cλ1

e−ε̂c2z − M c
1e−εc1z > 0, z ≥ ẑc

3.

We can further define

R̂c
+(z) =

γ

cλ1 − d3λ2
1

· e−λ1z, z ∈ R; R̂c
−(z) =

⎧
⎨

⎩

γ

cλ1 − d3λ2
1

(1 − M̂ c
2e−ε̂c2z)e−λ1z, z > ẑc

4,

Λ̂c, z ≤ ẑc
4,

where M̂ c
2 = eε̂c2ẑc

3 , and ẑc
4(> ẑc

3) and Λ̂c are constants taken as similar to M c
2 , zc

4 and Λc of Rc
− in

Sect. 2.1.6. Moreover, one can check that for λ1 < c/d3, (Sc
±, Ic

±, R̂c
±) are super-/sub-solutions for system

(1.3) with c > c∗, which would in turn imply that Ic and Rc have the same decaying rates O(e−λ1z) as
z → +∞ (see also [29] for τ = 0). Finally, we note that this modified pair of super-/sub-solutions only
works for λ1 < c/d3.
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2.2. Approximating wave solutions (Sc
n , I

c
n , R

c
n) on the finite internal [−n, n]

In this subsection, for each n ∈ N, we consider the approximated wave solutions problem on the finite
interval [−n, n]. For this, consider the following truncated problem:

d1S
′′(z) + cS′(z) − βI(z + cτ)S(z)

S(z) + I(z) + R(z)
= 0,

d2I
′′(z) + cI ′(z) − (γ + δ)I(z) +

βI(z + cτ)S(z)
S(z) + I(z) + R(z)

= 0,

d3R
′′(z) + cR′(z) + γI(z) = 0,

z ∈ (−n, n) (2.18)

with the boundary conditions

(S, I,R)(−n) = (Sc
−, Ic

−, Rc
−)(−n), (S, I,R)(n) = (Sc

−, Ic
−, Rc

−)(n). (2.19)

Here we set n > zc
4. Note that for n > zc

4, we have

(Sc
−, Ic

−, Rc
−)(−n) = (0, 0,Λc) and (Sc

−, Ic
−, Rc

−)(n) > (0, 0, 0).

Next, for any fixed c ≥ c∗, we introduce a closed and convex space

Γc,n =
{

(S, I,R) ∈ C(R)3 : Sc
− ≤ S ≤ S∞, Ic

− ≤ I ≤ Ic
+ and Rc

− ≤ R ≤ Rc
+

}

⋂ {
(S, I,R) ∈ C(R)3 : (S, I,R)(±z) = (Sc

−, Ic
−, Rc

−)(±n) for z ≥ n
}

in the Banach space C(R)3 = C(R)×C(R)×C(R) equipped with the norm ‖(S, I,R)‖C(R)3 = ‖S‖C(R) +
‖I‖C(R) + ‖R‖C(R). Now consider the map F defined by

F : Γc,n � (S0, I0, R0) −→ C(R)3 � (S, I,R),

where the triple of functions (S, I,R) solves the boundary value problem on [−n, n],

d1S
′′(z) + cS′(z) − βI0(z + cτ)

S(z) + I0(z) + R0(z)
S(z) = 0, (2.20)

d2I
′′(z) + cI ′(z) − (γ + δ)I(z) +

βS0(z)I0(z + cτ)
S0(z) + I(z) + R0(z)

= 0, (2.21)

d3R
′′(z) + cR′(z) + γI0(z) = 0 (2.22)

with the boundary conditions

(S, I,R)(−n) = (Sc
−, Ic

−, Rc
−)(−n), (S, I,R)(n) = (Sc

−, Ic
−, Rc

−)(n) (2.23)

and for each z ≥ n, (S, I,R) satisfies (S, I,R)(±z) = (Sc
−, Ic

−, Rc
−)(±n).

One can observe that each fixed point of the mapping F is a solution of truncated problem (2.18) and
(2.19). Hence, to solve truncated problem (2.18) and (2.19), it suffices to show that the mapping F has
a fixed point. We will employ the Schauder fixed point theorem to establish this.

2.2.1. F maps Γc,n into itself. In this subsection, we will show that the mapping F is well defined as
stated in the following lemma.

Lemma 2.8. For each c ≥ c∗ and n > zc
4, one has F(Γc,n) ⊆ Γc,n.

Precisely, for a given (S0, I0, R0) ∈ Γc,n, we will prove that problem (2.20)–(2.23) admits a unique
solution (S, I,R) ∈ Γc,n. Since each equation in system (2.20)–(2.22) is decoupled from the others,
it suffices to establish the existence and uniqueness of solutions for each equation in system (2.20)–
(2.22) with the corresponding boundary conditions. We divide the proof into the following three lemmas:
Lemmas 2.9, 2.10, and 2.11.
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Lemma 2.9. For each c ≥ c∗ and n > zc
4, Eq. (2.22) with the boundary condition R(±n) = Rc

−(±n)
admits a unique solution R. Moreover, the solution R satisfies

Rc
−(z) ≤ R(z) ≤ Rc

+(z) for z ∈ [−n, n].

