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1. Introduction

In this article, we consider the following 1D non-resistive magnetohydrodynamics (MHD) system,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + (ρu)y = 0,

(ρu)t + (ρu2)y +
(
Rρθ + b2

2

)

y
= (λuy)y,

bt + (ub)y = 0,

(ρe)t + (ρue)y + Rρθuy = (κθy)y + λu2
y.

(1.1)

As it is well known, the motion of a conducting fluid (plasma) in an electromagnetic field is governed by
the equations of MHD, which is a coupled system of the induction equation of the magnetic field and the
Navier–Stokes equations of fluid dynamics (see also [1,4–7,12,26]):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0, x ∈ R
3, t ∈ R

+,

(ρu)t + div(ρu ⊗ u) + ∇P = (∇ × B) × B + divS,

B − ∇ × (u × B) = −∇ × (σ∇ × B), divB = 0,
(
ρe + 1

2ρ|u |2 + 1
2 |B |2)

t
+ div

((
ρe + 1

2ρ|u |2 + P
)
u − κ∇θ

)

= div((u × B) × B + σB × (∇ × B) + Su),

(1.2)

where ρ is the density, u ∈ R
3 the velocity, B ∈ R

3 the magnetic field, and θ the temperature; the
pressure P and the internal energy e are related with the density and temperature of the flow by the
equations of state:

P = P (ρ, θ) = Rρθ, and e = e(ρ, θ) = cvθ, (1.3)
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where the specific gas constant R and the specific heat at constant volume cv are positive constants,
respectively; the symbol S denotes the viscous stress tensor

S = λ′(divu)I + μ(∇u + (∇u)�), (1.4)

where I is the 3×3 identity matrix, (∇u)� is the transpose of the matrix ∇u , and λ′, μ are the constants
viscosity coefficients of the flow which satisfy

μ > 0, 2μ + 3λ′ > 0.

κ is the heat conductivity coefficients, while σ is the magnetic diffusivity acting as the magnetic diffusion
coefficient of the magnetic field.

When σ = 0, Eq. (1.2) implies that in a highly conducting fluid, the magnetic field lines move along
exactly with the fluid, rather than simply diffusing out. This type of behavior is physically described as
that the magnetic field lines are frozen into the fluid. In effect, the fluid can flow freely along the magnetic
field lines, but any motion of the conducting fluid, perpendicular to the field lines, carries them with the
fluid. The “frozen-in” nature of magnetic fields plays very important roles and has a very wide range
of applications in both astrophysics and nuclear fusion theory, where the magnetic Reynolds number
Rm ∼ 1/ν is usually very high. A typical illustration of the “frozen-in” behavior is the phenomenon of
sunspots. For more details of its physical background and applications, we refer to [4–7,12,26].

However, similarly to those for the Navier–Stokes equations, many physically important and math-
ematically fundamental problems of MHD are still open. For example, to the author’s knowledge, the
global well-posedness of the multi-dimensional compressible non-resistive MHD equations remains un-
known, even that the data are sufficiently close to the non-vacuum equilibrium state in a similar sense as
that in [30] for the compressible Navier–Stokes equations. Here, we would like to refer to the recent works
[3,8,10,11,22,24,25,28,31,37,38]. The articles [8,10,11] established the local solution of incompressible
non-resistive MHD system in Besev and Sobolev space, respectively. The global well-posedness of the
Cauchy problem of two/three-dimensional incompressible non-resistive MHD (MHD-type) equations ob-
tained in [22,24,25,28,31,38] where the small initial data are announced. For the isotropic compressible
MHD system, Bian and Yuan [3] and Wu and Wu [37] obtained the local solution and global small
solution, respectively.

Due to the complex structure of multi-dimensional equations, similarly to that in [2,13,14,19,21],
we consider the simpler compressible, viscous, heat-conducting, non-resistive MHD equations for ideal
polytropic fluids in dimension one (1.1), which based on the specific choice of dependent variables with
y ∈ I ⊂ R and t ∈ R

+:

ρ = ρ(y, t), u = (u(y, t), 0, 0)�, θ = θ(y, t), B = (0, 0, b(y, t))�, λ = 2μ + λ′,

where I := R, or I := (0,∞), or I := (0, 1). Clearly, the magnetic field obeys the divergence constraint
divB = 0 due to the special dependent variables. The system (1.1) is supplemented with the initial data
and boundary condition:

{
(ρ, u, b, θ)|t=0 = (ρ0, u0, b0, θ0)(y), y ∈ I,

(u, ∂yθ)|∂I = 0, t > 0, if I := (0,∞) or I := (0, 1).
(1.5)

For the systems (1.1) and (1.5) in I = (0, 1), we [40] obtained the strong solution with large initial data,
and obtained the resistive limit. But the large time behavior of strong solution to (1.1) and (1.5) cannot
be arrived. For the Navier–Stokes equations with temperature-dependent viscosity coefficients, Liu et al.
[29] and Wang and Zhao [36] got the strong solutions and the large time behavior of solutions. Recently,
Wan and Wang [35] developed the result of [29]. For the Navier–Stokes equations with constant viscosity
coefficients, Li and Liang [23] established the large time behavior of solutions in (0,∞) and R. Borrow the
method of [23], Wan and Wang [34] obtained the large time behavior for cylindrically symmetric flows.
Inspired by the above results, we [33] obtained the large time behavior of the 1D solution of (1.2) with
some assumption when the viscosity coefficients are dependent on temperature and σ �= 0. Recently, we
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Fig. 1. The frozen-in behavior of magnetic fields in plasma

[32] develop the result of [33] to the screw pinches for the plasma physics. Inspired of Jiang and Zhang
[18], Li and Sun [27] obtain the large time behavior of weak solution for 1D isentropic of the non-resistive
compressible MHD system. However, the methods of [27] cannot be used to obtain the uniform-in-time
higher-order estimates of strong solutions. Hence, we have to find new ways to establish the large time
behavior of global strong solutions to the Cauchy and initial-boundary value problems for (1.1) with large
initial data.

For this purpose, let x be the Lagrangian space variable, t be the time variable, and v = 1
ρ the specific

volume. Then, the system (1.1) becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt = ux,

ut +
(

Rθ
v + b2

2

)

x
=
(

λux

v

)

x
,

(vb)t = 0,

cvθt + Rθux

v =
(

κθx

v

)

x
+ λu2

x

v ,

(x, t) ∈ Ω × R+, (1.6)

where Ω = R, or Ω = (0, 1), or Ω = (0,∞).
Due to the frozen-in behavior of magnetic fields, the magnetic line in the body moves along with the

plasma (as shown in Fig. 1b, Fig. 1a is a situation where a plasma is stationary in a magnetic field), when
the plasma is moving in a magnetic field. Moreover, with the plasma compressed, the magnetic sense
lines are also compressed (Fig. 1c).

In view of the above, we can reasonably assume that there exists a constant b̄ �= 0 such that

v0b0(x) = b̄. (1.7)

Remark 1.1. Since we are interested in showing that (v, u, b, θ) → (1, 0, b̄, 1) as t → ∞ in a strong sense,
due to the conservation (1.6)3, we may conclude that

vb = b̄, (1.8)

which means that the assumption (1.7) is reasonably. On the other hand, the condition (1.7) implies that
there exists a magnetic background b̄ in it.

