
Z. Angew. Math. Phys. (2019) 70:26
c© 2019 Springer Nature Switzerland AG
0044-2275/19/010001-16
published online January 2, 2019

https://doi.org/10.1007/s00033-018-1064-0

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Infinite speed behavior of two-temperature Green–Lindsay thermoelasticity theory
under temperature-dependent thermal conductivity

Anil Kumar, Om Namha Shivay and Santwana Mukhopadhyay

Abstract. The present work attempts to analyze the effects of temperature-dependent thermal conductivity on thermoe-
lastic interactions in a medium with a spherical cavity under two-temperature Green–Lindsay thermoelasticity theory. An
attempt is made to compare the results with the corresponding results under other three thermoelastic models. The ther-
mal conductivity of the material is assumed to be depending affinely on the conductive temperature. It is assumed that
the conductive temperature is prescribed at the stress-free boundary of the spherical cavity. Assuming spherical symmetry
motion, the resulting thermoelastic system in one space dimension is solved by using the Kirchhoff transformation, Laplace
transform technique and expansion in modified Bessel functions. The paper concludes with numerical results on the solution
of the problem for specific parameter choices. Various graphs depict the behavior of the conductive and thermodynamic
temperature, the displacement and two nonzero components of stress. A detailed analysis of the results is given by showing
the effects of the assumed temperature dependence of the material property. The effect of employing the two-temperature
model is discussed in detail. We observe an infinite domain of influence under the two-temperature model as compared to
the classical Green–Lindsay model, which we hope will be a useful insight.
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1. Introduction

The coupled thermoelasticity theory based on Fourier law was introduced by Biot [1] and it is well
understood that it suffers from the drawback of an infinite speed of propagation of thermal wave due to
parabolic type heat conduction equation involved in this theory. Consequently, the classical coupled theory
of thermoelasticity [1] has been extended during the last few decades to remove this apparent drawback in
the theory. We recall the generalized thermoelasticity theories developed by Lord and Shulman [2], Green
and Lindsay [3], Green and Naghdi [4–6], Chandrasekharaiah [7] and Roychoudhuri [8] in this context.
We also refer to the book by Ignaczak and Starzewski [9] for detailed discussion of these generalized
thermoelastic models.

In the mechanics of continuous media, a material is said to have memory effect or hereditary charac-
teristics if the behavior of the material at time t is specified in terms of the experience of the body up to
the time t. Coleman [10] formulated a theory of materials with memory. In 1966, Gurtin and Williams
[11] proposed a modified form of the Classius inequality involving two temperatures: the conductive tem-
perature and the thermoelastic temperature. Subsequently, an alternative thermoelasticity theory called
two-temperature thermoelasticity theory has been proposed by Chen and Gurtin [12] and Chen et al.
[13,14]. This two-temperature thermoelasticity theory proposes that the heat conduction on a deformable
body depends on two different temperatures—the conductive temperature and the thermodynamic tem-
perature [11,13,14]. According to the two-temperature thermoelasticity theory, the entropy contribution
due to heat conduction is governed by thermodynamic temperature and that of the heat supply by the
conductive temperature. The stress, energy, entropy, heat-flux and the thermodynamic temperature at
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a given time depend on the histories up to that time of the deformation gradient, the conductive tem-
perature and the gradient of this temperature. Chen et al. [13] suggested that the difference between
the two temperatures is proportional to heat supply and in case of the absence of heat supply, the two
temperatures are equal for a time-independent situation. However, for time-dependent cases, the two tem-
peratures are in general different, regardless of heat supply. By employing the two-temperature theory,
thermoelastic wave propagation from the cylindrical and spherical cavity had been studied by Warren
[15]. Uniqueness and reciprocity theorems for the two-temperature thermoelasticity theory in case of a
homogeneous and isotropic solid medium have been reported by Iesan [16]. Subsequently, wave propaga-
tion in the two-temperature theory is investigated by Warren and Chen [17]. This model has also been
investigated by Amos [18] and Chakrabarti [19]. The two-temperature thermoelasticity theory is being
revisited once again in recent years. Some interesting results on this theory are reported by Puri and Jor-
dan [20] and also by Quintanilla [21]. Youssef [22] extended this theory in the context of the generalized
theory of heat conduction and formulated two generalized two-temperature theories of thermoelasticity
by providing the uniqueness theorem. Later on, Magana and Quintanilla [23] studied the uniqueness and
growth of solutions of this theory. Subsequently, Youssef [24], Youssef and Al-Lehaibi [25], Kumar et al.
[26,27], Youssef and Bassiouny [28], Abbas and Youssef [29], Ezzat et al. [30], Mukhopadhyay and Ku-
mar [31], Kumar and Mukhopadhyay [32], Banik and Kanoria [33] and Mukhopadhyay et al. [34] carried
out some investigations on two-temperature generalized thermoelasticity and indicated some significant
features of the theories given by Youssef [22].