Proof. Firstly, the existence and uniqueness of R follow from the standard ODE theory. Since R(±n) ≥ 0,
the strong maximum principle asserts that R(z) > 0 in (−n, n).

Secondly, we prove that R ≥ Rc
− on [−n, n]. To see this, due to I0 ≥ Ic

− on [−n, n], we have

d3R
′′(z) + cR′(z) + γIc

−(z) ≤ d3R
′′(z) + cR′(z) + γIc

0(z) = 0, z ∈ (−n, n).

Set w−
R := R − Rc

−. Then the above inequality and (2.17) give d3(w−
R)′′ + c(w−

R)′ ≤ 0 on (−n, n)\{zc
4}

for c ≥ c∗. In addition, w−
R(±n) = 0 by the boundary conditions (2.23). Note that R ∈ C2((−n, n)) due

to I0 ∈ C([−n, n]). From the construction of Rc
−, Rc

− ∈ C1((−n, n)) ∩ C2
(
(−n, n)/{zc

4}). Thus, we have
w−

R ∈ C1
(
(−n, n)) ∩ C2((−n, n)/{zc

4}
)
. Together with the comparison lemma from [27, Theorem 4.1], it

follows that w−
R ≥ 0 on [−n, n], and hence that R ≥ Rc

− on [−n, n].
Thirdly, we show that Rc

+ ≥ R on [−n, n]. Let w+
R := Rc

+ − R on [−n, n]. Recall that Ic
+ ≥ I0 on

[−n, n]. Then for c ≥ c∗, Lemma 2.3 asserts that w+
R(z) satisfies d3(w+

R)′′+c(w+
R)′ ≤ 0 in (−n, n). Further,

conditions (2.23) imply that w+
R(±n) > 0. Again, from the comparison lemma in [27, Theorem 4.1], it

follows that w+
R ≥ 0 on [−n, n]. This completes the proof of this lemma. �

Lemma 2.10. For each c ≥ c∗ and n > zc
4, Eq. (2.21) with the boundary condition I(±n) = Ic

−(±n) admits
a unique solution I. Moreover, the solution I satisfies

Ic
−(z) ≤ I(z) ≤ Ic

+(z) for z ∈ [−n, n]. (2.24)

Proof. The proof develops into three steps.
Step 1: Existence of solutions. For this, consider the boundary value problem

L[I] = d2I
′′ + f(z, I, I ′)

= d2I
′′ + cI ′ + g(z, I)

:= d2I
′′ + cI ′ +

[ βS0(z)I0(z + cτ)
S0(z) + I(z) + R0(z)

− (γ + δ)I
]

= 0, z ∈ (−n, n),

I(−n) = Ic
−(−n), I(n) = Ic

−(n).

(2.25)

Recall from (2.3) that Ic
+(z) ≤ L0 for z ∈ R. Also note that S0(z) ≤ Sc

+(z) = S∞ for z ∈ R. Then the
argument for Lemma 2.2 gives that

L[L0] = −(γ + δ)L0 +
βS0(z)I0(z + cτ)

S0(z) + L0 + R0(z)
< 0 in (−n, n).

Note that L[0] = βS0(z)I0(z+cτ)
S0(z)+R0(z)

≥ 0 for z ∈ (−n, n). Hence, L0 and 0 are super-solution and sub-
solution of problem (2.25), respectively. Next, since (S0, I0, R0) lies between the super-/sub-solution pairs
(Sc

±, Ic
±, Rc

±), there exists c1 > 0 such that |f(z, I, y)| ≤ h(|y|) := c1(1+ |y|) for any I ∈ [0, L0] and y ∈ R.

One can verify that
+∞∫

L0/(2n)

s/h(s)ds = +∞. Thus, f(z, I, I ′) satisfies the Nagumo’s condition on [−n, n]

relative to the pair of super-/sub-solutions (0, L0) (see [26]). Taken together, the existence theorem via
super-/sub-solutions [2, Theorem 1.5.1] asserts that problem (2.25) admits a solution I ∈ C2([−n, n])
such that 0 ≤ I(z) ≤ L0 for z ∈ [−n, n].

Step 2: Uniqueness. First, one can verify that any solution I ∈ C([−n, n]) of problem (2.25) satisfies
f1(z) := S0(z) + I(z) + R0(z) > 0 for z ∈ [−n, n]. This follows from continuity of f1 and f1(±n) > 0.
Note that the function g(z, I) defined in (2.25) satisfies

∂g

∂I
(z, I) = − βS0(z)I0(z + cτ)

(S0(z) + I + R0(z))2
− (γ + δ) < 0, z ∈ [−n, n].
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This, together with the comparison argument, implies the uniqueness of solutions of problem (2.25).
Step 3: Verification of (2.24). First we establish that I ≥ Ic

− on [−n, n]. Indeed, using the fact that
S0 ≥ Sc

−, I0 ≥ Ic
− and Rc

+ ≥ R0 on [−n, n], it follows from the first equation of (2.25) that

d2I
′′(z) + cI ′(z) − (γ + δ)I(z) +

βSc
−(z)Ic

−(z + cτ)
Sc−(z) + I(z) + Rc

+(z)
≤ 0, z ∈ (−n, n).