The system (1.6) is supplemented with the initial condition

(v, u, b, θ)(0, x) = (v0, u0, b0, θ0)(x), x ∈ Ω, (1.9)

and three types of far-field and boundary conditions:
(1) Cauchy problem

Ω = R, lim
|x|→∞

(v(x, t), u(x, t), b(x, t), θ(x, t)) = (1, 0, b̄, 1), t > 0; (1.10)
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(2) boundary and far-field conditions for Ω = (0,∞),

u(0, t) = 0, θx(0, t) = 0, lim
x→∞(v(x, t), u(x, t), b(x, t), θ(x, t)) = (1, 0, b̄, 1), t > 0; (1.11)

(3) boundary conditions for Ω = (0, 1),

u(0, t) = u(1, t) = 0, θx(0, t) = θx(1, t) = 0, t > 0. (1.12)

These boundary conditions are supposed to be compatible with the initial data.
Notations. For the convenience, we define

‖ · ‖p := ‖ · ‖Lp(Ω), ‖ · ‖Hk := ‖ · ‖Hk(Ω),

∫

· :=
∫

Ω

·dx

where 1 ≤ p ≤ ∞ and k ∈ N. The symbol A � B (A � B) means that A ≤ CB (A ≥ CB) holds uniformly
for some t-independent constant C which depends only on the initial data. The positive constants c and
C are different on line to line. Cε denotes positive constant depending on ε. Without loss of generality,
we assume that R = 1.

Under the condition (1.7), we have the following main results.

Theorem 1.1. Assume that the initial data (v0 − 1, u0, b0 − b̄, θ0 − 1)(x) ∈ H1(Ω) are compatible with
(1.11), (1.12) and satisfy

inf
x∈Ω

{v0(x), θ0(x)} > 0, v0b0(x) = b̄. (1.13)

Then the problem (1.6)–(1.10), or (1.6)–(1.9), (1.11), or (1.6)–(1.9), (1.12) has a unique global solution
(v, u, b, θ)(t, x) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C−1 ≤ v(t, x), θ(t, x) ≤ C, ∀(t, x) ∈ [0,+∞) × Ω,

(v − 1, u, b − b̄, θ − 1) ∈ L∞(0, T ;H1(Ω)),
(vx, bx, vt, ut, bt, θt) ∈ L2([0, T ] × Ω),
(ux, θx) ∈ L2(0, T ;H1(Ω)),

(1.14)

and

lim
t→∞

(
‖(v − 1, u, b − b̄, θ − 1)(t)‖p + ‖(vx, ux, bx, θx)(t)‖2

)
= 0, for Ω = R and (0,∞), (1.15)

‖(v − v̄, u, b − b̄/v̄, θ − θ̄)(t)‖H1 � e−ct, for Ω = (0, 1), (1.16)

where

2 < p ≤ ∞, v̄ :=
1

|Ω|
∫

v0, θ̄ :=
1

|Ω|
∫ [

θ0 +
1

2cv
(u2

0 + v0b
2
0)
]

. (1.17)

In the following, we comment on the analysis of the paper. First, this paper is inspired by [15,17,
20,23,34]. However, taking into account of the hydrodynamic and electrodynamic effects, the problem
becomes considerably complicated. In view of the additional nonlinear terms induced by the magnetic
field, our first main difficulties in the proof of the uniform-in-time pointwise upper and lower bounds
for v(t, x). To overcome these difficulties, we, firstly, obtain the lower bound of v which is different from
Wan et. al. [34]. Secondly, based on the lower bound of v and the particularity of Eq. (1.6)3 we arrive
the upper bound of v (see details in Lemma 2.2 and 3.1). Yet, it is also hard to establish the estimate of
the first-order derivative of magnetic. Thanks to the phenomenon that the magnetic field lines are frozen
into the fluid, we can reasonably suppose that v0b0 = b̄ to solve this problem. Moreover, employing the
Poincaré’s inequality, we arrive that the solutions converge exponentially to the constant state as the time
tends to infinity in the bounded domain Ω = (0, 1). To the similar result of Theorem 1.1 studied in screw
pinches arisen from plasma physics [32,39] with zero and nonzero resistive term, we cannot overcome the
above difficulties, which is also our research in the future.
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The rest of this paper is organized as follows. First of all, we derive a number of desired a priori
estimates independent of time in Sect. 2 for Ω = R and (0,∞) and in Sect. 3 for Ω = (0, 1). Combining
the a priori estimates in Sects. 2 and 3, the existence, uniqueness, and large time behavior of the solutions
are proved in Sect. 4.

2. Global estimates of (1.6)–(1.10) and (1.6)–(1.9), (1.11)

The global well-posedness of strong solutions to the problems (1.6)–(1.10) and (1.6)–(1.9), (1.11) can be
shown in the same way as that in [15,23,34]. So, the main purpose of this section is to derive the global
t-independent estimates of the solutions in Ω = R and Ω = (0,∞), which will be used to justify the
existence, uniqueness, and large time behavior of global-in-time solutions. We start with the following
basic energy estimate.

Lemma 2.1. (basic energy estimate) Assume that the conditions listed in Theorem 1.1 hold. Then for
t ≥ 0,

∫

η(v, u, b, h, θ)(t, x) +

t∫

0

∫ [
u2

x

vθ
+

θ2
x

vθ2

]

ds � 1, (2.1)

where

η(v, u, b, h, θ) := θ̂φ
(v

v̂

)
+

u2 + v(b − v0b0/v̂)2

2
+ cv θ̂φ

(
θ

θ̂

)

, φ(z) = z − log z − 1. (2.2)

Proof. Let v̂, θ̂ > 0 be some arbitrary but fixed constants. Multiplying (1.6)1–(1.6)4 by θ̂(v̂−1 − v−1), u,
b − v0b0

v̂ , and (1 − θ̂θ−1), respectively, and adding them together, one obtains
[

θ̂φ
(v

v̂

)
+ cv θ̂φ

(
θ

θ̂

)

+
1
2
u2 +

1
2
v

(

b − v0b0

v̂

)2
]

t

+
λu2

xθ̂

vθ
+

κθ2
xθ̂

vθ2

=

[
κθx

v
− κθxθ̂

vθ
+

λuxu

v
−
(

θ

v
+

b2 − (v0b0/v̂)2

2
− θ̂

v̂

)

u

]

x

. (2.3)

Integrating (2.3) over Ω × (0, t), (2.1) is immediately arrived. �

For the simplicity, we take θ̂ = 1 and v̂ = 1 in the following estimates. Employing Jensen’s inequality
to the convex function φ, we can derive the following corollary from the estimate Lemma 2.1. Because
the proof is standard, we omit it for simplicity (see [20]).

Corollary 2.1. Assume that the conditions listed in Theorem 1.1 hold. Then for all (t, x, i) ∈ [0, T )×Ω×Z,
there are ai(t), bi(t) ∈ Ui := [i, i + 1] such that

C−1 ≤
∫

Ui

v(t, y)dy, v(t, ai(t)),
∫

Ui

θ(t, y)dy, θ(t, bi(t)) ≤ C. (2.4)

Next, by means of Lemma 2.1 and Corollary 2.1, we derive the upper and lower bounds of v.

Lemma 2.2. Assume that the conditions listed in Theorem 1.1 hold. Then for (x, t) ∈ Ω × [0, T ),

v(x, t) � 1, v(x, t) ≥
{

C(t), if T < ∞,

C, if T = ∞.
(2.5)



21 Page 6 of 24 X. Si and X. Zhao ZAMP

Proof. The proof is divided into three steps.

