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Abstract. We establish weak convergence rates for noise discretizations of a wide class of stochastic evolution equations with
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stochastic Schrödinger and linearized stochastic Korteweg–de Vries equation. For several important equations, including the
stochastic wave equation, previous methods give only suboptimal rates, whereas our rates are essentially sharp.
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1. Introduction

This paper establishes weak convergence rates for noise discretizations of a wide class of stochastic
evolution equations with non-regularizing semigroups and regular nonlinearities. We confirm that the
weak convergence rate equals twice the strong convergence rate and is characterized in terms of two
components:
(a) the decay of the covariance of the noise, and
(b) regularity of the solution, encoded in the choice of an invariant subspace.

In the case of additive noise, the upper bound on the weak error is sharp.
Our result is motivated by the study of stochastic partial differential equations driven by infinite-

dimensional noise processes, which came up in a large variety of applications. Numerical simulations
of these equations require a full discretization in space, time, and noise. Our result complements the
results on spatial and temporal discretizations in [5,24,25] and thereby completes the weak error analysis
of numerical discretizations of the above-mentioned class of equations, providing a full picture of their
complexity (see Table 1). Weak (as opposed to strong) convergence rates offer a flexible way of measuring
the quality of the approximation, as the class of test functions can be chosen to reflect the priorities at
application level.

Our results are general and can be applied or are applicable to a variety of equations, as we demonstrate
in several examples. For the nonlinear stochastic wave equation with additive or multiplicative space-time
white noise, they give the essentially sharp rate 1 − ε, ε > 0. Further examples are the Heath–Jarrow–
Morton–Musiela (HJMM) equation, the stochastic Schrödinger equation, and the linearized stochastic
Korteweg–de Vries equation.

The proof of our main result works as follows. First, we regularize the equation using Yosida approx-
imations of the semigroup, as this allows us to work with the Kolmogorov equation and the strong Itô
formula. Second, we express the weak discretization error of the regularized equation in terms of the solu-
tion of the Kolmogorov equation. Third, we introduce an additional subspace, which links the regularity
of the solution to the quality of the noise approximation and determines the error rate. This last step
is essential for obtaining optimal rates in many examples, including the stochastic wave equation, and
constitutes an important theoretical contribution of this paper.

In the previous literature, weak convergence rates have been studied intensively for equations of the
above type with regularizing semigroups, see e.g., [21] and references therein. However, in the case of
non-regularizing semigroups there remain many open questions. While temporal and spatial discretiza-
tions have been studied in [14,17–19] for additive noise and in [5,8–10,15,20,24,25,29] for multiplica-
tive noise, this is the first result on the discretization of multiplicative noise in this setting. More-
over, our framework is general and encompasses a variety of equations from mathematical finance and
physics.

Table 1. Weak convergence rates of exponential Euler and Galerkin discretizations of the stochastic wave equation with
space time white noise

Discretization

Noise coefficient Time Space Noise

Constant 1 1 1
Affine 1 1 1∗
Non-affine Unknown Unknown Unknown
The rates are to be understood as 1 − ε for arbitrary ε > 0. References are given in Sect. 1. The starred rate is a result of

this paper (see Proposition 3.1)
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1.1. Notation

N denotes the natural numbers without zero. Function spaces are denoted as follows: B denotes bounded
functions with the supremum norm, C denotes continuous functions, Cb denotes continuous bounded
functions with the supremum norm, Ck denotes continuous functions which are k-times Fréchet differen-
tiable on the interior of the domain and whose derivatives up to order k extend to continuous functions
on the domain, Ck

b denotes the subset of Ck whose derivatives of orders 1 to k belong to Cb with norm
‖f‖Ck

b
= ‖f(0)‖+‖f ′‖Cb

+ · · ·+‖f (k)‖Cb
, L denotes linear operators with the operator norm, Lip denotes

Lipschitz functions with norm ‖f‖Lip = ‖f(0)‖+supx�=y ‖f(x)−f(y)‖/‖x−y‖, Lp denotes strongly mea-
surable p-integrable functions, Lp denotes the corresponding equivalence classes modulo equality almost
surely, L(2) denotes bilinear operators, L2 denotes Hilbert–Schmidt operators, Wα,p denotes the Sobolev–
Slobodeckij space with smoothness parameter α and integrability parameter p, Hα = Wα,2 denotes the
Bessel potential space, and Hα

0 denotes the closure of the compactly supported smooth functions in
Hα. For any Hilbert space H, B(H) denotes the Borel σ-algebra on H, [X]P,B(H) ∈ L0(Ω;H) denotes
the P-equivalence class of X ∈ L0(Ω;H), and σP (A) denotes the point spectrum of a linear operator
A : D(A) ⊆ H → H. Note that we do not require functions in Ck

b to be bounded.

1.2. Main result

The following theorem establishes weak and strong convergence rates for noise discretizations of a certain
class of stochastic evolution equations. Roughly speaking, the assumptions of the theorem guarantee that
the equation is well posed on a Hilbert space H and a continuously embedded subspace V of H, and that
Kolmogorov’s backward equation for H-valued solutions is well posed. This is used to bound the weak
and strong discretization errors in terms of the Hilbert–Schmidt norm of the difference between the actual
and the discretized volatility. The role of the subspace V is discussed in Sect. 1.3. An extended version of
the theorem with explicit bounds is presented in Proposition 2.4. Note that the function φ ∈ C2

b (H; R)
in the theorem may be unbounded according to our definition.