Let w−
I := I − Ic

− on [−n, n]. Then from Eq. (2.11) in Lemma 2.5, it follows that for each c ≥ c∗, the
function w−

I satisfies

d2(w−
I )′′(z) + c(w−

I )′(z) − (γ + δ)w−
I (z) − g−(z)w−

I (z) ≤ 0, z ∈ [zc
2, n],

g−(z) =
βSc

−(z)Ic
−(z + cτ)

(
Sc−(z) + I(z) + Rc

+(z)
)(

Sc−(z) + Ic−(z) + Rc
+(z)

) ≥ 0, z ∈ [−n, n].

Note that w−
I (n) = 0 and w−

I (zc
2) = I(zc

2) − Ic
−(zc

2) = I(zc
2) ≥ 0. Taken together, using the maximum

principle we have w−
I ≥ 0 on [zc

2, n], and so I ≥ Ic
− on [zc

2, n]. Since Ic
− ≡ 0 on [−n, zc

2], it follows that
I ≥ Ic

− on [−n, n]. Thus, the leftmost inequality in (2.24) holds.
Now we show that I ≤ Ic

+ on [−n, n]. Indeed, using the fact that S0 ≤ Sc
+ and I0 ≤ Ic

+ on [−n, n], it
follows from the first equation of (2.25) that

d2I
′′(z) + cI ′(z) − (γ + δ)I(z) +

βSc
+(z)Ic

+(z + cτ)
Sc
+(z) + I(z) + R0(z)

≥ 0, z ∈ (−n, n).

Then using Lemma 2.2, and employing similar arguments as for w−
R in Lemma 2.9, we can conclude that

Ic
+ ≥ I on [−n, n] and c ≥ c∗. The proof of this lemma is thus completed. �

Lemma 2.11. For each c ≥ c∗ and n > zc
4, Eq. (2.20) with the boundary condition S(±n) = Sc

−(±n)
admits a unique solution S. Moreover, the solution S satisfies S′ > 0 in (−n, n), and

Sc
−(z) ≤ S(z) ≤ Sc

+(z) for z ∈ [−n, n]. (2.26)

Proof. The proof is divided into two parts.
Step 1: Existence and uniqueness of solutions. For this, consider the initial value problem

d1S
′′(z) + cS′(z) − βS(z)I0(z + cτ)

S(z) + I0(z) + R0(z)
= 0,

S(−n) = 0, S′(−n) = m ≥ 0.

(2.27)

Recall that I0, R0 ≥ 0 in (−n, n). By applying the standard ODE theories, we conclude that
(i) if m = 0, problem (2.27) admits a unique solution S(·;m) ≡ 0 on [−n, n];
(ii) if m > 0, there exists a δ0 > 0 such that problem (2.27) admits a unique solution S(·;m) defined on

[−n,−n+δ0). Moreover, multiplying the first equation of problem (2.27) by e−(c/d1)z, and then integrating
the resulting equation from −n to z, we obtain

S′(z;m) = me− c
d1

(z+n) +
β

d1

z∫

−n

I0(y + cτ)S(y;m)
S(y;m) + I0(y) + R0(y)

e
c
d1

(y−z)dy (2.28)

for z ∈ [−n,−n + δ0). From Eq. (2.28), we see that

0 < me− c
d1

(z+n) ≤ S′(z;m) ≤ m +
β

d1

n∫

−n

I0(y + cτ)dy (2.29)

as long as S(z;m) > 0. Hence, for each m > 0, (2.27) admits a unique solution S(·;m) on [−n, n].
Moreover, S(·;m) satisfies (2.29) in (−n, n). Next, integrating the leftmost inequality of (2.29) from
−n to n, we find that S(n;m) ≥ md1

c (1 − e−2cn/d1) for m > 0, and so S(n;m) → +∞ as m → +∞.
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From the continuity of S(n;m) in m, we can choose a m∗ > 0 such that S(n;m∗) = Sc
−(n) > 0. Thus,

S(·) := S(·;m∗) is a solution of Eq. (2.20) satisfying S(±n) = Sc
−(±n). The uniqueness of solutions

follows from (2.28) and that the function s/(s + I0(y) + R0(y)) is increasing in s ≥ 0.
Step 2: Verification of (2.26). Since S(·) = S(·;m∗) satisfies (2.29) in (−n, n), we have S(z) ≤ S(n) =

Sc
−(n) ≤ S∞ = Sc

+(z) for z ∈ [−n, n]. Now we show that S ≥ Sc
− on [−n, n]. Since S(z) ≥ 0 = Sc

−(z) for
z ∈ [−n, zc

1], it remains to show that S ≥ Sc
− on [zc

1, n]. Note that S satisfies

d1S
′′(z) + cS′(z) =

βS(z)I0(z + cτ)
S(z) + I0(z) + R0(z)

≤ βS(z)Ic
+(z + cτ)

S(z) + I0(z) + R0(z)
, z ∈ [zc

1, n].