In 1991, Noda [35] reported that the thermoelastic parameters are assumed to be constant in general,
but these parameters remain no longer constants for thermoelastic materials at very high temperature. It
has been shown with practical results (see Noda [35]) that thermal conductivity of the materials decreases
linearly with temperature. Thermoelastic materials at high temperature provide much different practical
and theoretical results from the expectations. Therefore, it is quite necessary to consider the dependency
of these parameters on temperature in the analysis of the behavior of materials when it is kept at a
very high temperature. In recent years, a lot of work has been carried out with generalized theory of
thermoelasticity by taking into account the dependency of thermoelastic parameters on temperature.
It is worth to recall that Suhara [36] solved a thermoelastic model by considering the shear modulus
depending on temperature and discussed the effect in detail. Youssef et al. [37] discussed the results by
solving a thermoelastic problem for an unbounded medium with a spherical cavity by assuming that
thermal conductivity and modulus of elasticity depend on temperature. A characteristic feature has been
discussed for a two-dimensional thermoelastic problem with temperature-dependent elastic moduli by
Othman [38–41]. Zenkour and Abbas [42] discussed the effects of temperature -dependent properties of
the materials assuming the density and other thermoelastic properties depending on temperature. A
study on temperature-dependent thermal conductivity for generalized thermoelasticity theory is reported
by Kumar and Mukhopadhyay [43].

The present work analyzed the effects of temperature-dependent thermal conductivity on thermoelastic
interactions inside a medium with a spherical cavity under a two-temperature generalized thermoelastic
theory that involves two thermal relaxation parameters. The thermal conductivity of the material is as-
sumed to vary with temperature linearly. Initially, the temperature at the boundary of the spherical cavity
is assumed to be subjected to a thermal shock, and it is assumed that there is no stress on the surface of
the cavity. We solve the problem by using Kirchhoff transformation along with Laplace transform tech-
nique. Various graphs are plotted to display the distributions of different field variables like conductive
temperature, thermodynamic temperature, displacement and two nonzero components of stress. An at-
tempt is also made to compare the results in the present context with the corresponding results predicted
by other thermoelasticity theories. A detailed analysis of the results due to temperature-dependent mate-
rial properties and effects of employing two-temperature thermoelastic model is presented. We highlight
some important features of the present two-temperature model in the context of temperature-dependent
thermal conductivity.
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2. Governing equations and problem formulation

A thermoelastic process is a coupled dynamical process of an exchange of mechanical energy into ther-
mal energy and vice-versa under the action of externally applied thermo-mechanical loading [9]. Such
a process is accompanied by strain and temperature changes inside the body all of which vanish upon
the removal of the applied loading. The process can be described in terms of the physical field variables
like temperature, displacement vector and strain tensor. The two-temperature thermoelasticity theory
is developed on basis of a modified form of the Classius inequality proposed by Gurtin and Williams
[11] that involves two different temperatures: the conductive temperature and the thermoelastic tem-
perature. Youssef [22] extended this two-temperature theory in the context of the generalized theory
of heat conduction and formulated two generalized two-temperature models of thermoelasticity, namely
two-temperature LS (TLS) model and two-temperature GL (TGL) model. In the present study, we con-
sider the TGL model. By following Youssef [22] and Ignaczak and Starzewski [9], the basic equations of
two-temperature thermoelasticity with two relaxation parameters (TGL model) for an isotropic elastic
medium in absence of heat sources and body forces can be written as follows:

Strain-displacement relation:

eij =
1
2

(ui,j + uj,i) (1)

The stress–strain-temperature relation:

σij = 2μeij + λekkδij − γ(θ + τ1θ̇)δij (2)

The equation of motion:

σji,j = ρüi (3)

The energy balance equation:

qi,i = −ρT0η̇ (4)

The entropy equation:

ρT0η = ρcE(θ + τ0θ̇) + γT0ekk (5)

The heat conduction law:

qi = −Kφ,i (6)

The relation between two temperatures [12]:

φ − θ = αφ,ii (7)

where ui are the components of the displacement vector, t is the time, eij are the components of elastic
strain tensor, σij are the components of stress tensor, and ekk is the dilatation. θ is the thermodynamic
temperature above the reference temperature T0, and φ is the conductive temperature above reference
temperature T0, here

∣
∣
∣

φ
T0

∣
∣
∣ � 1. λ and μ are the Lamé’s constants, ρ is the mass density, γ = (3λ+2μ)βτ ,

where βτ is the coefficient of linear thermal expansion, cE is the specific heat at constant strain, τ0 and
τ1 (τ1 ≥ τ0) are the thermal relaxation parameters [3,9]. α is the two-temperature parameter. K is the
thermal conductivity of the material of the medium.
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Now, in the present study, we consider a material whose thermal conductivity K is varying with the
conductive temperature, φ. Hence, from Eqs. (4–6), the derived heat conduction equation for the TGL
theory in the present context is obtained as

(Kφ,i),i = ρcE

(

1 + τ0
∂

∂t

)
∂θ

∂t
+ T0γėkk (8)

By combining Eqs. (2) and (3), we have

μui,jj + (λ + μ)uj,ij − γ(θ,i + τ1θ̇,i) = ρüi (9)

Further, we consider the corresponding heat conduction equation and equation of motion for two-
temperature thermoelasticity with one relaxation parameter (TLS model [22]) as:

(Kφ,i),i = ρcE

(

1 + τ0
∂

∂t

)
∂θ

∂t
+ T0γ

(

1 + τ0
∂

∂t

)
∂ekk

∂t
(10)

μui,jj + (λ + μ)uj,ij − γθ,i = ρüi (11)

In order to study the present problem in the contexts of four models, namely LS, TLS, GL and TGL
models, we can write the unified form of Eqns. (9–10) as

(Kφ,i),i = ρcE

(

1 + τ0
∂

∂t

)
∂θ

∂t
+ T0γ

(

1 + ξτ0
∂

∂t

)
∂ekk

∂t
(12)

μui,jj + (λ + μ) uj,ij − γ

(

θ,i + τ1
∂θ,i

∂t

)

= ρ
..
ui (13)

where ξ is a constant parameter used to write the above equations under four models in a unified way.
Hence, Eqs. (2), (7) and Eqs. (12–13) are considered as governing equations for the present study, and
these Eqs. (2), (7),(12–13) reduce to the particular set of equations of TGL, GL, TLS and LS models by
providing the particular values to the parameters α, τ0, τ1 and ξ as follows:

• TGL model: α �= 0, τ0 �= 0, τ1 �= 0, ξ = 0.
• GL model: α = 0, τ0 �= 0, τ1 �= 0, ξ = 0.
• TLS model: α �= 0, τ0 �= 0, τ1 = 0, ξ = 1.
• LS model: α = 0, τ0 �= 0, τ1 = 0, ξ = 1.