Theorem 1.1. Let T ∈ (0,∞), let (H, 〈·, ·〉H), (U, 〈·, ·〉U ), and (V, 〈·, ·〉V ) be separable R-Hilbert spaces with
V ⊂ H densely and continuously, let (Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis, let (Wt)t∈[0,T ] be an IdU -
cylindrical (Ft)-Wiener process, let S : [0,∞) → L(H) be a strongly continuous semigroup, which restricts
to a strongly continuous semigroup 5 S|V : [0,∞) → L(V ), let F ∈ C2

b (H) and B ∈ C2
b (H;L2(U ;H))

be such that F (V ) ⊆ V , B(V ) ⊆ L2(U ;V ), and the mappings V 
 x �→ F (x) ∈ V and V 
 x �→
B(x) ∈ L2(U ;V ) are Lipschitz continuous, let ξ ∈ L2(Ω;V ) be F0/B (V )-measurable, let (ek)k∈N be an
orthonormal basis of U , for each n ∈ N∪{∞} let Pn ∈ L(U) be the orthogonal projection onto the closure
of the linear span of {ek : k ∈ N ∩ [0, n)}, and let Xn : [0, T ] × Ω → H be a predictable process which
satisfies that P

[∫ T

0
‖Xn

t ‖2
H dt < ∞

]
= 1 and for all t ∈ [0, T ],

[Xn
t ]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF (Xn
s ) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xn
s )Pn dWs.

Then there exists C ∈ (0,∞) such that for each n ∈ N and φ ∈ C2
b (H; R)\{0},

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ C sup
x∈V

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
V

. (1)

Proof. It may be assumed without loss of generality that S : [0,∞) → L(H) is uniformly bounded by
adding and subtracting a multiple of the identity to the generator of the semigroup and the nonlinear
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part of the drift, respectively. Then the assumptions of Sect. 2.1 hold. Thus, the bound of the weak error
follows from Proposition 2.4, noting that it holds for each x ∈ V that

∞∑
k=0

‖B(x)(P∞ + Pn)ek‖H ‖B(x)(P∞ − Pn)ek‖H = 2
∞∑

k=n

‖B(x)ek‖2
H .

It remains to bound the strong error. For each t ∈ [0, T ], it holds that

‖X∞
t − Xn

t ‖L2(Ω;H) ≤
t∫

0

‖St−s(F (X∞
s ) − F (Xn

s ))‖L2(Ω;H) ds

+

√√√√√
t∫

0

‖St−s(B(X∞
s ) − B(Xn

s )Pn)‖2
L2(Ω;L2(U ;H)) ds.

Taking the square yields

‖X∞
t − Xn

t ‖2
L2(Ω;H) ≤ ‖S‖2

B([0,T ];L(H))

(
2T

t∫

0

‖F (X∞
s ) − F (Xn

s )‖2
L2(Ω;H) ds

+ 4

t∫

0

‖B(X∞
s ) − B(X∞

s )Pn‖2
L2(Ω;L2(U ;H)) ds

+ 4

t∫

0

‖B(X∞
s )Pn − B(Xn

s )Pn‖2
L2(Ω;L2(U ;H)) ds

)

≤ ‖S‖2
B([0,T ];L(H))

(
2T ‖F‖2

Lip(H;H) + 4 ‖B‖2
Lip(H;L2(U ;H))

) t∫

0

‖X∞
s − Xn

s ‖2
L2(Ω;H) ds

+ 4 ‖S‖2
B([0,T ];L(H)) T

(
1 + ‖X∞

s ‖2
B([0,T ];L2(Ω;V ))

)
sup
x∈V

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
V

.

Both sides of this inequality are finite by Lemma 2.1.(ii) with H replaced by V , and the strong rate
follows from Gronwall’s lemma. �

1.3. Convergence rate and regularity of the solution

The space V in Theorem 1.1 can be used to encode regularity properties of the solution which go beyond
those present in H. Choosing V strictly smaller than H allows one to extract a stronger convergence rate
from Theorem 1.1 in some cases, as the following example demonstrates.

Example 1.2. Let H = U = L2((0, 1)), for each x ∈ H and u ∈ U let B(x)u be the constant function
B(x)u = (s �→ ∫ 1

0
x(r)u(r) dr), let Δ: H2((0, 1)) ∩ H1

0 ((0, 1)) → L2((0, 1)) be the Dirichlet Laplacian on
H, let δ ∈ (0, 1/4), let V be the domain of (−Δ)δ with ‖·‖V =

∥∥(−Δ)δ(·)∥∥
H

, and for each k ∈ N let
ek = (

√
2 sin(kπs))s∈(0,1) ∈ H. Then B ∈ L(H;L2(U ;H)), B|V ∈ L(V ;L2(U ;V )), and it holds for each

n ∈ N that

sup
x∈H

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
H

= 1, sup
x∈V

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
V

≤ π−4δn−4δ.
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To see this, note that for each x ∈ H
∑
k∈N

‖B(x)ek‖2
H =

∑
k∈N

|〈x, ek〉H |2 ‖1‖2
H = ‖x‖2

H ,

∑
k∈N

‖B(x)ek‖2
V =

∑
k∈N

|〈x, ek〉H |2 ‖1‖2
V = ‖x‖2

H ‖1‖2
V ,

and for each n ∈ N,

1 ≥ sup
x∈H

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
H

≥ sup
λ>0

∑∞
k=n ‖B(λen)ek‖2

H

1 + ‖λen‖2
H

= sup
λ>0

λ2

1 + λ2
= 1,

sup
x∈V

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
V

≤ sup
x∈V

∑∞
k=n π−4δk−4δ

∣∣〈x, (−Δ)δek

〉
H

∣∣2
1 + ‖x‖2

V

≤ π−4δn−4δ sup
x∈V

‖x‖2
V

1 + ‖x‖2
V

= π−4δn−4δ.

Thus, in this example Theorem 1.1 with H = V = L2((0, 1)) does not establish convergence. Similarly, it
can be shown that setting H = V equal to the domain of (−Δ)δ does not establish convergence either.
However, one obtains a positive rate of convergence by choosing V strictly smaller than H.

1.4. Sharpness of the rate in the additive noise case

The weak and strong rates provided by Theorem 1.1 are sharp in the additive noise case when there is
no drift, as is shown next. Some related results on spatial discretizations can be found in [24].