Step 1 (Representation formula for v) We define that

ψ(x) =

⎧
⎪⎨

⎪⎩

1, x < [z] + 1,

[z] + 2 − x, [z] + 1 ≤ x < [z] + 2,

0, x ≥ [z] + 2,

(2.6)

where z is arbitrary but fixed point of Ω and [z] denotes the largest integer that is less or equal to z.
Multiplying (1.6)2 by ψ and integrating over (y,∞) × [0, t], one has

log v(t, y) − log v(0, y) =
1
λ

t∫

0

(
θ

v
+

b2

2

)

(s, y)ds +
1
λ

∞∫

y

(u0 − u)ψdx

+
1
λ

t∫

0

[z]+2∫

[z]+1

(
λux

v
− θ

v
− b2

2

)

dxds, (2.7)

where y ∈ ([z] − 1, [z] + 1) ∩ Ω := U . By virtue of (2.7), one has

vD−1B−1 = exp

⎧
⎨

⎩

1
λ

t∫

0

(
θ

v
+

b2

2

)

ds

⎫
⎬

⎭
, (2.8)

where

B := exp

⎧
⎪⎨

⎪⎩

1
λ

t∫

0

[z]+2∫

[z]+1

(
λux

v
− θ

v
− b2

2

)

dxds

⎫
⎪⎬

⎪⎭
,

D := v0 exp

⎧
⎨

⎩

1
λ

∞∫

y

(u0 − u)ψdx

⎫
⎬

⎭
.

Multiplying (2.8) by 1
λ

[
θ
v + b2

2

]
, one obtains

v(y, t) = D(t)B(t) +
1
λ

t∫

0

D(t)B(t)
D(s)B(s)

(

θ +
vb2

2

)

(y, s)ds. (2.9)

Step 2 (Lower bound for v) First of all, we need some estimate of D, B, and θ. By means of Lemma 2.1
and Cauchy–Schwarz’s inequality, it follows

∞∫

y

(u0 − u)ψdx � 1 +

[z]+2∫

y

[u2 + u2
0]dx � 1, (2.10)

which yields

C−1 ≤ D ≤ C. (2.11)
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By Cauchy–Schwarz’s inequality, Lemma 2.1, and Hölder’s inequality, we have
t∫

s

[z]+2∫

[z]+1

(
λux

v
− θ

v
− b2

2

)

dxdτ ≤ C

t∫

s

[z]+2∫

[z]+1

λu2
x

vθ
dxdτ − 1

2

t∫

s

[z]+2∫

[z]+1

θ

v
dxdτ

≤ C − 1
2

t∫

s

inf
([z]+1,[z]+2)

θ(·, τ)

⎡

⎢
⎣

[z]+2∫

[z]+1

vdx

⎤

⎥
⎦

−1

dτ ≤ C − C−1

t∫

s

inf
([z]+1,[z]+2)

θ(·, τ)dτ. (2.12)

Similar as [16], one has

− C−1

t∫

s

inf
([z]+1,[z]+2)

θ(·, τ)dτ ≤ C − C−1(t − s). (2.13)

In fact, by Cauchy–Schwarz’s inequality, Lemma 2.1, and Corollary 2.1, there exist bj(τ) ∈ ([z]+1, [z]+2)
such that

t∫

s

ξ∫

bj(τ)

θx(x, τ)
θ(x, τ)

dxdτ ≤
t∫

s

⎛

⎜
⎝

[z]+2∫

[z]+1

θ2
x

vθ2

⎞

⎟
⎠

1/2⎛

⎜
⎝

[z]+2∫

[z]+1

v

⎞

⎟
⎠

1/2

dτ ≤ C + C(t − s), (2.14)

where ξ ∈ ([z] + 1, [z] + 2). By Jensen’s inequality to convex function ex, Corollary 2.1, and (2.14), it
follows

t∫

s

θ(ξ, τ)dτ =

t∫

s

exp{log θ(ξ, τ)}dτ ≥ (t − s) exp

⎧
⎨

⎩

1
t − s

t∫

s

log θdτ

⎫
⎬

⎭

= (t − s) exp

⎧
⎨

⎩

1
t − s

t∫

s

(

log
θ(ξ, τ)

θ(bj(τ), τ)
+ log θ(bj(τ), τ)

)

dτ

⎫
⎬

⎭

= (t − s) exp

⎧
⎪⎨

⎪⎩

1
t − s

t∫

s

⎛

⎜
⎝

ξ∫

bj(τ)

θx

θ
dx + log θ(bj(τ), τ)

⎞

⎟
⎠ dτ

⎫
⎪⎬

⎪⎭

≥ (t − s) exp

⎧
⎪⎨

⎪⎩
log C − 1

t − s

∣
∣
∣
∣
∣
∣
∣

t∫

s

ξ∫

bj(τ)

θx

θ
dx

∣
∣
∣
∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
≥ C(t − s) exp

{ −C

t − s

}

, (2.15)

which means that (2.13) is valid. Inserting (2.13) into (2.12), one obtains

0 ≤ B(t) ≤ Ce−t/c,
B(t)
B(s)

≤ Ce−(t−s)/c. (2.16)

Integrating (2.9) over U , by Corollary 2.1 and Lemma 2.1, we can derive

B−1(t) � B−1(t)
∫

U

vdy � 1 +

t∫

0

B−1(s)
∫

U

(

θ +
vb2

2

)

dyds � 1 +

t∫

0

B−1(s)ds, (2.17)

which combined with Gronwall’s inequality yields

B−1 ≤ C exp

⎧
⎨

⎩
c

t∫

0

1ds

⎫
⎬

⎭
≤ Cect. (2.18)



21 Page 8 of 24 X. Si and X. Zhao ZAMP

Hence, for t ≤ t0 < ∞, one has

v ≥ DB ≥ Ce−ct ≥ Ce−ct0 . (2.19)

For the enough large t, one deduces

v ≥ C

t∫

0

B(s)
B(t)

θds. (2.20)

So, we need the estimates of θ. By means of Corollary 2.1, there exits bj(t) ∈ U , such that

C−1 ≤ θ(bj(t), t) ≤ C. (2.21)

Hence, by Hölder’s inequality and Corollary 2.1, for x ∈ U there exist bj(t) ∈ U such that

| log(θ(x, t) + 1) − log
(
θ
(
bj(t), t

)
+ 1
)
| �
∫

U

θx

θ
dx

�
(∫

θ2
x

vθ2

)1/2
⎛

⎝

∫

U

vdx

⎞

⎠

1/2

�
(∫

θ2
x

vθ2

)1/2

, (2.22)

which yields

θ ≥ C − C

∫
θ2

x

vθ2
. (2.23)

Integrating (2.9) over U again, by Lemma 2.1, one has

1 � B(t) +

t∫

0

B(t)
B(s)

∫

U

(θ +
vb2

2
)dxds � e−ct +

t∫

0

B(t)
B(s)

ds, (2.24)

that is
t∫

0

B(t)
B(s)

ds ≥ C − Ce−ct. (2.25)

Putting (2.23) into (2.20), by (2.16), (2.25), and Lemma 2.1, for the enough large t, it follows

v ≥ C

t∫

0

B(s)
B(t)

θds ≥ C

t∫

0

B(s)
B(t)

(

1 −
∫

θ2
x

vθ2

)

ds

≥ C − Ce−ct − C

⎛

⎜
⎝

t/2∫

0

+

t∫

t/2

⎞

⎟
⎠

B(s)
B(t)

∫
θ2

x

vθ2
ds

≥ C − Ce−ct − C

t/2∫

0

e−(t−s)c

∫
θ2

x

vθ2
ds − C

t∫

t/2

∫
θ2

x

vθ2
ds

≥ C − Ce−ct − Ce−ct/2 − C

t∫

t/2

∫
θ2

x

vθ2
ds ≥ C. (2.26)

Step 3 (Upper bound for v) Integrating (1.6)3 over [0, t], one has

vb = v0b0, (2.27)
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which yields

vb2 = v2
0b2

0v
−1. (2.28)