Together with the inequality (2.7) in Lemma 2.4 (with I(z) = I0(z) and R(z) = R0(z)), the function
w−

S (z) = S(z) − Sc
−(z) satisfies

d1(w−
S )′′(z) + c(w−

S )′(z) − h(z)w−
S (z) ≤ 0, z ∈ (zc

1, n), c ≥ c∗,

h(z) =
βIc

+(z + cτ)(I0(z) + R0(z))
(
S(z) + I0(z) + R0(z)

)(
Sc−(z) + I0(z) + R0(z)

) ≥ 0, z ∈ [−n, n].

Since w−
S (zc

1) > 0 and w−
S (n) = 0, the maximum principle then asserts that w−

S ≥ 0 on [zc
1, n], and so

S(z) ≥ Sc
−(z) on [−n, n]. The proof of this lemma is completed. �

2.2.2. The precompactness and continuity of F .

Lemma 2.12. The mapping F : Γc,n → Γc,n is continuous and precompact for each c ≥ c∗ and n > zc
4.

The proof of this lemma is standard, and so is omitted.

2.2.3. Approximating wave solutions via Schauder fixed point theorem. The following lemma is an ap-
plication of the Schauder fixed point theorem via the aid of Lemmas 2.8 and 2.12. Note that we attach
the parameters (c, n) to the solution of problem (2.18) and (2.19) to emphasize its dependence on (c, n).

Lemma 2.13. For any given c ≥ c∗ and n > zc
4, problem (2.18) and (2.19) admits a nonnegative solution

(Sc
n, Ic

n, Rc
n) on [−n, n]. Furthermore, (Sc

n, Ic
n, Rc

n) satisfies

Sc
− ≤ Sc

n ≤ S∞, Ic
− ≤ Ic

n ≤ Ic
+, Rc

− ≤ Rc
n ≤ Rc

+ on [−n, n], and (Sc
n)′ > 0 in (−n, n). (2.30)

2.3. Proof of Theorem 1.2(II)

Now we are in a position to prove Theorem 1.2(II). The proof is divided into two parts. First, we show that
for each c ≥ c∗ and S∞ > 0, there exists a solution (Sc, Ic, Rc) of system (1.3) satisfying the conditions
(Sc, Ic, Rc)(+∞) = (S∞, 0, 0) (see Lemma 2.14). Then we prove that such a solution (Sc, Ic, Rc) satisfies
the boundary conditions at −∞ specified in Theorem 1.2(II) (see Lemma 2.15).

2.3.1. A solution (Sc, Ic, Rc)(z) of system (1.3) with the conditions (Sc, Ic, Rc)(+∞) = (S∞, 0, 0).

Lemma 2.14. Assume that R0 > 1. Then for any given S∞ > 0 and c ≥ c∗, system (1.3) admits a non-
negative solution (Sc, Ic, Rc) such that (Sc, Ic, Rc)(+∞) = (S∞, 0, 0). Moreover, ((Sc)′, (Ic)′, (Rc)′)(+∞)
= (0, 0, 0), and the following asymptotical behavior holds:

Ic(z) = O(e−λ1z) (resp. O(ze−λ∗z)), as z → +∞, for c > c∗ (resp. for c = c∗). (2.31)

Proof. The proof consists of two parts.
Step 1: Existence of solutions. Given c ≥ c∗, let (Sc

n(z), Ic
n(z), Rc

n(z)) be the solution of the prob-
lem (2.18) and (2.19) for each n ∈ N and n > zc

4. For any fixed K ∈ N and K > zc
4, from Lemma 2.12

it follows that the sequences {Sc
n(z)}n≥K , {Ic

n(z)}n≥K and {Rc
n(z)}n≥K are uniformly bounded on

[−K,K], which, together with comparison lemma in [10, Lemma A.2] and system (2.18), implies that
the sequences {((Sc

n)′, (Ic
n)′, (Rc

n)′)}n≥K , {(
(Sc

n)′′, (Ic
n)′′, (Rc

n)′′)}n≥K , and {((Sc
n)′′′, (Ic

n)′′′, (Rc
n)′′′)}n≥K



ZAMP Traveling waves in the Kermack–McKendrick epidemic model Page 15 of 22 27

are uniformly bounded on [−K,K]. Taken together, using the Arzela–Ascoli theorem and diagonal ar-
guments, we can choose a subsequence, still denoted by {(Sc

n, Ic
n, Rc

n)}n∈N for simplicity, such that
(Sc

n, Ic
n, Rc

n) → (Sc, Ic, Rc) as n → +∞ in C2
loc(R) for some functions Sc, Ic and Rc in C2(R). Thus,

(Sc, Ic, Rc) is a solution of (1.3) on R. Now, using the asymptotical behavior of (Sc
±, Ic

±, Rc
±)(z) as

z → +∞, it follows from (2.30) that (Sc, Ic, Rc)(+∞) = (S∞, 0, 0) and the relation (2.31) holds. More-
over, we have (Sc)′(z) ≥ 0 on R.