Proposition 1.3. Let (H, 〈·, ·〉H) and (U, 〈·, ·〉U ) be separable R-Hilbert spaces, let (Ω,F , (Ft)t∈[0,1], P) be a
stochastic basis, let (Wt)t∈[0,1] be an IdU -cylindrical (Ft)-Wiener process, let B ∈ L2(U ;H) be injective,
let (ek)k∈N be an orthonormal basis of eigenvectors of B∗B, for each n ∈ N ∪ {∞} let Pn ∈ L(U) be the
orthogonal projection onto the closure of the linear span of {ek : k ∈ N ∩ [0, n)}, let Xn be a predictable
process which satisfies for all t ∈ [0, 1] that [Xn

t ]P,B(H) =
∫ t

0
BPn dWs, and let φ = exp(−‖·‖2

H /2) ∈
C2

b (H). Then

lim
n→∞

‖Xn
1 − X∞

1 ‖2
L2(Ω;H)∑∞

k=n ‖Bek‖2
H

= 1, lim
n→∞

E [φ (Xn
1 )] − E [φ (X∞

1 )]∑∞
k=n ‖Bek‖2

H

=
E [φ(X∞

1 )]
2

∈ (0,∞).

Proof. By Itô’s isometry it holds for each n ∈ N ∪ {∞} that

‖Xn
1 − X∞

1 ‖2
L2(Ω;H) = ‖B(Pn − P∞)‖2

L2(U ;H) =
∞∑

k=n

‖Bek‖2
H .

This proves the strong convergence rate, and it remains to show the weak convergence rate. For each
n ∈ N∪{∞}, the random variable Xn

1 is Gaussian with covariance BPnP ∗
nB∗ ∈ L1(H) by [7, Theorem 5.2].

Setting λk = ‖Bek‖H , one has for each n ∈ N ∪ {∞} by [7, Proposition 2.17] and a singular value
decomposition of the operator BPn ∈ L2(U ;H) that

E [φ(Xn
1 )] = exp

(
−1

2
tr

(
log(1 + BPnP ∗

nB∗)
))

= exp
(

−1
2

tr
(
log(1 + P ∗

nB∗BPn)
))

= exp
(

− 1
2

n−1∑
k=0

log(1 + λ2
k)

)
.
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The basic inequalities

∀x, y ∈ R : x ≤ y ⇒ exp(y) − exp(x) ≥ exp(x)(y − x),
∀ε > 0∃δ > 0∀x ∈ [0, δ] : log(1 + x) ≥ (1 − ε)x,

imply that

lim inf
n→∞

E [φ (Xn
1 )] − E [φ (X∞

1 )]∑∞
k=n λ2

k

≥ lim inf
n→∞

exp
(− 1

2

∑∞
k=0 log

(
1 + λ2

k

))
1
2

∑∞
k=n log

(
1 + λ2

k

)
∑∞

k=n λ2
k

≥ sup
ε>0

lim inf
n→∞

exp
(− 1

2

∑∞
k=0 log

(
1 + λ2

k

))
1
2

∑∞
k=n(1 − ε)λ2

k∑∞
k=n λ2

k

=
1
2

exp

(
−1

2

∞∑
k=0

log
(
1 + λ2

k

)
)

=
E [φ(X∞

1 )]
2

and

lim sup
n→∞

E [φ (Xn
1 )] − E [φ (X∞

1 )]∑∞
k=n λ2

k

≤ lim sup
n→∞

exp
(
− 1

2

∑n−1
k=0 log

(
1 + λ2

k

))
1
2

∑∞
k=n log

(
1 + λ2

k

)
∑∞

k=n λ2
k

≤ lim sup
n→∞

exp
(
− 1

2

∑n−1
k=0 log

(
1 + λ2

k

))
1
2

∑∞
k=n λ2

k∑∞
k=n λ2

k

=
1
2

exp

(
−1

2

∞∑
k=0

log
(
1 + λ2

k

)
)

=
E [φ(X∞

1 )]
2

.

�

2. Error analysis

This section contains the proof of our main technical result, Proposition 2.4, where the convergence rate of
noise approximations is analyzed in an abstract framework for semilinear stochastic evolution equations
with multiplicative noise. Proposition 2.4 is used in the proof of Theorem 1.1 and will be applied to
various examples in Sect. 3.

2.1. Setting

We will repeatedly use the following standard setting: let T ∈ (0,∞), let (H, 〈·, ·〉H) and (U, 〈·, ·〉U ) be
separable R-Hilbert spaces, let U be an orthonormal basis of U , let (Ω,F , (Ft)t∈[0,T ], P) be a stochastic
basis, let (Wt)t∈[0,T ] be an IdU -cylindrical (Ft)-Wiener process, let S ∈ B([0,∞);L(H)) be a uniformly
bounded and strongly continuous semigroup, let F ∈ Lip(H), let B ∈ Lip(H;L2(U ;H)), and let ξ ∈
L2(Ω;H) be F0/B (H)-measurable.
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2.2. Existence and uniqueness of solutions

The following lemma collects some results on existence and uniqueness of solutions of stochastic evolution
equations, explicit a-priori bounds, and continuous dependence of the solution on the semigroup.