Hence, by (2.28) and the lower bound of v, we obtain

vb2 ≤ C. (2.29)

By the boundedness of B, Lemma 2.1, (2.11), (2.16), and (2.29), one obtains

‖v‖L∞(U) ≤ C + C

t∫

0

(

e−c(t−s)‖v‖L∞(U)

∫
θ2

x

vθ2

)

ds, (2.30)

where we have used the result

‖θ‖L∞(U) � 1 + ‖v‖L∞(U)

∫
θ2

x

vθ2
. (2.31)

In fact, by Hölder’s inequality and Corollary 2.1, there exits bj(t) ∈ U such that

|θ1/2(y, t) − θ1/2(bj(t), t)| �
∫

U

θ1/2θxdx � ‖v‖1/2
L∞(U)

(∫
θ2

x

vθ2

)1/2
⎛

⎝

∫

U

θdx

⎞

⎠

1/2

� ‖v‖1/2
L∞(U)

(∫
θ2

x

vθ2

)1/2

, (2.32)

which means that (2.31) is valid. By Gronwall’s inequality, (2.30), and Lemma 2.1, it follows

sup
y∈U

v(t, y) ≤ C, ∀t ∈ [0,∞). (2.33)

�

According to Lemma 2.1, 2.2 and Corollary 2.1, we have the following results.

Corollary 2.2. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

C−1 ≤ |b| ≤ C, (2.34)
t∫

0

‖u‖2
∞ds � 1. (2.35)

Proof. By Lemma 2.2, (2.27), and (1.13), (2.34) can be immediately obtained. Next, we prove (2.35) in
Ω = R. By u|x=∞ = 0, Hölder’s inequality, Corollary 2.1, and Lemma 2.2, we have

‖u‖2
∞ �

∞∑

i=−∞

⎛

⎝

∫

Ui

|ux|
⎞

⎠

2

� ‖v‖∞ sup
i

∫

Ui

θ

∞∑

i=−∞

∫

Ui

u2
x

vθ
�
∫

u2
x

vθ
, (2.36)

where Ui is defined in Corollary 2.1. By (2.36) and Lemma 2.1, one has (2.35). The proof of (2.35) in
Ω = (0,∞) is similar as the case Ω = R, we omit it for simplicity. �

Lemma 2.3. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

‖((θ − 1), u2, vx, bx

)
(t)‖2

2 +

t∫

0

(
‖(θx, uux, (1,

√
θ)(vx, ux), bx)(s)‖2

2

)
ds � 1. (2.37)
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Proof. For each t ≥ 0 and a > 1, we define

Ωa := {x ∈ Ω : θ > a}, (θ − a)+ := max{θ − a, 0}.

Taking inner product (1.6)2 and (1.6)4 with 2u(θ − 2)+ and (θ − 2)+ over Ω, respectively, and adding
them together, by integration by parts, we have

d
dt

∫ [cv

2
(θ − 2)2+ + (θ − 2)+u2

]
+
∫

Ω2

κθ2
x

v
dx +

∫

(θ − 2)+
λu2

x

v

=
∫

θ

v
(θ − 2)+ux + 2

∫
θ

v
∂x(θ − 2)+u − 2

∫

bbx(θ − 2)+u

−2λ

∫

Ω2

θx
uxu

v
dx +

∫

Ω2

θtu
2dx :=

5∑

i=1

Ii. (2.38)

By Cauchy–Schwarz’s inequality, Lemma 2.1, 2.2, and Corollary 2.2, one deduces
4∑

i=1

Ii ≤ ε

∫

Ω2

θu2
xdx + Cε

∫

Ω2

θ(θ − 2)2+dx + ε

∫

Ω2

θ2
xdx + Cε

∫

θ2u2

+ ε‖bx‖2
2 + Cε

∫

(θ − 2)2+u2 + ε‖θx‖2
2 + Cε‖uux‖2

2

≤ ε‖
√

θux, ux, bx, θx‖2
2 + Cε sup

Ω

(

θ − 3
2

)2

+

+ Cε‖uux‖2
2, (2.39)

where we have used the fact
∫

Ω2

θdx �
∫

φ(θ) � 1.

By means of (1.6)4, one has

I5 =
∫

Ω2

(
λu2

x

cvv
− θux

cvv

)

u2dx + c−1
v

∫

Ω2

(
κθx

v

)

x

u2dx := I51 + I52. (2.40)

By Cauchy–Schwarz’s inequality and Lemma 2.1, we have

I51 �
∫

Ω2

(u2
x + θ2)u2dx �

∫

u2
xu2 + sup

Ω

(

θ − 3
2

)2

+

. (2.41)

To tackle the term I52, we define

ϕξ(θ) :=

⎧
⎪⎨

⎪⎩

1, θ − 2 ≥ ξ,

(θ − 2)/ξ, 0 ≤ θ − 2 < ξ,

0, θ − 2 < 0.

Thanks to Lebesgue’s dominated convergence theorem, integration by parts, and Lemma 2.2, it follows

I52 =
κ

cv
lim

ξ→0+

∫

Ω

ϕξ(θ)
(

θx

v

)

x

u2dx ≤ −2κ

cv
lim

ξ→0+

∫

Ω

ϕξ(θ)
θx

v
uuxdx

≤ ε‖θx‖2
2 + Cε

∫

Ω2

u2u2
xdx. (2.42)
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Putting (2.39)–(2.42) into (2.38), by integration over (0, t) and Lemma 2.1, 2.2, one can deduce

∫

(θ − 2)2+ +

t∫

0

∫ [
θ2

x + (1 + θ)u2
x

]

� 1 +

t∫

0

sup
Ω

(

θ − 3
2

)2

+

(s, ·)ds + ε

t∫

0

‖bx‖2
2ds +

t∫

0

‖uux‖2
2ds, (2.43)

where we have used the facts

t∫

0

∫

θ2
xds ≤

t∫

0

⎛

⎜
⎝

∫

Ω2

+
∫

Ω\Ω2

⎞

⎟
⎠ θ2

xdxds ≤
t∫

0

∫

Ω2

θ2
xdxds + C

t∫

0

∫

Ω\Ω2

θ2
x

vθ2
dxds

≤
t∫

0

∫

Ω2

θ2
xdxds + C, (2.44)

t∫

0

∫

(1 + θ)u2
xds �

t∫

0

∫ (
1
θ

+ θ

)

u2
xds �

t∫

0

∫
u2

x

vθ
ds +

t∫

0

⎛

⎜
⎝

∫

Ω3

+
∫

Ω\Ω3

⎞

⎟
⎠ θu2

xdxds

�
t∫

0

∫
u2

x

vθ
ds +

t∫

0

∫

Ω3

(θ − 2)+u2
xdxds � 1 +

t∫

0

∫

Ω3

(θ − 2)+u2
xdxds. (2.45)

By means of Lemma 2.1, 2.2 and Hölder’s inequality, one also has

∫

(θ − 1)2 =

⎛

⎜
⎝

∫

Ω3

+
∫

Ω\Ω3

⎞

⎟
⎠ (θ − 1)2dx �

∫

Ω3

(θ − 2)2+dx + 1, (2.46)

t∫

0

sup
Ω

(

θ − 3
2

)2

+

ds =

t∫

0

sup
Ω

⎛

⎝

∞∫

x

∂x

(

θ − 3
2

)