Step 2: Show that ((Sc)′, (Ic)′, (Rc)′)(+∞) = (0, 0, 0). To begin with, integrating the S-equation of
(1.3) from 0 to z, we see that

d1[(Sc)′(z) − (Sc)′(0)] + c(Sc(z) − Sc(0)) =

z∫

0

βIc(y + cτ)Sc(y)
Sc(y) + Ic(y) + Rc(y)

dy, (2.32)

which infers that (Sc)′(+∞) exists if and only if the integral
+∞∫

0

βIc(y + cτ)Sc(y)
Sc(y) + Ic(y) + Rc(y)

dy (2.33)

converges. If the integral (2.33) diverges, then it must be +∞. Together with (2.32) and the fact that
Sc(+∞) = S∞ < +∞, it follows (Sc)′(+∞) = +∞. This in turn implies Sc(+∞) = +∞, a contradiction.
Hence, the integral (2.33) converges. Together with (2.32), this suggests that (Sc)′(+∞) exists, and so
(Sc)′(+∞) = 0. Summing the equations in (1.3), it follows that

d1(Sc)′′ + d2(Ic)′′ + c[(Ic)′ + (Sc)′] = (γ + δ)Ic. (2.34)

Next, we integrate (2.34) from 0 to z to deduce that the following equality holds for z ∈ R,

d1[(Sc)′(z) − (Sc)′(0)] + d2[(Ic)′(z) − (Ic)′(0)] + c[Ic(z) − Ic(0) + Sc(z) − Sc(0)] = (γ + δ)

z∫

0

Ic(y)dy.

Since Ic(z) → 0 exponentially fast as z → +∞, the integral
+∞∫

0

Ic(y)dy converges. Then taking the limit

in the above equation as z → +∞, the limit (Ic)′(+∞) := limz→+∞(Ic)′(z) exists, and (Ic)′(+∞) = 0
due to Ic(+∞) = 0. Finally, integrating the R-equation of (1.3) from 0 to z and using similar arguments
as above, one can deduce (Rc)′(+∞) = 0. The proof is thus completed. �

2.3.2. The asymptotical behavior of (Sc, Ic, Rc)(z) as z → −∞. In the following lemma, we discuss
the asymptotical behavior of (Sc, Ic, Rc)(z) as z → −∞.

Lemma 2.15. For each c ≥ c∗, the solution (Sc, Ic, Rc) satisfies the following:
(i) The limit (Sc, Ic, Rc)(−∞) exists and Ic(−∞) = 0.
(ii) ((Sc)′, (Ic)′, (Rc)′)(−∞) = (0, 0, 0).
(iii) (Sc)′ > 0 and (Rc)′ < 0 in R.
(iv) The relation (1.5) holds.

Proof. We divide the proof into four steps.
Step 1: Prove that the limits S−∞ := Sc(−∞) ≥ 0 and (Sc)′(−∞) = 0, and (Sc)′ > 0 in R. To see

this, we first recall that (Sc)′ ≥ 0 and 0 ≤ Sc ≤ S∞ on R. Thus, the limit S−∞ := Sc(−∞) exists and is
nonnegative. Integrating the S-equation of system (1.3) from z to +∞ and then rearranging the resulting
identity, we have

0 ≤ d1(Sc)′(z) = c(S∞ − Sc(z)) −
+∞∫

z

βI(y + cτ)Sc(y)
Sc(y) + Ic(y) + Rc(y)

dy, z ∈ R, (2.35)
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which implies that

cS∞ ≥ cSc(z) +

+∞∫

z

βI(y + cτ)Sc(y)
Sc(y) + Ic(y) + Rc(y)

dy, z ∈ R.

Thus, by taking the limit in Eq. (2.35) as z → −∞ and using the fact that Sc(−∞) exists, we have the
limit (Sc)′(−∞) = 0. Next, we show that (Sc)′(z) > 0 in R. In fact, multiplying the S-equation of (1.3)
by e(c/d1)z, and then integrating the resulting equation from −∞ to z, we obtain

(Sc)′(z) =
β

d1
·

z∫

−∞

I(y + cτ)S(y)
S(y) + I(y) + R(y)

e
c
d1

(y−z) dy, z ∈ R,

which implies (Sc)′(z) > 0 for z ∈ R. This completes the proof of this step.
Step 2: Show that the limits Ic(−∞) = (Ic)′(−∞) = 0. Integrating (2.34) from z to +∞ and using