Lemma 2.1. Assume the setting of Sect. 2.1. Then the following statements hold true:

(i) There exists an up to modifications unique predictable process X : Ω × [0, T ] → H which satisfies
that P

[∫ T

0
‖Xt‖2

H dt < ∞
]

= 1 and for each t ∈ [0, T ],

[Xt]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF (Xs) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xs) dWs,

(ii) The process X satisfies

‖X‖B([0,T ];L2(Ω;H)) ≤ ‖S‖B([0,T ];L(H))

×
(
‖ξ‖L2(Ω;H) +

√
2T ‖F‖Lip(H) +

√
2T ‖B‖Lip(H,L2(U ;H))

)

× exp
(

T ‖S‖2
B([0,T ];L(H))

(
1
2

+ ‖F‖2
Lip(H) + ‖B‖2

Lip(H;L2(U ;H))

))

(iii) For n ∈ N let Sn : [0,∞) → L(H) be a strongly continuous semigroup such that for x ∈ H

lim
n→∞ ‖Snx − Sx‖B([0,T ],H) = 0, sup

n∈N

‖Sn‖B([0,T ],L(H)) < ∞,

and let Xn be the process X given by (i). with S replaced by Sn. Then

lim
n→∞ ‖X − Xn‖B([0,T ];L2(Ω;H)) = 0.

Proof. (i) Follows from [7, Theorem 7.2] and moreover, we get

sup
t∈[0,T ]

E

[
‖Xt‖2

H

]
< ∞.

(ii) To derive the explicit bound, we follow the proof of [25, Lemma 2.1] and apply the mild Itô formula [6,
Corollary 1] to the transformation φ(x) := ‖x‖2

H , which belongs to C2(H; R). This yields

E

[
‖Xt‖2

H

]
= E

[
‖Stξ‖2

H

]
+ 2E

t∫

0

〈St−sF (Xs), St−sXs〉H ds

+ E

t∫

0

‖St−sB(Xs)‖2
L2(U ;H) ds

≤ E

[
‖Stξ‖2

H

]
+ 2

√√√√√E

t∫

0

‖St−sF (Xs)‖2
H ds

√√√√√E

t∫

0

‖St−sXs‖2
H ds

+ E

t∫

0

‖St−sB(Xs)‖2
L2(U ;H) ds
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By the inequality of arithmetic and geometric means, which states that all x, y ∈ [0,∞) satisfy√
xy ≤ (x + y)/2, it follows that

E

[
‖Xt‖2

H

]

≤ ‖S‖2
B([0,T ];L(H))

⎛
⎝E

[
‖ξ‖2

H

]
+ E

⎡
⎣

t∫

0

(
‖F‖2

Lip(H) + ‖B‖2
Lip(H;L2(U ;H))

)
(1 + ‖Xs‖H)2 + ‖Xs‖2

H ds

⎤
⎦
⎞
⎠

≤ ‖S‖2
B([0,T ];L(H))

(
‖ξ‖2

L2(Ω,H) + 2T ‖F‖2
Lip(H) + 2T ‖B‖2

Lip(H;L2(U ;H)

)

+ ‖S‖2
B([0,T ];L(H))

(
1 + 2 ‖F‖2

Lip(H) + 2 ‖B‖2
Lip(H;L2(U ;H))

) t∫

0

E

[
‖Xs‖2

H

]
ds.

By (i) all terms are finite. Thus, an application of Gronwall’s lemma proves (ii).

(iii) For each n ∈ N and t ∈ [0, T ] we get by the triangle inequality, Minkowski inequality, Jensen’s
inequality, Fubini’s theorem and Itô’s isometry that

‖Xt − Xn
t ‖L2(Ω;H) ≤ ‖(St − Sn

t )ξ‖L2(Ω;H)

+

∥∥∥∥∥∥

t∫

0

(St−s − Sn
t−s)F (Xs) ds

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥

t∫

0

(St−s − Sn
t−s)B(Xs) dWs

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥

t∫

0

Sn
t−s (F (Xs) − F (Xn

s )) ds

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥

t∫

0

Sn
t−s (B(Xs) − B(Xn

s )) dWs

∥∥∥∥∥∥
L2(Ω;H)

≤ ‖(S − Sn)ξ‖L2(Ω;C([0,T ];H))

+

T∫

0

‖(S − Sn)F (Xs)‖L2(Ω;C([0,T ];H)) ds +

√√√√√
T∫

0

‖(S − Sn)B(Xs)‖2
L2(Ω;C([0,T ];H)) ds

+ ‖Sn
t ‖B([0,T ];L(H))

(
‖F‖Lip(H)

√
T + ‖B‖Lip(H;L2(U ;H))

)
√√√√√

t∫

0

‖Xs − Xn
s ‖2

L2(Ω;H) ds.

Taking the square and applying Jensen’s inequality yields

‖Xt − Xn
t ‖2

L2(Ω;H) ≤ 2
(
‖(S − Sn)ξ‖L2(Ω;C([0,T ];H))

+

T∫

0

‖(S − Sn)F (Xs)‖L2(Ω;C([0,T ];H)) ds +

√√√√√
T∫

0

‖(S − Sn)B(Xs)‖2
L2(Ω;C([0,T ];H)) ds

⎞
⎟⎠

+ 2 ‖Sn‖2
B([0,T ];L(H))

(
‖F‖Lip(H)

√
T + ‖B‖Lip(H;L2(U ;H))

)2
t∫

0

‖Xs − Xn
s ‖2

L2(Ω;H) ds.
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An application of Gronwall’s lemma, which is justified by (ii), shows that

‖X − Xn‖2
B([0,T ],L2(Ω;H))

≤ 2
(
‖(S − Sn)ξ‖L2(Ω;C([0,T ];H))

+

T∫

0

‖(S − Sn)F (Xs)‖L2(Ω;C([0,T ];H)) ds +

√√√√√
T∫

0

‖(S − Sn)B(Xs)‖2
L2(Ω;C([0,T ];H)) ds

⎞
⎟⎠

× exp
(

2T ‖Sn‖2
B([0,T ];L(H))

(
‖F‖Lip(H)

√
T + ‖B‖Lip(H;L2(U ;H))

)2
)

.