+

dx

⎞

⎠

2

ds

�
t∫

0

⎛

⎜
⎝

∫

Ω3/2

|θx|dx

⎞

⎟
⎠

2

ds �
t∫

0

∫

Ω3/2

θ2
x

θ
dx

∫

Ω3/2

θdxds

�
t∫

0

∫

Ω3/2

θ2
x

θ
dxds � ε

t∫

0

∫

θ2
xds + Cε

t∫

0

∫
θ2

x

θ2
ds

� ε

t∫

0

∫

θ2
xds + Cε. (2.47)

Substituting (2.46), (2.47) into (2.43), one obtains

∫

(θ − 1)2 +

t∫

0

∫ [
θ2

x + (1 + θ)u2
x

]
≤ Cε + ε

t∫

0

‖bx‖2
2ds + C

t∫

0

‖uux‖2
2ds. (2.48)
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Taking inner product (1.6)2 with 4u3 over Ω, by integration by parts, Cauchy–Schwarz’s and Hölder’s
inequalities, Lemma 2.1, 2.2, and Corollary 2.2, we have

d
dt

∫

u4 + 12λ

∫
u2u2

x

v
= 12

∫ (
θ − 1

v
+

1 − v

v

)

u2ux − 4
∫

bbxu3

� Cε‖u‖2
∞

∫

(θ − 1)2 + ε‖uux‖2
2 + Cε‖u‖2

∞

∫

(1 − v)2 + ε‖bx‖2
2 + Cε‖u‖2

∞

∫

u4

� ε(‖uux‖2
2 + ‖bx‖2

2) + Cε‖u‖2
∞(‖θ − 1‖2

2 + ‖u‖4
4 + 1). (2.49)

Integrating (2.49) over [0, t], by Corollary 2.2, one has

‖u‖4
4 +

t∫

0

‖uux‖2
2 � 1 + ε

t∫

0

‖bx‖2
2 + Cε

t∫

0

‖u‖2
∞(‖θ − 1‖2

2 + ‖u‖4
4). (2.50)

Before the estimate of ‖bx‖2, we have the following calculation. Acting ∂x to (2.27), thanks to the initial
condition (1.13), we can deduce

vx

v
= −bx

b
. (2.51)

By (1.6)1 and (1.6)2, we have
(

λvx

v
− u

)

t

=
(

θ

v
+

b2

2

)

x

. (2.52)

Multiplying (2.52) by vx

v , by (1.6)1, (2.51), Lemma 2.2, and integration by parts, one deduces

d
dt

∫ [
λ

2

(vx

v

)2

− uvx

v

]

+ c

∫

(θv2
x + b2

x) ≤ C

∣
∣
∣
∣

∫

θxvx

∣
∣
∣
∣−
∫

u
(ux

v

)

x

�
∣
∣
∣
∣

∫

θxvx

∣
∣
∣
∣+
∫

u2
x

v
� ε

∫

θv2
x + ε‖vx‖2

2

∫
θ2

x

θ2
+ Cε

∫

θ2
x + C‖ux‖2

2, (2.53)

where we have used the fact:
∫

v2
x ≤ C‖vx‖2

2

∫
θ2

x

θ2
+ C

∫

θv2
x. (2.54)

In fact, by (2.23), one has

θ +
∫

θ2
x

θ2
� 1, (2.55)

which means that (2.54) is valid. Integrating (2.53) over [0, t], one has

‖vx‖2
2 +

t∫

0

(∫

θv2
x +
∫

b2
x

)

ds � 1 +

t∫

0

‖vx‖2
2

∫
θ2

x

θ2
ds +

t∫

0

‖θx, ux‖2
2ds. (2.56)

Choosing suitable small δ > 0 and suitable large η > 0, multiplying (2.56) and (2.50) by δ and η,
respectively, and adding them together with (2.48), by Gronwall’s inequality, Lemma 2.1, 2.2, Corollary
2.2, and (2.51), one can derive that

‖θ − 1, u2, vx, bx‖2
2 +

t∫

0

‖θx, ux, bx, uux‖2
2ds +

t∫

0

∫

θ(u2
x + v2

x)ds � 1. (2.57)
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Thanks to (2.54), (2.57), and Lemma 2.1, we have
t∫

0

∫

v2
xds ≤ ‖vx‖2

2

t∫

0

∫
θ2

x

θ2
ds +

t∫

0

∫

θv2
xds � 1, (2.58)

which combined with (2.57) completes the proof of this lemma. �
Based on the above results, we now estimate the first-order derivative of velocity.

Lemma 2.4. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

‖ux(t)‖2
2 +

t∫

0

‖(uxx, ut)(s)‖2
2ds � 1. (2.59)

Proof. Taking inner product (1.6)2 with 2uxx on Ω, by integration by parts, Cauchy–Schwarz’s inequality,
and Lemma 2.2, 2.3, we have

d
dt

‖ux‖2
2 + c

∫

u2
xx ≤ C

∣
∣
∣
∣

∫

uxx

(
b2

2
+

θ − 1
v

+
1 − v

v

)

x

∣
∣
∣
∣+ C

∫

|uxvxuxx|

≤ ε‖uxx‖2
2 + Cε‖ux‖2

∞‖vx‖2
2 + Cε‖θx, (θ − 1)vx, vx, bx‖2

2 ≤ ε‖uxx‖2
2 + Cε ‖ux, θx, vx, bx‖2

2 ,

(2.60)

where we have used the fact:

‖θ − 1‖2
∞ � ‖θ − 1‖2

2 +
∫

|θ − 1||θx| � ‖θ − 1‖2
2 + ‖θx‖2

2, (2.61)
∫

(θ − 1)2v2
x ≤ ‖θ − 1‖2

∞‖vx‖2
2 ≤ ‖θ − 1‖2

2‖vx‖2
2 + ‖θx‖2

2‖vx‖2
2 ≤ ‖vx‖2

2 + ‖θx‖2
2, (2.62)

‖ux‖2
∞ ≤ C‖ux‖2

2 + C‖ux‖2‖uxx‖2 ≤ ε‖uxx‖2
2 + Cε‖ux‖2

2. (2.63)

By (2.60), Gronwall’s inequality, and Lemma 2.1, 2.3, we deduce

‖ux(t)‖2
2 +

t∫

0

‖uxx‖2
2ds � 1. (2.64)

By means of (1.6)2 and Lemma 2.2, one has

|ut| � |uxx, uxvx| + |θx, (θ − 1)vx, vx, bx|, (2.65)

which combined with Lemma 2.3 and (2.61)–(2.64) yields
t∫

0

‖ut‖2
2ds �

t∫

0

‖ux, uxx, vx, θx, bx‖2
2 ds � 1, (2.66)

where we have used the fact:

‖uxvx‖2 � ‖ux‖∞‖vx‖2 � ‖ux‖H1 . (2.67)

�
Next, we estimate the temperature.