The thermal conductivity K of metals generally decreases exponentially with temperature as mentioned
by Noda [36]. Therefore, considering only the first two terms of the exponential function, the variation
in thermal conductivity with conductive temperature is taken in linear form as

K(φ) = K0(1 + K1φ), (14)

where K0 is the thermal conductivity at reference temperature T0. K1(K1 �= 0) is a constant to the present
study, and its value is zero for those materials whose thermal conductivity is invariant with temperature.

Now, we consider the exterior of a ball of radius, a(a > 0), centered at origin and occupied by
a thermoelastic medium at uniform reference temperature T0. Introducing spherical polar coordinates
(r, ϑ, ϕ) and assuming spherical symmetry, Eqs. (2 , 12) and (13) reduce to

σrr = 2μ
∂u

∂r
+ λe − γ

(

θ + τ1
∂θ

∂t

)

(15)

σϕϕ = σϑϑ = 2μ
u

r
+ λe − γ

(

θ + τ1
∂θ

∂t

)

(16)
[

K∇2φ +
∂K

∂φ

(
∂φ

∂r

)2
]

= ρcE

(

1 + τ0
∂

∂t

)
∂θ

∂t
+ T0γ

(

1 + ξτ0
∂

∂t

)
∂e

∂t
(17)

(λ + 2μ)
∂e

∂r
− γ

(

1 + τ1
∂

∂t

)
∂θ

∂r
= ρ

∂2u

∂t2
(18)
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where u is the single nonzero component of displacement. σrr, σϕϕ and σϑϑ are nonzero stress components,
and we use the notations e = ∂u

∂r + 2
r u and ∇2 = ∂2

∂r2 + 2
r

∂
∂r .

In view of Eqs. (7, 14), we find that Eq. (17) is nonlinear, and therefore, to tackle the nonlinearity,
we consider a new function Φ expressing the temperature with Kirchhoff’s transformation as

Φ =
1

K0

φ∫

0

K(p)dp = φ +
1
2
K1φ

2. (19)

Hence, by using Eqs. (14) and (19), we have

K0
∂Φ
∂r

= K
∂φ

∂r
and K0

∂2Φ
∂r2

= K
∂2φ

∂r2
+

∂K

∂φ

(
∂φ

∂r

)2

.

Adding above equations, we get
[

K∇2φ +
∂K

∂φ

(
∂φ

∂r

)2
]

= K0∇2Φ. (20)

Substituting (20) into (17), we obtain

K0∇2Φ = ρcE

(

1 + τ0
∂

∂t

)
∂θ

∂t
+ T0γ

(

1 + ξτ0
∂

∂t

)
∂e

∂t
. (21)

Now, for convenience, we use the following symbols and notations in order to make Eqs. (7), (15–
16),(18) and (21) dimensionless:

(r′, u′) = c0η (r, u),
(

t′, τ
′
0, τ

′
1

)

= c20η (t, τ0, τ1),
(

θ
′
, φ

′
,Φ′

)

= 1
T0

(θ, φ,Φ), e′ = e,

σ′
ij = σij

(λ+2μ) , c20 = (λ+2μ)
ρ , a1 = γT0

(λ+2μ) , a2 = γ
K0η , α′ = αc20η

2, β2 = λ
(λ+2μ) , where η = ρcE

K0
.

Therefore, Eqs. (7), (15–16), (18) and (21) change to their dimensionless forms as follows:

φ − θ = α∇2φ (22)

σrr =
(

1 − β2
) ∂u

∂r
+ β2e − a1

(

θ + τ1
∂θ

∂t

)

(23)

σϕϕ = σϑϑ =
(

1 − β2
) u

r
+ β2e − a1

(

θ + τ1
∂θ

∂t

)

(24)

∇2Φ =
(

1 + τ0
∂

∂t

)
∂θ

∂t
+ a2

(

1 + ξτ0
∂

∂t

)
∂e

∂t
(25)

∂e

∂r
− a1

(

1 + τ1
∂

∂t

)
∂θ

∂r
=

∂2u

∂t2
(26)

Here, for sake of simplicity of notations, we dropped the primes in Eqs. (22–26).