The right-hand side tends to zero as n → ∞ by the dominated convergence theorem. �

2.3. Uniform bounds on solutions of Kolmogorov’s equation

Under suitable regularity conditions, the Markovian semigroup associated to a stochastic evolution equa-
tion satisfies the Kolmogorov equation. This is made precise in the following lemma. Part (i) of the lemma
bounds the spatial derivatives uniformly in the coefficients of the equation, and Part (ii) establishes spa-
tial and temporal differentiability and the Kolmogorov equation. Part (ii) is well known, and we will
roughly follow the idea in [7, Theorem 9.23]. We will, however, go into more details because of some
inaccuracies in this reference.1 An alternative would be to generalize the proof of [15, Lemma 6.2.(xix)]
to our assumptions.

Lemma 2.2. Assume that the setting of Sect. 2.1 holds true and, additionally, assume that S has a bounded
generator A ∈ L(H), F ∈ C2

b (H), and B ∈ C2
b (H;L2(U ;H)), for each x ∈ H let Xx : [0, T ] × Ω → H be

a predictable stochastic process which satisfies P

[∫ T

0
‖Xx

t ‖2
H dt < ∞

]
= 1 and for all t ∈ [0, T ],

[Xx
t ]

P,B(H) =

⎡
⎣Stx +

t∫

0

St−sF (Xx
s ) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xx
s ) dWs,

let φ ∈ C2
b (H; R), and for each t ∈ [0, T ] and x ∈ H let u(t, x) = E

[
φ(Xx

T−t)
]
. Then the following

statements hold true:

(i) For all t ∈ [0, T ] the map (H 
 x �→ u(t, x) ∈ R) is twice Fréchet differentiable and satisfies
∂
∂xu ∈ Cb([0, T ] × H;L(H; R)), ∂2

∂x2 u ∈ Cb([0, T ] × H;L(2)(H; R)), and

sup
t∈[0,T ]

sup
x∈H

∥∥ ∂
∂xu(t, x)

∥∥
L(H;R)

≤ ‖φ‖C1
b (H;R) C3, (2)

sup
t∈[0,T ]

sup
x∈H

∥∥ ∂2

∂x2 u(t, x)
∥∥

L(2)(H;R)
≤ ‖φ‖C2

b (H;R) (C2
3 + C4), (3)

1For example, the statement u ∈ C1,2
b is not correct if H = R, F ≡ 0, B ≡ 0, A = IdH , and φ = sin because

supx∈H

∣∣∣ ∂
∂t

u(t, x)
∣∣∣ = supx∈H

∣∣cos(etx)x
∣∣ = ∞ for all t ∈ [0, T ].
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where the constants C3 and C4 are given by

C3 = ‖S‖B([0,T ];L(H)) exp
(

T ‖S‖2
B([0,T ];L(H))

(
‖F‖C1

b (H) +
1
2

‖B‖2
C1

b (H;L2(U ;H))

))
,

C4 = exp
(

T

(
7
2

‖F‖C2
b (H) + 4 ‖B‖2

C1
b (H;L2(U ;H))

)
‖S‖4

B([0,T ];L(H))

)

×
√

T ‖S‖3
B([0,T ];L(H))

√
‖F‖C2

b (H) + 2 ‖B‖2
C2

b (H;L2(U ;H)).

(ii) The function u is of class C1,2 and satisfies for each t ∈ [0, T ] and x ∈ H that

− (
∂
∂tu

)
(t, x) =

(
∂
∂xu

)
(t, x)(Ax + F (x)) +

1
2

∑
b∈U

(
∂2

∂x2 u
)

(t, x)(B(x)Pb,B(x)Pb).

Proof. (i) Note that the generator A of S is bounded and thus sectorial. Hence, by [1, Theorem 3.3.(iii)]
we get for each t ∈ [0, T ] that the mapping H 
 x �→ u(t, x) ∈ R is of class C2

b (H; R). Moreover, [1,
Theorem 3.3.(v)] yields that for each t ∈ [0, T ] and x, v, w ∈ H,

(
∂
∂xu

)
(t, x)v = E

[
φ′(Xx

T−t)X
1,(x,v)
T−t

]
, (4)

( ∂2

∂x2 u)(t, x)(v, w) = E

[
φ′′(Xx

T−t)
(
X

1,(x,v)
T−t ,X

1,(x,w)
T−t

)
+ φ′(Xx

T−t)
(
X

2,(x,v,w)
T−t

)]
, (5)

where for each x, v, w ∈ H the stochastic processes X1,(x,v),X2,(x,v,w) : [0, T ]×Ω → H are predictable
and satisfy that P

[∫ T

0

(
‖X

1,(x,v)
t ‖2

H + ‖X
2,(x,v,w)
t ‖2

H

)
dt < ∞

]
= 1 and for each t ∈ [0, T ]

[
X

1,(x,v)
t

]
P,B(H)

=

⎡
⎣Stv +

t∫

0

St−s

(
F ′(Xx

s )X1,(x,v)
s

)
ds

⎤
⎦
P,B(H)

+

t∫

0

St−s

(
B′(Xx

s )X2,(x,v,w)
s

)
dWs,

[
X

2,(x,v,w)
t

]
P,B(H)

=

⎡
⎣

t∫

0

St−s

(
F ′(Xx

s )X2,(x,v,w)
s + F ′′(Xx

s )(X1,(x,v)
s ,X1,(x,w)

s )
)

ds

⎤
⎦
P,B(H)

+

t∫

0

St−s

(
B′(Xx

s )X2,(x,v,w)
s + B′′(Xx

s )(X1,(x,v)
s ,X1,(x,w)

s )
)

dWs.