Lemma 2.5. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

‖θx(t)‖2
2 +

t∫

0

‖θt, vt, θxx‖2
2ds � 1. (2.68)



21 Page 14 of 24 X. Si and X. Zhao ZAMP

Proof. Multiplying (1.6)5 by θxx, integrating over Ω on x, by integration by parts, Cauchy–Schwarz’s
inequality, and Lemma 2.2–2.4, we have

cv

2
d
dt

∫

θ2
x +
∫

κθ2
xx

v
=
∫

θxx

[(
θ − 1

v
+

1 − v

v

)

ux +
κθxvx

v2
− λu2

x

v

]

≤ ε

∫

θ2
xx + Cε

∫ [

(θ − 1)2u2
x + (1 − v)2u2

x +
θ2

xv2
x

v4
+

λ2u4
x

v2

]

� ε‖θxx‖2
2 + ‖ux‖2

∞‖θ − 1, v − 1, ux‖2
2 + ‖θx‖2

∞‖vx‖2
2

� ε‖θxx‖2
2 + ‖ux, uxx‖2

2 + ‖θx‖2‖θxx‖2 � ε‖θxx‖2
2 + ‖ux, uxx‖2

2 + Cε‖θx‖2
2, (2.69)

which combined with Gronwall’s inequality and Lemma 2.3–2.4, one has

‖θx(t)‖2
2 +

t∫

0

‖θxx‖2
2ds � 1. (2.70)

Hence, similar as (2.66), by means of (1.6)1, (1.6)5, Lemma 2.1–2.4, and (2.70), one can deduce
t∫

0

‖vt, θt‖2
2ds � 1. (2.71)

�
Lemma 2.6. Assume that the conditions listed in Theorem 1.1 hold. Then for (x, t) ∈ [0, T ) × Ω,

θ(x, t) � 1, θ(x, t) ≥
{

C(t), if T < ∞,

C, if T = ∞.
(2.72)

Proof. By (2.61), Lemma 2.3, and Lemma 2.5, one obtains

‖θ‖∞ � 1 + ‖θ − 1‖∞ � 1 + ‖θ − 1‖2‖θx‖2 � 1. (2.73)

Next, we prove the lower bound of θ. Multiplying (1.6)5 by θ−2, we have

cv

(
1
θ

)

t

−
[
κr2

v

(
1
θ

)

x

]

x

= −2θκ

v

(
1
θ

)2

x

− λ

vθ2

(

ux − θ

2λ

)2

+
1

4λv
≤ 1

4λv
≤ C1(t). (2.74)

Let G(t, x) := θ−1 − c−1
v

∫ t

0
C1(s)ds, then
{

cvGt ≤ [κ
v Gx

]

x
, (t, x) ∈ [0, T ] × Ω,

H(0, x) = 1
θ(0,x) ≤ 1

infΩ θ0
for x ∈ Ω.

(2.75)

In view of the maximum principle (see Evans [9]), we infer that

G(t, x) ≤ 1
infΩ θ0

for all (t, x) ∈ [0, T ] × Ω, (2.76)

which implies

θ ≥ C(t), (2.77)

If the time tends to infinity, then by (2.69) and Lemma 2.3–2.5, one has
∞∫

0

∣
∣
∣
∣
d
dt

‖θx‖2
2

∣
∣
∣
∣ dt ≤ C, (2.78)

which yields

lim
t→∞ ‖θx‖2 = 0. (2.79)
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Hence, by Sobolev’s inequality, Lemma 2.3, and (2.79), we obtain

lim
t→∞ ‖θ − 1‖∞ = 0, (2.80)

which yields

θ(x, t) ≥ C, x ∈ R or (0,∞) (2.81)

for the large enough time t. �

3. Global estimates of (1.6)–(1.9), (1.12)

In the bounded domain Ω = (0, 1), the estimates of the solutions are similar as Sect. 2 besides the proofs
of Lemma 2.2, 2.3, Corollary 2.2, and the lower bound of θ when time is enough large. For simplicity, we
just give out these different estimates. First of all, the following estimates of lower and upper bounds of
v are different from Lemma 2.2.

Lemma 3.1. Assume that the conditions listed in Theorem 1.1 hold. Then for (x, t) ∈ [0, T ) × Ω,

v(x, t) � 1, v(x, t) ≥
{

C(t), if T < ∞,

C, if T = ∞.
(3.1)

Proof. The proof is divided into three steps.

Step 1 (Representation formula for v) By means of (1.6)1, integrating (1.6)2 over [0, t] × [x1(t), x], we
have

[
log v(x, t) − log v(x1(t), t)

]
−
[
log v0(x) − log(x1(t), 0)

]
=

1
λ

x∫

x1(t)

(u − u0) (ξ)dξ

+
1
λ

t∫

0

[
θ

v
+

b2

2

]

(x, s)ds − 1
λ

t∫

0

[
θ

v
+

b2

2

]

(x1(t), s)ds, (3.2)

where x1(t) ∈ [0, 1] is determined by the following progresses. Next, for the convenience, we define

F =:
λux

v
− θ

v
− b2

2
, ϕ =:

t∫

0

F (x, s)ds +

x∫

0

u(ξ, 0)dξ,

which means that

ϕx = u, ϕt = F, (3.3)

(vϕ)t − (ruϕ)x = vF − u2 = λux − θ − vb2

2
− u2. (3.4)

By (1.6)1, one has

1
λ

t∫

0

[
θ

v
+

b2

2

]

(x1(t), s)ds =
1
λ

t∫

0

(
λux

v
− F

)

(x1(t), s)ds

= (log v(x1(t), t) − log v(x1(t), 0)) − 1
λ

t∫

0

F (x1(t), s)ds. (3.5)
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Integrating (3.4) over [0, t] × Ω, by virtue of mean value theorem, there exits x1(t) ∈ [0, 1] such that

ϕ(x1(t), t) =
∫

ϕv =
∫

v0

x∫

0

u0(ξ)dξ −
t∫

0

∫ [

θ +
vb2

2
+ u2

]

ds. (3.6)

By the definition of ϕ, (3.3), and (3.6), one obtains

t∫

0

F (x1(t), s)ds = ϕ(x1(t), t) −
x1(t)∫

0

u0(ξ, t)dξ =
∫

v0

x∫

0

u0(ξ)dξ

−
t∫

0

∫ [

θ +
vb2

2
+ u2

]

ds −
x1(t)∫

0

u0(ξ, t)dξ. (3.7)

Putting (3.5) and (3.7) into (3.2), we derive

vD−1B = exp

⎧
⎨

⎩

1
λ

t∫

0

(
θ

v
+

b2

2

)

(x, s)ds

⎫
⎬

⎭
, (3.8)

where

B := exp

⎧
⎨

⎩

1
λ

t∫

0

∫ (

u2 + θ +
vb2

2

)

ds

⎫
⎬

⎭
,

D := v0 exp

⎧
⎪⎨

⎪⎩

1
λ

⎛

⎜
⎝

∫

v0

x∫

0

u0(ξ)dξ −
x1(t)∫

0

u0(ξ, t)dξ −
x∫

x1(t)

(u − u0) (ξ)dξ

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

Multiplying (3.8) by 1
λ

[
θ
v + b2

2

]
, one obtains

v(x, t) = D(t)B−1(t) +
1
λ

t∫

0

B(s)
B(t)

D(t)
D(s)

(

θ +
vb2

2

)

(x, s)ds. (3.9)

Step 2 (Lower bound for v)
First of all, we need some estimate of D, θ, and B. Employing Jensen’s inequality to the convex

function φ, one has
∫

z − log
∫

z − 1 ≤
∫

φ(z). (3.10)

By (3.10) and Lemma 2.1, one obtains

C−1 ≤
∫

v,

∫

θ ≤ C. (3.11)

By the definition of D, Lemma 2.1, and (3.11), one can deduce

C−1 ≤ D ≤ C. (3.12)

Hence, for t ≤ t0 < ∞, one has

v ≥ DB−1 ≥ Ce−ct ≥ Ce−ct0 . (3.13)
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For the enough large t, one deduces

v ≥ C

t∫

0

B(s)
B(t)

θds. (3.14)

So, we need the estimates of θ and B(s)
B(t) . By mean value theorem and (3.11), there exits x2(t) ∈ [0, 1],

such that

C−1 ≤ θ(x2(t), t) ≤ C. (3.15)

By Cauchy–Schwarz’s inequality and (3.11), one has

| log(θ + 1) − log(θ(x2(t), t) + 1)| �
∫

θx

θ
�
(∫

θ2
x

vθ2

)1/2(∫

v

)1/2

�
(∫

θ2
x

vθ2

)1/2

, (3.16)

which means that

θ ≥ C − C

∫
θ2

x

vθ2
. (3.17)