3. Solution of the problem

We apply Laplace transform to Eqs. (22)–(26) with homogeneous initial conditions and obtain

φ̄ − θ̄ = α∇2φ̄ (27)

σ̄rr =
(

1 − β2
) ∂ū

∂r
+ β2ē − b0(s)θ̄ (28)

σ̄ϕϕ = σ̄νν =
(

1 − β2
) ū

r
+ β2ē − b0(s)θ̄ (29)

∇2Φ̄ = b11(s)θ̄ + a2b12(s)ē (30)
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∂ē

∂r
− b0(s)

∂θ̄

∂r
= s2ū (31)

where s is the Laplace transform parameter, and we used the notations b0(s) = a1 (1 + τ1s), b11(s) =
s (1 + τ0s) and b12(s) = s (1 + ξτ0s).

Now, operating ( ∂
∂r + 2

r ) to both sides of Eq. (31), we get

∇2ē − b0(s)∇2θ̄ = s2ē (32)

From Eqs. (30) and (27) and using the fact
∣
∣
∣
∣

φ
T0

∣
∣
∣
∣
<< 1, we find

b2(s)∇2Φ̄ = b11(s)Φ̄ + a2b12(s)ē, (33)

where b2(s) = 1 + αb11(s).
Similarly, by using Eq. (27) into Eq. (32), we get the following equation:

αb0(s)∇4Φ̄ − b0(s)∇2Φ̄ + ∇2ē = s2ē. (34)

Applying Eq. (33) into (34), we find

m0(s)∇4Φ̄ − m1(s)∇2Φ̄ + m2(s)Φ̄ = 0, (35)

where m0(s) = a2αb0(s)b12(s) + b2(s), m1(s) = a2b0(s)b12(s) + b11(s) + s2b2(s), m2(s) = s2b11(s).
Further, using Eqs. (33) into (34), we find

p0(s)Φ̄ + p1(s)∇2ē + p2(s)ē = 0, (36)

where p0(s) = b0(s)b11(s) [αb11(s) − b2(s)], p1(s) = b2(s) [a2αb0(s)b12(s) + b2(s)],
p2(s) = a2αb0(s)b11(s)b12(s) − a2b0(s)b12(s)b2(s) − s2b22(s).

Applying Eq. (36) into Eq. (33), we have

n0(s)∇4ē − n1(s)∇2ē + n2(s)ē = 0, (37)

where n0(s) = b2(s)p1(s), n1(s) = p1(s)b11(s) − p2(s)b2(s), n2(s) = a2b12(s)p0(s) − b11(s)p2(s).
Equations (35) and (37) can be put in the forms

[∇2 − c1 (s)
] [∇2 − c2 (s)

]

Φ̄ = 0 (38)
[∇2 − d1 (s)

] [∇2 − d2 (s)
]

ē = 0 (39)

where cj = ±cj(s) and dj = ±dj(s), (j = 1, 2) are the roots of the equation m0(s)x4−m1(s)x2+m2(s) = 0
and n0(s)x4 − n1(s)x2 + n2(s) = 0, respectively.

The factors of Eqs. (38) and (39) are in the form of modified spherical Bessel differential equations.
Therefore, its solution bounded at infinity can be taken in the following forms:

Φ̄(r, s) =
1√
r

2∑

j=1

Aj(s)K1/2[cj(s)r] (40)

ē(r, s) =
1√
r

2∑

j=1

Bj(s)K1/2[dj(s)r] (41)

where Aj = Aj(s) and Bj = Bj(s) are arbitrary constants independent from r, but dependent on Laplace
transform parameter s. Kν(r) is the representation of modified Bessel function of order ν of the second
kind.