Hence, it holds for each t ∈ [0, T ] and x, v, w ∈ H that

∣∣( ∂
∂xu

)
(t, x)v

∣∣ ≤ ‖φ‖C1
b (H,R) E

[∥∥X
1,(x,v)
T−t

∥∥
H

]
, (6)

∣∣( ∂2

∂x2 u
)
(t, x)(v, w)

∣∣ ≤ ‖φ‖C2
b (H,R) E

[∥∥X
1,(x,v)
T−t

∥∥
H

∥∥X
1,(x,w)
T−t

∥∥
H

+
∥∥X

2,(x,v,w)
T−t

∥∥
H

]
. (7)

From [1, Theorem 3.3.(vi)] we get for each p ∈ [1,∞) and x, v, w ∈ H that

sup
t∈[0,T ]

E

[∥∥X
1,(x,v)
t

∥∥2p

H
+

∥∥X
2,(x,v,w)
t

∥∥2p

H

]
< ∞.
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To derive explicit bounds, we use mild Itô calculus and proceed as in the proof of Lemma 2.1.(ii), following
the proof of [25, Lemma 2.1]. To this end, note that for all p ∈ [1,∞) the function ψp(x) := ‖x‖2p

H is twice
Fréchet differentiable with derivatives, for x, v, w ∈ H,

ψ′
p(x)v = 2p 〈x, v〉H ‖x‖2p−2

H ,

ψ′′
p (x)(v, w) =

⎧
⎪⎨
⎪⎩

2 〈v, w〉H , p = 1
0, x = 0, p > 1
2p 〈v, w〉H ‖x‖2p−2

H + 4p(p − 1) 〈x, v〉H 〈x,w〉H ‖x‖2p−4
H , x �= 0, p > 1

In particular, it holds for each p ∈ [1,∞) by the Cauchy–Schwarz inequality that
∣∣ψ′

p(x)v
∣∣ ≤ 2p ‖v‖H ‖x‖2p−1

H ,
∣∣ψ′′

p (x)(v, w)
∣∣ ≤ 2p ‖w‖H ‖v‖H ‖x‖2p−2

H + 4p(p − 1) ‖v‖H ‖w‖H ‖x‖2p−2
H .

Then we get by the mild Itô formula [6, Corollary 1] for each p ∈ [1,∞) and x, v ∈ H that

E

[∥∥X
1,(x,v)
t

∥∥2p

H

]
= E

[
ψp

(
X

1,(x,v)
t

)]

= ψp

(
Stv

)
+

t∫

0

E

[
ψ′

p

(
St−sX

1,(x,v)
s

)
St−sF

′(Xx
s )X1,(x,v)

s

]
ds

+
1
2

∑
b∈U

t∫

0

E

[
ψ′′

p

(
St−sX

1,(x,v)
s

) (
St−s

(
B′(Xx

s )X1,(x,v)
s

)
b, St−s

(
B′(Xx

s )X1,(x,v)
s

)
b
)]

ds

≤ ‖v‖2p
H ‖S‖2p

B([0,T ];L(H)) + 2p ‖S‖2p
B([0,T ];L(H)) ‖F‖C1

b (H;H)

t∫

0

E

[∥∥X1,(x,v)
s

∥∥2p

H

]
ds

+ p ‖S‖2p
B([0,T ];L(H)) ‖B‖2

C1
b (H;L2(U ;H))

t∫

0

E

[∥∥X1,(x,v)
s

∥∥2p

H

]
ds

+ 2p(p − 1) ‖S‖2p
B([0,T ];L(H)) ‖B‖2

C1
b (H;L2(U ;H))

t∫

0

E

[∥∥X1,(x,v)
s

∥∥2p

H

]
ds

= ‖v‖2p
H ‖S‖2p

B([0,T ];L(H)) +

t∫

0

E

[∥∥X1,(x,v)
s

∥∥2p

H

]
ds

× p ‖S‖2p
B([0,T ];L(H))

(
2 ‖F‖C1

b (H;H) + (2p − 1) ‖B‖2
C1

b (H;L2(U ;H))

)
,

which implies by Gronwall’s lemma that

sup
0≤t≤T

∥∥X
1,(x,v)
t

∥∥
L2p(Ω;H)

≤ ‖v‖H ‖S‖B([0,T ];L(H))

× exp
(

T

(
‖F‖C1

b (H;H) +
(2p − 1)

2
‖B‖2

C1
b (H;L2(U ;H))

)
‖S‖2p

B([0,T ];L(H))

)
.

In the special case p = 1, this shows for all x, v ∈ H that

sup
t∈[0,T ]

∥∥X
1,(x,v)
t

∥∥
L2(Ω;H)

≤ C3 ‖v‖H . (8)
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Plugging this into (6) proves (2). For X
2,(x,v,w)
t , we need only an L2 estimate, which we get from the

mild Itô formula [6, Corollary 1 and Example 2] and the Cauchy–Schwarz inequality: for each t ∈ [0, T ]
and x, v, w ∈ H it holds that

E

[∥∥X
2,(x,v,w)
t

∥∥2

H

]
≤ 2

t∫

0

E

[∣∣∣
〈
St−sX

2,(x,v,w)
s , St−sF

′(Xx
s )X2,(x,v,w)

s

〉
H

∣∣∣
]

ds

+ 2

t∫

0

E

[∣∣∣
〈
St−sX

2,(x,v,w)
s , St−sF

′′(Xx
s )(X1,(x,v)

s ,X1,(x,w)
s )

〉
H

∣∣∣ ds
]

+

t∫

0

E

[∥∥∥Ss

(
B′(Xx

s )X2,(x,v,w)
s + B′′(Xx

s )(X1,(x,v)
s ,X1,(x,w)

s )
)∥∥∥

2

L2(U ;H)

]
ds

≤ ‖S‖2
B([0,T ];L(H))