By Lemma 2.1, the definition of B, and (3.9), we obtain

e−c1(t−s) ≤ B(s)
B(t)

≤ e−c2(t−s), (3.18)

∫

v � e−ct +

t∫

0

B(s)
B(t)

ds, (3.19)

that is
t∫

0

B(s)
B(t)

ds ≥ C − Ce−ct. (3.20)

Putting (3.17) into (3.14), by (3.18), (3.20), and Lemma 2.1, for the enough large t, it follows

v ≥ C

t∫

0

B(s)
B(t)

θds ≥ C

t∫

0

B(s)
B(t)

(

1 −
∫

θ2
x

vθ2

)

ds

≥ C − Ce−ct − C

⎛

⎜
⎝

t/2∫

0

+

t∫

t/2

⎞

⎟
⎠

B(s)
B(t)

∫
θ2

x

vθ2
ds

≥ C − Ce−ct − C

t/2∫

0

e−(t−s)c

∫
θ2

x

vθ2
ds − C

t∫

t/2

∫
θ2

x

vθ2
ds

≥ C − Ce−ct − Ce−ct/2 − C

t∫

t/2

∫
θ2

x

vθ2
ds ≥ C. (3.21)

Step 3 (Upper bound for v) Integrating (1.6)3 over [0, t], one has

vb = v0b0, (3.22)

which yields

vb2 = v2
0b2

0v
−1. (3.23)
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Hence, by (3.23) and the lower bound of v, we obtain

vb2 ≤ C. (3.24)

By the boundedness of B−1, Lemma 2.1, (3.12), (3.18), and (3.24), one obtains

‖v‖∞ ≤ C + C

t∫

0

(

e−c2(t−s)‖v‖∞
∫

θ2
x

vθ2

)

ds, (3.25)

where we have used the result

‖θ‖∞ � 1 + ‖v‖∞
∫

θ2
x

vθ2
. (3.26)

In fact, by Hölder’s inequality

|θ1/2(x, t) − θ1/2(x2(t), t)| �
∫

θ1/2θx � ‖v‖1/2
∞

(∫
θ2

x

vθ2

)1/2(∫

θ

)1/2

� ‖v‖1/2
∞

(∫
θ2

x

vθ2

)1/2

. (3.27)

which means that (3.26) is valid. By Gronwall’s inequality, (3.25), and Lemma 2.1, it follows

sup
0≤t≤T

‖v‖∞ ≤ C. (3.28)

�

According to Lemma 2.1 and Lemma 3.1, we have the following results.

Corollary 3.1. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

C−1 ≤
∫

v,

∫

θ ≤ C, (3.29)

‖b‖∞ � 1, (3.30)
t∫

0

‖u‖2
∞ds � 1. (3.31)

Proof. By (3.11), (3.22), and Lemma 3.1, (3.29)–(3.30) can be immediately obtained. By u|∂Ω = 0,
Hölder’s inequality, and Lemma 3.1, we have

‖u‖2
∞ �

(∫

|ux|
)2

� ‖v‖∞
∫

u2
x

vθ

∫

θ ≤
∫

u2
x

vθ
. (3.32)

By (3.32) and Lemma 2.1, one has (3.31). �

In the bounded domain, Lemma 2.3 cannot be established employing the method of unbounded do-
main. Next, we give out the estimate similar as Lemma 2.3 in domain (0, 1).

Lemma 3.2. Assume that the conditions listed in Theorem 1.1 hold. Then for t ≥ 0,

∫ (
θ2 + u4 + u2 + v2

x + b2
x

)
(t) +

t∫

0

∫ (
θ2

x + u2u2
x + u2

x + θv2
x + v2

x + b2
x

)
(s)ds � 1. (3.33)
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Proof. Taking inner product (1.6)2 with 4u3 over Ω, by Hölder’s and Cauchy–Schwarz’s inequalities and
Lemma 3.1, we have

d
dt

∫

u4 + 12λ

∫
u2u2

x

v
= 12

∫
θ

v
u2ux + 12

∫
b2

2
uxu2

� Cε‖u‖2
∞

(∫

θ2 + 1
)

+ ε‖uux‖2
2. (3.34)

Multiplying (1.6)2 by u, adding together with (1.6)4, we have
(

cvθ +
u2

2

)

t

+
[(

P +
b2

2

)

u

]

x

− b2

2
ux =

(
κθx

v

)

x

+
(

λuux

v

)

x

. (3.35)

Taking inner product (3.35) with cvθ + u2

2 over Ω, by integration by parts, Hölder’s, Cauchy–Schwarz’s
and Poincaré’s inequalities and Corollary 3.1, one can deduce

1
2

d
dt

∫ [(

cvθ +
u2

2

)2
]

+ cvκ

∫
θ2

x

v
+ λ

∫
u2u2

x

v

= −(κ + cvλ)
∫

θxuxu

v
+
∫

(P +
b2

2
)u(cvθx + uux) +

∫
b2

2
ux(cvθ +

u2

2
)

�
∫

|θxuux| +
∫

|θu + ub2||θx + uux| +
∫

|uxθ|

� ε‖θx‖2
2 + Cε‖uux‖2

2 + Cε‖u‖2
∞

(∫

θ2 + 1
)

+ Cε‖ux‖2
2. (3.36)

By virtue of (3.34), (3.36), and Gronwall’s inequality, one can deduce

∫ (
θ2 + u4

)
(t) +

t∫

0

∫ (
θ2

x + u2u2
x

)
(s)ds �

t∫

0

‖ux‖2
2ds. (3.37)

Before the estimate of ‖vx‖2, we have the following calculations. By (1.6)3, one has

(log v)t = −(log b)t. (3.38)

Acting ∂x to (3.38), thanks to the initial condition (1.13), it follows

vx

v
= −bx

b
. (3.39)

By (1.6)1-(1.6)2, we have
(

λvx

v
− u

)

t

=
(

θ

v
+

b2

2

)

x

. (3.40)

Multiplying (3.40) by vx

v , by (1.6)1, (3.39), Lemma 3.1, and integration by parts, one deduces

d
dt

∫ [
λ

2

(vx

v

)2

− uvx

v

]

+ c

∫

(θv2
x + b2

x) ≤ C

∣
∣
∣
∣

∫

θxvx

∣
∣
∣
∣−
∫

u
(ux

v

)

x

�
∣
∣
∣
∣

∫

θxvx

∣
∣
∣
∣+
∫

u2
x

v
� ε

∫

θv2
x + ε‖vx‖2

2

∫
θ2

x

θ2
+ Cε

∫

θ2
x + C‖ux‖2

2, (3.41)

where we have used the fact:
∫

v2
x ≤ C‖vx‖2

2

∫
θ2

x

θ2
+ C

∫

θv2
x. (3.42)
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In fact, by (3.27), there exits a constant a such that (θ1/2 − a1/2) �
∫ θ2

x

θ2 . Hence,

a1/2

∫

v2
x = −

T∫

0

(
θ1/2 − a1/2

)
v2

x +
∫

θ1/2v2
x ≤ ε

∫

v2
x + Cε

∫ (
θ1/2 − a1/2

)2

v2
x + Cε

∫

θv2
x

≤ ε

∫

v2
x + Cε

∫
θ2

x

θ2

∫

v2
x + Cε

∫

θv2
x, (3.43)

which means that (3.42) is valid. In (3.41), only the term ‖ux‖2 needs to be tackled. Taking inner product
(1.6)2 with u over Ω, by Cauchy–Schwarz’s inequality, it yields