Step 1 and Step 2 in Lemma 2.14, we have

d2(Ic)′(z) + cIc(z) = −(γ + δ)

+∞∫

z

Ic(y)dy − d1(Sc)′(z) + c[S∞ − Sc(z)], z ∈ R. (2.36)

Since Ic(z) → 0 exponentially fast as z → +∞, the integral
+∞∫

z

Ic(y)dy exists. By (2.36), the limits

Sc(−∞) and (Sc)′(−∞), and the relation 0 ≤ Ic ≤ L0 on R, we have that the integral
∫

R

Ic(y)dy

converges, which implies lim infz→−∞ Ic(z) = 0. Now by taking the limit of (2.36) along a sequence
{zn}n∈N with zn → −∞ as n → ∞, we can exclude lim supz→−∞ Ic(z) > 0. Hence, we have Ic(−∞) = 0.
Finally, from Eq. (2.36) and the convergence of the integral

∫

R

Ic(y)dy, the limit limz→−∞(Ic(z)+(Ic)′(z))

exists, and so (Ic)′(−∞) = 0. This proves the assertion of this step.
Step 3: Prove that the limit R−∞ := Rc(−∞) exists, (Rc)′(−∞) = 0, and (Rc)′ < 0 in R. We first

claim that

lim
z→−∞ e

c
d3

z(Rc)′(z) = 0. (2.37)

Indeed, integrating the R-equation of (1.3) from z to +∞ and using the fact that Rc(+∞) = (Rc)′(+∞) =
0, it follows that

(Rc)′(z) +
c

d3
Rc(z) =

γ

d3

+∞∫

z

Ic(y)dy > 0 for z ∈ R. (2.38)

Recall from Sect. 2.1.3 that for each c ≥ c∗, Rc
+(z) = O(e−(λR

1 )z) as z → −∞, and λR
1 < c/d3. Then

we have e(c/d3)zRc(z) ≤ e(c/d3)zRc
+(z) → 0 as z → −∞. Recall from Step 2 that the integral

∫

R

Ic(y)dy

converges for c ≥ c∗. Taken together, (2.38) implies that limz→−∞ e(c/d3)z(Rc)′(z) exists and equals 0.
Thus, the assertion of this claim is proved.

Next, multiplying the R-equation of system (1.3) by e(c/d3)z and then integrating the resulting equation
from −∞ to z, we have

(Rc)′(z) = − γ

d3
e− c

d3
z

z∫

−∞
e

c
d3

yIc(y)dy < 0 for z ∈ R, (2.39)
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where we have used (2.37). Recall from (2.3) that for each c ≥ c∗, 0 < Ic
+(z) ≤ L0 for z ∈ R. Hence, the

integral on the right-hand side of (2.39) converges. Moreover, from (2.39) it follows that

|(Rc)′(z)| ≤ γ

d3

z∫

−∞
Ic(y)dy ≤ γ

d3

∫

R

Ic(y)dy, z ∈ R (2.40)

and so the limit Rc(−∞) either exists as a positive number or equals +∞. The second case is excluded
by the fact that the integral

∫

R

Ic(y)dy exists, and (2.40) and (2.38). Then using (2.38) again it follows

that (Rc)′(−∞) exists, and so (Rc)′(−∞) = 0. This step is thus proved.
Step 4: Verification of the relation (1.5). First, taking the limit in (2.35) as z → −∞ and using

(Sc)′(−∞) = 0, the rightmost equality in (1.5b) holds. Second, taking the limit in (2.36) as z → −∞ and
using Ic(−∞) = (Ic)′(−∞) = 0, the leftmost equality in (1.5b) holds. Finally, taking the limit in (2.38)
as z → −∞ and using (Rc)′(−∞) = 0, we obtain Rc(−∞) = (γ/c)

∫

R

Ic(y)dy. This, together with (1.5b),

yields (1.5a). The proof of this lemma is thus completed. �

3. Nonexistence of traveling wave

In this section, we will establish Theorems 1.1 and 1.2(I). The proof is divided into two cases: (i) R0 > 1
and c ∈ (0, c∗); and (ii) R0 ≤ 1 and c ∈ R.

We first observe that if (S, I,R) is a nonnegative solution of (1.3) and (1.4), then I satisfies

I ′(±∞) = I ′′(±∞) = 0. (3.1)

This follows from the limits I(±∞) = 0 and the following integral representation of the species I

I(z) =
1
ρ

z∫

−∞
eλ−(z−y) βS(y)I(y + cτ)

S(y) + I(y) + R(y)
dy +

1
ρ

+∞∫

z

eλ+(z−y) βS(y)I(y + cτ)
S(y) + I(y) + R(y)

dy,

where λ− < 0 < λ+ are the solutions of d2λ
2 + cλ − (γ + δ) = 0 and ρ = d2(λ+ − λ−).