⎛
⎝2 ‖F‖C1

b (H)

t∫

0

E

[∥∥X2,(x,v,w)
s

∥∥2

H

]
ds

+ ‖F‖C2
b (H)

t∫

0

E

[∥∥X2,(x,v,w)
s

∥∥2

H
+

∥∥X1,(x,v)
s

∥∥2

H

∥∥X1,(x,w)
s

∥∥2

H

]
ds

+ 2 ‖B‖2
C1

b (H;L2(U ;H))

t∫

0

E

[∥∥X2,(x,v,w)
s

∥∥2

H

]
ds

+ 2 ‖B‖2
C2

b (H;L2(U ;H))

t∫

0

E

[∥∥X1,(x,v)
s

∥∥2

H

∥∥X1,(x,w)
s

∥∥2

H

]
ds

⎞
⎠

≤ ‖S‖2
B([0,T ];L(H)) t(‖F‖C2

b (H) + 2 ‖B‖2
C2

b (H;L2(U ;H)))

× sup
0≤s≤t

∥∥X1,(x,v)
s

∥∥2

L4(Ω;H)

∥∥X1,(x,w)
s

∥∥2

L4(Ω;H)

+‖S‖2
B([0,T ];L(H))

(
3 ‖F‖C2

b (H)+2 ‖B‖2
C1

b (H;L2(U ;H))

) t∫

0

E

[∥∥X2,(x,v,w)
s

∥∥2

H

]
ds.

Hence, Gronwall’s lemma shows for all x, v, w ∈ H that

sup
t∈[0,T ]

∥∥X
2,(x,v,w)
t

∥∥
L2(Ω;H)

≤ C4 ‖v‖H ‖w‖H . (9)

Inserting the bounds (8) and (9) into (7) proves (3).
It remains to verify the continuity claims of the statement. By [2, Theorem 2.1.(vii)] it holds for each

p ∈ (2,∞), t ∈ [0, T ], and x ∈ H that

lim
y→x

sup
t∈[0,T ]

‖Xx
t − Xy

t ‖Lp(Ω;H) = 0,

lim
y→x

sup
t∈[0,T ]

∥∥X
1,(x,.)
t − X

1,(y,.)
t

∥∥
L(H;Lp(Ω;H))

= 0,

lim
y→x

sup
t∈[0,T ]

∥∥X
2,(x,·,·)
t − X

2,(y,·,·)
t

∥∥
L(2)(H;Lp(Ω;H))

= 0.

(10)

Moreover, for each x, v, w ∈ H the processes Xx, X1,(x,v), and X2,(x,v,w) admit continuous modifications.
Thus, Burkholder–Davis–Gundy type inequalities and the dominated convergence theorem yield for each
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p ∈ (2,∞) and x ∈ H that the mapping [0, T ] 
 t �→ Xx
t ∈ Lp(Ω;H) is continuous; see also [15, Proof

of Lemma 6.2.(xiii)]. Similarly, the proof of [15, Lemma 6.2.(xiv), p. 27] shows for each p ∈ (2,∞) and
x, v, w ∈ H that the mappings [0, T ] 
 t �→ X

1,(x,·)
t ∈ L(H;Lp(Ω;H)) and [0, T ] 
 t �→ X

2,(x,·,·)
t ∈

L(2)(H;Lp(Ω;H)) are continuous. This and (10) implies for all p ∈ (2,∞), t ∈ [0, T ] and x ∈ H that

lim
s→t,y→x

‖Xx
t − Xy

s ‖Lp(Ω;H) = 0,

lim
s→t,y→x

∥∥X
1,(x,·)
t − X1,(y,·)

s

∥∥
L(H;Lp(Ω;H))

= 0,

lim
s→t,y→x

∥∥X
2,(x,·,·)
t − X2,(y,·,·)

s

∥∥
L(2)(H;Lp(Ω;H))

= 0.

(11)

Thanks to the continuity and boundedness of φ′ and φ′′, the subsequence criterion, and the dominated
convergence theorem, this implies for all p ∈ (2,∞), t ∈ [0, T ] and x ∈ H that

lim
s→t
y→x

‖φ′ ◦ Xx
t − φ′ ◦ Xy

s ‖Lp(Ω;L(H;R)) = lim
s→t
y→x

‖φ′′ ◦ Xx
t − φ′′ ◦ Xy

s ‖Lp(Ω;L(2)(H;R)) = 0.

Now, for each p ∈ (2,∞), t ∈ [0, T ], and x ∈ H it holds by the triangle inequality, Hölder inequality, (4)
and (11),

lim
s→t
y→x

sup
v∈H

‖v‖H≤1

∣∣( ∂
∂xu

)
(T − t, x)v − (

∂
∂xu

)
(T − s, y)v

∣∣

≤ lim
s→t
y→x

‖φ′ ◦ Xx
t − φ′ ◦ Xy

s ‖Lp(Ω;L(H;R)) sup
v∈H

‖v‖H≤1

∥∥X
1,(x,v)
t

∥∥
L(H;L

p
p−1 (Ω;H))

+ lim
s→t
y→x

‖φ‖C1
b (H;R) sup

v∈H
‖v‖H≤1

∥∥X
1,(x,v)
t − X1,(y,v)

s

∥∥
L1(Ω;H)

= 0.

For the second derivative, one obtains similarly for each t ∈ [0, T ] and x ∈ H that

lim
s→t
y→x

sup
v, w∈H

‖v‖H ,‖w‖H≤1

∥∥φ′(Xx
t )X2,(x,v,w)

t − φ′(Xy
s )X2,(y,v,w)

s

∥∥
L1(Ω;R)

≤ lim
s→t
y→x

‖φ′ ◦ Xx
t − φ′ ◦ Xy

s ‖Lp(Ω;L(H;R)))

∥∥X
2,(x,·,·)
t

∥∥
L(2)(H;L

p
p−1 (Ω;H))

+ lim
s→t
y→x

‖φ′‖Cb(H;R)

∥∥X
2,(x,·,·)
t − X2,(y,·,·)

s

∥∥
L(2)(H;Lp(Ω;H))

= 0,

and, for p, p0, p1, p2 ∈ (2,∞) with 1
p0

+ 1
p1

+ 1
p2

= 1,

lim
s→t
y→x

sup
v, w∈H

‖v‖H ,‖w‖H≤1

∥∥φ′′(Xx
t )(X1,(x,v)

t ,X
1,(x,w)
t ) − φ′′(Xx

s )(X1,(x,v)
s ,X1,(x,w)

s )
∥∥

L1(Ω;R)