1
2

d
dt

‖u‖2
2 + c‖ux‖2

2 ≤ C

∣
∣
∣
∣

∫

(
θ

v
+ b2)xu

∣
∣
∣
∣ ≤ ε‖θx, vx, bx‖2

2 + Cε‖u‖2
2

≤ ε

∫

θv2
x + ε

∫
θ2

x

θ2

∫

v2
x + ε‖θx, bx‖2

2 + Cε‖u‖2
∞. (3.44)

By means of Corollary 3.1, (3.41), (3.44), Gronwall’s inequality, and (3.39), one can derive that

∫ (
u2 + v2

x + b2
x

)
(t) +

t∫

0

∫ (
b2
x + θv2

x + u2
x

)
(s)ds � 1. (3.45)

Thanks to (3.42) and (3.45), we have

t∫

0

∫

v2
xds ≤

∫

v2
x

t∫

0

∫
θ2

x

θ2
ds +

t∫

0

∫

θv2
xds � 1, (3.46)

which combined with (3.37) and (3.45) completes the proof of this lemma. �

Next, we give out the proof of lower bound of θ for the enough large time t. Similar as (2.79), one has

lim
t→∞ ‖θx‖2 = 0. (3.47)

Hence, in the domain Ω = (0, 1), by (4.11), Lemma 2.4, Lemma 3.1, Lemma 2.5, and (3.47), one can
deduce

lim
t→∞ ‖θ − θ̄‖∞ ≤ lim

t→∞ ‖θ − θ̄‖1/2
2 ‖θx‖1/2

2 = 0, (3.48)

which yields

θ(x, t) ≥ C, x ∈ (0, 1) (3.49)

for the large enough time t.

4. Proof of Theorem 1.1

In order to show the global existence of the solutions to the problems (1.6)–(1.10), or (1.6)–(1.9), (1.11),
or (1.6)–(1.9), (1.12), one can use the standard argument in [15,23,34], that is, first to construct an
approximate problem in the bounded interval (0, k) and to prove the a priori estimates independent of
k similar to those obtained in Sects. 2 and 3, then to let k tend to infinity for the purpose of getting the
global strong solutions as the limit. We omit the details for proving (1.14), while we deduce the assertions
(1.15) and (1.16) of Theorem 1.1 as follows.
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4.1. Proof of (1.15)

Applying ∂x to (1.6)1 and taking inner product with vx over Ω, one has
d
dt

‖vx‖2
2 ≤

∫

(ru)xxvx ≤ ‖u, vx, ux, uxx‖2
2. (4.1)

By (4.1), (2.60), (2.69), and Lemma 2.2-2.5, one can deduce
∞∫

0

∣
∣
∣
∣
d
dt

‖vx, ux, θx‖2
2

∣
∣
∣
∣dt ≤ C, (4.2)

which combined with (2.51), Lemma 2.2, and Corollary 2.2 yields

lim
t→∞ ‖vx, bx, ux, θx‖2

2 = 0. (4.3)

By means of Lemma 2.1, 2.2 and Lemma 2.6, one has

‖v − 1‖2
2 + ‖θ − 1‖2

2 �
∫

φ(v) + φ(θ) � 1, (4.4)

By virtue of (1.6)3, one has

b − b0v0 = b0v0(v − 1)/v, (4.5)

which combined with (4.4) and Lemma 2.2 yields

‖b − b0v0‖2 � 1. (4.6)

By means of (4.4), (4.6), Lemma 2.1, and (4.3), it follows

lim
t→∞ ‖v − 1, u, b − b0v0, θ − 1‖p = 0, 2 < p ≤ ∞. (4.7)

The proof of (1.15) is thus completed by (4.3) and (4.7). �

4.2. Proof of (1.16)

By mean value theorem and (3.22), there exists α(t) ∈ (0, 1) such that

v(α(t)) = v̄, b(α(t)) = v0b0/v̄. (4.8)

By Poincaré’s inequality, we have

‖v − v̄, u, b − v0b0/v̄‖2 � ‖vx, ux, bx‖2. (4.9)

Multiplying (1.6)2-(1.6)3 by u and b − v0b0/v̄, respectively, adding them with (1.6)4, and integrating the
resulting identity over [0, t] × Ω, one can deduce

∫ [

cvθ +
1
2
(u2 + v(b − v0b0/v̄)2)

]

(t, x)dx = cv θ̄ ∀t ∈ [0,∞), (4.10)

where θ̄ is given by (1.17). We use Poincaré’s inequality, Lemma 3.1, and (4.9) to obtain

‖(θ − θ̄)(t)‖2
2 ≤

∫

|θ(t, x) −
∫

θ(t, y)dy|2dx + ‖(u,
√

v(b − v0b0/v̄)‖2
2

� ‖(ux, bx, θx)(t)‖2
2. (4.11)

Taking v̂ = v̄ and θ̂ = θ̄, by means of (2.3), (3.41), (2.60), (2.69), Lemma 3.1, Lemma 2.6, and (3.49),
one has

d
dt

∫ (

θ̄φ(
v

v̄
) + cv θ̄φ

(
θ

θ̄

)

+
1
2
u2 +

1
2
v

(

b − v0b0

v̄

)2
)

+ c

∫

(u2
x + θ2

x) ≤ 0, (4.12)
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d
dt

∫ [
λ

2

(vx

v

)2

− uvx

v

]

+ c

∫

(v2
x + b2

x) ≤ C‖θx, ux‖2
2, (4.13)

d
dt

‖ux‖2
2 + c‖uxx‖2

2 ≤ C ‖ux, θx, vx, bx‖2
2 , (4.14)

cv

2
d
dt

‖θx‖2
2 + c‖θxx‖2

2 ≤ C‖ux, uxx, θx‖2
2, (4.15)

Choosing suitable small η1 < η2 < η3 < 1, multiplying (4.13)-(4.15) by η3, η2, and η1, respectively, adding
them together with (4.12), we can deduce

d
dt

A(t) + c‖ux, θx, vx, bx, uxx, θxx‖2
2 ≤ 0. (4.16)

where

A(t) :=
∫ (

θ̄φ(
v

v̄
) + cv θ̄φ(

θ

θ̄
) +

1
2
u2 +

1
2
v

(

b − v0b0

v̄

)2
)

+η3

∫ [
λ

2

(vx

v

)2

− uvx

v

]

+ η2‖ux‖2
2 +

η1cv

2
‖θx‖2

2. (4.17)

By means of Cauchy–Schwarz’s inequality, Lemma 3.1, Lemma 2.6, (3.49), (4.9), and (4.11), one has

A(t) � ‖v − v̄, θ − θ̄, u, b − v0b0/v̄, ux, θx‖2
2 � ‖vx, θx, ux, bx‖2

2. (4.18)

By virtue of Cauchy–Schwarz’s inequality, one has

−
∫

uvx

v
≥ −λ

4

∫
v2

x

v2
− C‖u‖2

2. (4.19)

By (4.19), one can choose suitable small η3 > 0 such that

η3

∫ [
λ

2

(vx

v

)2

− uvx

v

]

≥ η3λ

4

∫
v2

x

v2
− 1

4
‖u‖2

2. (4.20)

Inserting (4.20) into (4.17), by (3.39), Lemma 3.1, and Corollary 3.1, it follows

A(t) � ‖vx, ux, θx‖2
2 � ‖vx, ux, θx, bx‖2

2. (4.21)

By virtue of (4.16), (4.18), and (4.21), one can derive

‖vx, ux, θx, bx‖2
2 � A(t) � e−ct, (4.22)

which combined with (4.9) and (4.11) completes the proof of (1.16). �
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