Using Eqs. (40) , (41) and (33), we have

K1/2[dj(s)r]Bj(s) = b
(j)
3 (s)K1/2[cj(s)r]Aj(s), j = 1, 2, (42)

where b
(j)
3 (s) = b2(s)c

2
j−b11(s)

a2b12(s)
.
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Using Eqs. (27), (40) and (41) into (31), we have

ū(r, s) =
1√
r

⎡

⎣−
2∑

j=1

dj(s)
s2

K3/2[dj(s)r]Bj(s) +
2∑

j=1

b
(j)
4 (s)K3/2[cj(s)r]Aj(s)

⎤

⎦ , (43)

where b
(j)
4 (s) =

b0(s)cj[1−αc2j (s)]
s2 , j = 1, 2.

From Eqs. (28) and (27), we get

σ̄rr =
1√
r

2∑

j=1

[(

1 − β2
)

(dj(s))2

s2
+ β2

]

K1/2[dj(s)r]Bj(s)

+
1

r3/2

2∑

j=1

2dj(s)
(

1 − β2
)

s2
K3/2[dj(s)r]Bj(s)

− 1√
r

2∑

j=1

[
(

1 − β2
)

cj(s) +
s2

cj(s)

]

b
(j)
4 (s)K1/2[cj(s)r]Aj(s)

− 1
r3/2

2∑

j=1

2
(

1 − β2
)

b
(j)
4 (s)K3/2[cj(s)r]Aj(s) (44)

Similarly, from Eqs. (29) and (27) , we have

σ̄ϕϕ = σ̄ϑϑ =
1√
r

2∑

j=1

β2K1/2[dj(s)r]Bj(s) − 1
r3/2

2∑

j=1

dj(s)
(

1 − β2
)

s2
K3/2[dj(s)r]Bj(s)

− 1√
r

2∑

j=1

s2b
(j)
4

cj(s)
K1/2[cj(s)r]Aj(s) +

1
r3/2

2∑

j=1

(

1 − β2
)

b
(j)
4 (s)K3/2[cj(s)r]Aj(s) (45)

Boundary conditions

We consider the boundary r = a of the spherical cavity is traction free and is subjected to a unit step
increase in temperature. Therefore, the boundary conditions in the dimensionless forms can be written
as:

φ(r, t) = φ∗
0H(t) and σrr(r, t) = 0 at r = a (46)

where φ∗
0 is a constant temperature, and H(t) is the Heaviside unit step function.

Therefore, using Eq. (19) and applying Laplace transform to the boundary conditions given by (46),
we find

Φ̄(a, s) =
φ∗
0

s

(

1 +
1
2
K1φ

∗
0

)

, σ̄rr(a, s) = 0. (47)

From Eqs. (40), (42) and (47) , we obtain a linear system of two equations as given by

X1A1 + X2A2 =
φ∗
0

s

(

1 +
1
2
K1φ

∗
0

)

(48)

Y1A1 + Y2A2 = 0 (49)



26 Page 8 of 16 A. Kumar, O. N. Shivay and S. Mukhopadhyay ZAMP

where

Xj =
1√
a
K1/2(cja), j = 1, 2.

Yj =
1√
a

[(

1 − β2
)

(dj(s))2

s2
+ β2

]

b
(j)
3 K1/2[cj(s)a] +

2dj(s)
(

1 − β2
)

b
(j)
3

s2a3/2

K1/2[cj(s)a]K3/2[dj(s)a]
K1/2[dj(s)a]

− 1√
a

[
(

1 − β2
)

cj(s) +
s2

cj(s)

]

b
(j)
4 (s)K1/2[cj(s)a] − 2

(

1 − β2
)

b
(j)
4 (s)

a3/2
K3/2[cj(s)a], j = 1, 2.

After solving Eqs. (48)–(49), we can find the unknowns Aj(s) (j = 1, 2) and hence the constants
Bj(s), j = 1, 2, are derived from Eq. (42). Displacement, radial stress and circumferential stress can be
obtained with the help of Eqs. (43)–(45), respectively and conductive temperature φ̄ can be obtained by
combining Eqs. (40) with (19). Finally, we obtain the solution for thermodynamic temperature θ in the
Laplace transform domain by using Eq. (30). This completes the solution of the present problem in the
Laplace transform domain.