3.1. The case R0 > 1 and c ∈ (0, c∗)

Lemma 3.1. Assume that R0 > 1 and c ∈ (0, c∗). Then system (1.3) with boundary conditions (1.4) has
no nonnegative non-trivial solutions.

Proof. For contradiction, we assume that there exists such a nonnegative non-trivial solution (S, I,R).
The strategy of the remaining proof consists of two major parts: First, we modify the idea in [29] to give
the decaying rate of (I(z), R(z)) for large z, and then use the two-sided Laplace transform suggested in
[7] to arrive at a contradiction. The proof consists of four steps.

Step 1: Prove that the integral

I(z) :=

+∞∫

z

I(y)dy

converges for all z ∈ R. Indeed, by (1.4), we have βS(z)
S(z)+I(z)+R(z) → β as z → +∞. Together with

β > γ + δ, we can find a large Z0 > 0 such that βS(z)
S(z)+I(z)+R(z) > β+γ+δ

2 for all z ≥ Z0. By applying this
to the I-equation of (1.3) and rearranging the resulting inequality, we have

−d2I
′′(z) − cI ′(z) ≥ β + γ + δ

2
[I(z + cτ) − I(z)] +

β − (γ + δ)
2

I(z), z ≥ Z0.
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An integration of this inequality from z to M (with M > z + cτ) gives

− d2[I ′(M) − I ′(z)] − c[I(M) − I(z)]

≥ β + γ + δ

2

M∫

z

[I(y + cτ) − I(y)]dy +
β − (γ + δ)

2

M∫

z

I(y)dy

≥ −β + γ + δ

2

z+cτ∫

z

I(y)dy +
β − (γ + δ)

2

M∫

z

I(y)dy

for all z ≥ Z0 and M > z + cτ .
Since I(+∞) = I ′(+∞) = 0, the above inequality implies that the integral I(z) converges for z ∈ R,

and I(z) satisfies

β − (γ + δ)
2

I(z) ≤ d2I
′(z) + cI(z) +

β + γ + δ

2

z+cτ∫

z

I(y)dy, z ≥ Z0. (3.2)

Step 2: Show that
I(z) ≤ C0e−λ0z for z ≥ 0 and for some λ0, C0 > 0. (3.3)

Indeed, with the use of Fubini’s theorem, we have
+∞∫

z

x+cτ∫

x

I(y)dydx =

+∞∫

z+cτ

y∫

y−cτ

I(y)dxdy +

z+cτ∫

z

y∫

z

I(y)dxdy

≤ cτ

+∞∫

z+cτ

I(y)dy + cτ

z+cτ∫

z

I(y)dy = cτI(z).

Together with an integration of both sides of (3.2) from z ≥ Z0 to +∞, it holds that

d2I(z) +
β − (γ + δ)

2

+∞∫

z

I(y)dy ≤ c

[
1 + τ(

β + γ + δ

2
)
]

I(z), z ≥ Z0, (3.4)

which implies that
+∞∫

z

I(y)dy ≤ kI(z) for z ≥ Z0 with k = c[2 + τ(β + γ + δ)]/(β − γ − δ). Since I(z)

is non-increasing in z, we have ηI(z + η) ≤
z+η∫

z

I(y)dy ≤ kI(z) for z ≥ Z0 and η > 0. Choose a large η

such that η > 2k. Then the above inequality implies I(z + η) ≤ 1
2I(z) for z ≥ Z0. Set Î(z) = eλ0zI(z)

with λ0 = ln 2/η > 0. Then we have Î(z + η) ≤ Î(z) for z ≥ Z0, and hence, Î(z) is bounded as z → +∞,
which, together with (3.4), infers that the inequality (3.3) holds.

Step 3: Prove that for λ̂0 ∈ (0,min{λ0, d3/c}), there exists a C1 > 0 such that

R(z) ≤ C1e−λ̂0z for z ∈ R. (3.5)

Recall that (S +I +R)(−∞) = S−∞ +R−∞ > 0 and (S +I +R)(+∞) = S∞ > 0. Hence, in view of (3.3),
we can deduce that the functions eλ0zI(z) and eλ0z · I(z+cτ)

S(z)+I(z)+R(z) are bounded on R. Using R(+∞) = 0
and the variation in constant method, R(z) can be represented by

R(z) =
γ

c

+∞∫

z

I(y)dy +
γ

c

z∫

0

e− c
d3

(z−y)I(y)dy + Ce− c
d3

z,
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where C is a positive constant. Choose λ̂0 ∈ (0,min{λ0, c/d3}). Then using (3.3), we have

eλ̂0zR(z) =
γ

c
eλ̂0z

+∞∫

z

I(y)dy +
γ

c

z∫

0

eλ̂0ze− c
d3

(z−y)I(y)dy + Ce−( c
d3

−λ̂0)z

≤ γ

c
eλ0z

+∞∫

z

I(y)dy +
γ

c

z∫

0

eλ̂0ze−λ̂0(z−y)I(y)dy + Ce−( c
d3

−λ̂0)z

≤ γ

c

[Î(z) + C0

z∫

0

e(λ̂0−λ0)ydy
]
+ C, z ≥ Z0,

where C0 is a constant. This, with the fact that Î(z) is bounded for z ≥ 0, implies that eλ̂0zR(z) is
bounded for z ≥ 0, which, together with R(−∞) = R−∞ > 0, in turn suggests that (3.5) holds.