4. Numerical results and discussion

The solution in the physical space-time domain can be recovered by taking the inverse Laplace transforms
of the solutions in Laplace transform domain obtained in the previous section. However, solutions of θ̄,
ū, σ̄rr, σ̄φφ involve K1/2(s) and complicated expressions of Aj(s), cj(s), dj(s). Hence, to obtain inverse
Laplace transforms of these functions analytically is highly complicated and closed form analytical solution
of field variables in the space-time domain is a formidable task. Therefore, we make an attempt to
obtain the inversion numerically. We employ the numerical method of Laplace inversion given by Graver–
Stehfest [44] and find the solution of physical variables like conductive temperature, thermodynamic
temperature, displacement, radial stress and circumferential stress by using computer programming in
MATLAB software. According to Graver–Stehfest [44,45] method, if f(s) is the Laplace inverse of the
function f(t), then

f(t) =
ln(2)

2

N∑

k=1

Vkf

(

k
ln(2)

t

)

, (50)

where N is a suitable positive integer and Vk is given by

Vk = (−1)(k+N/2)

min(k,N/2)
∑

j=[(k+1)/2]

j
N
2 (2j)!

(
N
2 − j

)

! j! (j − 1)! (k − j)! (2j − k)!
. (51)

We consider copper material and the physical data as follows [46]:
λ = 7.76 × 1010 N m−2, μ = 3.86 × 1010 Nm−2, βτ = 1.78 × 10−5 K−1, η = 8886.73 s m−2,
cE = 383.1 J Kg−1 K−1, ρ = 8954 Kg m−3, T0 = 293 K.
We assume the following dimensionless values of the constants:
α = 0.071301, τ0 = 0.01, τ1 = 0.02, φ∗

0 = 1, a = 1.
We make an attempt to discuss the effects of temperature-dependent thermal conductivity on the

behavior of physical field variables in the context of TGL model. We further aim to compare the results
under all four models, namely LS model, GL model, TGL model and TLS model. Hence, we compute
the numerical values of physical variables, u, φ, σrr, σϕϕ and θ, at different time and show the results
in different graphs. Figures 1a, 2a, 3a, 4a and 5a show the variations of displacement, conductive tem-
perature, thermodynamic temperature, radial stress and hoop stress, respectively, under TGL theory for
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Fig. 1. a Variation of u vs. r under TGL model for different values of t and K1, b Variation of u vs. r under different
models for K1 = −0.5 and t = 0.3

different values of the parameter K1 and at different non-dimensional time (t = 0.30, t = 0.35, t = 0.40).
Figures 1b, 2b, 3b, 4b and 5b reveal the variations of all the field variables under TGL, GL, TLS and LS
thermoelasticity models for K1 = −0.5 and at t = 0.3. We find the following observations:
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Fig. 2. a Variation of φ vs. r under TGL model for different values of t and K1, b Variation of φ vs. r under different
models for K1 = −0.5 and t = 0.3

Displacement (u)

Figure 1a displays the effects of K1 on displacement for TGL model and indicates that the influence of the
temperature-dependent effect parameter (K1) on displacement at any time is significant. The influence
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Fig. 3. a Variation of θ vs. r under TGL model for different values of t and K1, b Variation of θ vs. r under different models
for K1 = −0.5 and t = 0.3

region is observed to be dominant near the boundary of the spherical cavity, and the influence becomes
insignificant when we move away from the boundary of the cavity. It is observed that at any time, the
displacement increases as the value of K1 goes to higher negative values and then starts decreasing for