Step 4: Final proof. We introduce the two-sided Laplace transform of I defined by L(λ) =
+∞∫

−∞
eλξI(ξ)dξ.

Due to (3.3), L(λ) is well defined for λ ∈ C with Reλ ∈ (0, λ0). Now rewrite the I-equation of (1.3) as
follows:

d2I
′′(z) + cI ′(z) + βI(z + cτ) − (γ + δ)I(z) = I(z + cτ) · β

[
I(z) + R(z)

]

S(z) + I(z) + R(z)
. (3.6)

Multiplying both sides of (3.6) by eλξ with λ ∈ (0, λ0), and integrating the resulting equation by parts
over R, we then have

f(λ, c)L(λ) =

+∞∫

−∞
eλξI(ξ + cτ) · β

[
I(ξ) + R(ξ)

]

S(ξ) + I(ξ) + R(ξ)
dξ. (3.7)

Now fix a λ̂0 ∈ (0,min{λ0, d3/c}) such that (3.5) holds. By the properties of Laplace transform (see
[33, p. 58]), it follows that either (i) both sides of (3.7) can be analytically continued to the right half
plane of C, or (ii) there exists λ̂1 > 0 such that the function L is analytic for all λ with Reλ ∈ (0, λ̂1)
and is singular at λ = λ̂1. We shall show that (i) is true. For this, suppose, for contradiction, that (ii)
holds. Then, by (3.3), we have λ̂1 ≥ λ0 > λ̂0. From (3.3) and (3.5), and the fact that S + I + R has a
positive lower bound on R, it follows that for all λ ∈ [0, λ̂0), I(z) + R(z) ∼ o(e−λz) as z → +∞, and

hence, eλz(I(z)+R(z))/(S(z)+ I(z)+R(z)) is bounded on R. Note that
+∞∫

−∞
eλξI(ξ + cτ)dξ = e−λcτL(λ),

provided that L(λ) exists. Now fix an ε ∈ (0, λ̂0/2). Then we find that the integral

+∞∫

−∞
e(λ̂1+ε)ξI(ξ + cτ) · β

(
I(ξ) + R(ξ)

)

S(ξ) + I(ξ) + R(ξ)
dξ =

+∞∫

−∞

[
e(λ̂1−ε)ξI(ξ + cτ)

]
·
[

e2εξ β
(
I(ξ) + R(ξ)

)

S(ξ) + I(ξ) + R(ξ)

]

dξ

converges. Together with (3.7), this in turn implies that L(λ̂1 + ε) exists, which is a contradiction with
the definition of λ̂1. Hence, (i) is true.
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On the other hand, due to the assumption that β > (γ + δ) it follows that f(λ, c) > 0 for all λ > 0
and c ∈ (0, c∗). Then with the use of (3.7), we have

0 < L(λ)f(λ, c) =

+∞∫

−∞
eλξI(ξ + cτ) · β

(
I(ξ) + R(ξ)

)

S(ξ) + I(ξ) + R(ξ)
dξ

≤ L(λ) ·
{

βe−λcτ
∥∥ I(·) + R(·)

S(·) + I(·) + R(·)
∥∥

L∞(R)

}
≤ βL(λ),

which in turn implies f(λ, c) ≤ β for all λ > 0 and c ∈ (0, c∗). However, since f(λ, c) → +∞ as λ → +∞
for any fixed c ∈ (0, c∗), we thus arrive at a contradiction. Therefore, there are no nonnegative non-trivial
solutions of (1.3) and (1.4) if R0 > 1 and 0 < c < c∗. This completes the proof of this lemma. �

3.2. The case R0 ∈ (0, 1] and c ∈ R

Lemma 3.2. Assume that R0 ≤ 1. Then (1.3) and (1.4) admit no nonnegative non-trivial solutions.

Proof. For contradiction, suppose that (S, I,R) is such a nonnegative non-trivial solution of (1.3) and
(1.4). By (3.1), we integrate the I-equation of (1.3) over R to get

(γ + δ)
∫

R

I(y)dy =
∫

R

βI(y + cτ)S(y)
S(y) + I(y) + R(y)

dy.

From the assumption R0 = β/(γ + δ) ≤ 1 and the above equality, it follows that

0 ≤ (γ + δ − β)
∫

R

I(y)dy = (γ + δ)
∫

R

I(y)dy − β

∫

R

I(y + cτ)dy

= − β

∫

R

I(y + cτ)(I(y) + R(y))
S(y) + I(y) + R(y)

dy < 0.

This is a contradiction and thus competes the proof of this lemma. �
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