26 Page 12 of 16 A. Kumar, O. N. Shivay and S. Mukhopadhyay ZAMP

Fig. 4. a Variation of σrr vs. r under TGL model for different values of t and K1, b Variation of σrr vs. r under different
models for K1 = −0.5 and t = 0.3

higher negative values of K1. It is further observed that displacement is inversely proportional to t for a
fixed value of K1, i.e., u decreases with increase in time, t. However, the effect of temperature dependence
is more significant at higher time.
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Fig. 5. a Variation of σϕϕ vs. r under TGL model for different values of t and K1, b Variation of σϕϕ vs. r under different
models for K1 = −0.5 and t = 0.3

We can observe the difference in results for displacement field predicted by different models from
Fig. 1b. It is noted that there is no prominent difference in displacement for GL and LS models or
between TGL and TLS thermoelasticity theories. However, the difference is notable when we compare
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the results under the models with and without a second temperature. Near the boundary of the cavity,
displacement has lesser numerical value for two-temperature thermoelasticity theory, and at a distance
from the boundary, it shows the reverse behavior. Further, the domain of influence is larger for two-
temperature theory.

Conductive temperature (φ)

Figure 2a, b displays the variation of conductive temperature. It is indicated from Fig. 2a that distribution
of φ is in agreement with the given boundary condition. It further shows that for TGL thermoelasticity
theory, the effect of the temperature-dependent parameter K1 is much prominent at any time. It is
observed that the conductive temperature decreases as the value of K1 goes to higher negative values and
it is directly proportional to t. From the figure, it is clear that the conductive temperature is bounded at
infinity ( i.e., φ → 0 as r → ∞) as we were interested in such solution.

Similar to displacement, Fig. 2b shows that the variation in φ is not prominent between the results
under TGL and TLS models. However, there is a notable difference between two-temperature thermoe-
lasticity theory and generalized thermoelasticity theory in the absence of the second temperature.

Thermodynamic temperature, θ

The variation of thermodynamic temperature (θ) for TGL model for different values of parameter K1 at
different time is displayed in Fig. 3a. It is observed that θ is largely affected by temperature-dependent
parameter, K1.

However, a similar variation in thermodynamic temperature is observed for a particular value of K1.
The thermodynamic temperature decreases for higher negative values of K1. However, θ decreases as
time increases for a fixed value of the parameter, K1 under TGL model.

Figure 3b shows the variation of thermodynamic temperature under four different models for a fixed
value of the parameter, K1 at a fixed time. Here, it is observed that like the case of displacement, there
is no prominent difference in variation of θ for TGL and TLS models or between GL and LS models,
but the difference in the variation of θ is significant for a two-temperature theory and a theory without
second temperature. The thermodynamic temperature has higher values under GL and LS models as
compared to the two-temperature models. The thermodynamic temperature converges to zero for all
four models with the same convergence rate. It is clearly notable from Figs. 2b and 3b that there is a
significant difference in results for conductive temperature and thermodynamic temperature under two
-temperature theories. However, they are the same under LS theory and GL theory.

Discussion on stress components (σrr , σϕϕ )

The variation of radial stress (σrr ) is displayed in Fig. 4a, b. Both of these figures reveal that the radial
stress is in agreement with provided boundary condition and it is compressive in nature under TGL
model. It is evident from Fig. 4a that with respect to TGL model, the variation in radial stress is greatly
affected by the temperature-dependent effect parameter at any time. Furthermore, σrr increases when
K1 gets higher negative values. It is also observed that near the boundary of the cavity, σrr increases
when t increases and it starts decreasing for higher value of r. Figure 4b shows that the variation in σrr

is prominent only with respect to a two-temperature theory and a theory without second temperature as
in the case of displacement distribution. However, the difference between TGL model and TLS model or
between GL model and LS model is not very prominent.

The variation of circumferential stress (σϕϕ) is shown in Fig. 5a, b. Figure 5(a) shows that the
circumferential stress is compressive in nature and the variation in σϕϕ is prominently different with
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respect to different values of the parameter K1. Like the case of other field variables, σϕϕ decreases
with higher negative values of K1 for a fixed time. Here, we again note that like the cases of other field
variables, the difference in the nature of circumferential stress distribution under TGL model and GL
model or between TLS and LS model is very much significant.
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