≤ lim
s→t
y→x

∥∥φ′′ ◦ Xx
t − φ′′ ◦ Xy

s

∥∥
Lp0 (Ω;L(2)(H;R))

∥∥X
1,(x,·)
t

∥∥
L(H;Lp1 (Ω;H))

∥∥X
1,(x,·)
t

∥∥
L(H;Lp2 (Ω;H))

+ lim
s→t
y→x

‖φ′′‖Cb(H;L(2)(H;R))

∥∥X
1,(x,·)
t − X1,(y,·)

s

∥∥
L(H;Lp(Ω;H))

∥∥X
1,(x,·)
t

∥∥
L(H;L

p
p−1 (Ω;H))

+ lim
s→t
y→x

‖φ′′‖Cb(H;L(2)(H;R))

∥∥X1,(y,·)
s

∥∥
L(H;Lp(Ω;H))

∥∥X
1,(x,·)
t − X1,(y,·)

s

∥∥
L(H;L

p
p−1 (Ω;H))

,
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which is actually 0. Plugging this into (5) yields

lim
s→t
y→x

sup
v, w∈H

‖v‖H ,‖w‖H≤1

∣∣∣ ∂2

∂x2 u(T − t, x)(v, w) − ∂2

∂x2 u(T − s, y)(v, w)
∣∣∣ = 0.

Thus, we have shown the continuity of ∂
∂xu and ∂2

∂x2 u. This proves (i).

(ii) We follow the idea in [7, Theorem 9.23]. By [15, Lemma 6.1.(ii)] it holds for all t, h ∈ [0, T ] with
t + h ≤ T that

u(t, x) = E
[
φ(Xx

T−t)
]

= E [u(t + h,Xx
h)] .

Fix now t0 ∈ (0, T ]. As A ∈ L(H), it holds for all t ∈ [0, T ] and x ∈ H that

[Xx
t ]

P;B(H) =

⎡
⎣x +

t∫

0

AXx
s + F (Xx

s ) ds

⎤
⎦
P;B(H)

+

t∫

0

B(Xx
s ) dWs.

By the classical (as opposed to mild) Itô formula it holds for all h ∈ [0, t0] that

u(t0 − h, x) − u(t0, x) = E [u(t0,Xx
h) − u(t0, x)]

= E

h∫

0

( ∂
∂xu(t0,Xx

s )) (AXx
s + F (Xx

s )) ds

+
1
2

E

h∫

0

∑
b∈U

( ∂2

∂x2 u(t0,Xx
s ))(Xx

s )
(
B(Xx

s )b,B(Xx
s )b

)
ds.

(12)

Indeed, the process (
∫ t

0

(
∂
∂xu

)
(t0,Xx

s )B(Xx
s ) dWs)t∈[0,T ] is a true martingale thanks to Lemma 2.1.(ii)

and the estimate

E

⎡
⎣

T∫

0

∥∥( ∂
∂xu

)
(t0,Xx

t )B(Xx
t )

∥∥2

L2(U ;H)
dt

⎤
⎦

≤ T
∥∥ ∂

∂xu
∥∥2

Cb([0,T ]×H;L(H;R))
sup

t∈[0,T ]

E

[
‖B(Xx

t )‖2
L2(U ;H)

]

≤ T
∥∥ ∂

∂xu
∥∥2

Cb([0,T ]×H;L(H;R))
‖B‖2

C1
b (H;L2(U ;H)) sup

t∈[0,T ]

E

[
(1 + ‖Xx

t ‖H)2
]

< ∞.

The integrands under the time integral in (12) are continuous because for each x ∈ H and p ∈ (2,∞) the
mapping [0, T ] 
 t �→ Xx

t ∈ Lp(Ω;H) is continuous, u(t0, ·) ∈ C2
b (H), and the mappings A, F , and B are

Lipschitz continuous. Thus, the mean value theorem for integration gives

(
∂−
∂t u

)
(t0, x) := − lim

h↘0

1
h

(u(t0 − h, x) − u(t0, x))

= − (
∂
∂xu

)
(t0, x) (Ax + F (x)) − 1

2

∑
b∈U

( ∂2

∂x2 u)(t0, x) (B(x)b,B(x)b) .

As the right-hand side is continuous in t0 ∈ [0, T ] by part (i), we get for all x ∈ H continuity of the
mapping [0, T ] 
 t �→ (

∂−
∂t u

)
(t, x) ∈ R. Summarizing, for each x ∈ H, the mapping [0, T ] 
 t �→ u(t, x) ∈ R

is left-sided differentiable on (0, T ] with continuous left derivative on [0, T ]. Therefore, it is continuously
differentiable on [0, T ] with ∂

∂tu = ∂−
∂t u. �
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2.4. Yosida approximations

For later usage, we summarize some properties of Yosida approximations. The lemma is formulated under
a uniform boundedness assumption on the semigroup, which leads to a simpler estimate in (ii). In the
context of semilinear stochastic evolution equations, this assumption can always be guaranteed by adding
and subtracting a multiple of the identity to the generator of the semigroup and the nonlinear part of
the drift, respectively.

Lemma 2.3. Let (E, ‖·‖E) be an R-Banach space and let A : D(A) ⊆ E → E be the generator of a
uniformly bounded and strongly continuous semigroup S. Then the following statements hold true.

(i) The interval (0,∞) is contained in the resolvent set of A, and for each λ ∈ (0,∞) the bounded linear
operator Aλ := A(IdE −A/λ)−1 generates a uniformly continuous semigroup Sλ.

(ii) The semigroups Sλ satisfy for each x ∈ E and T > 0 that

sup
λ∈(0,∞)

∥∥Sλ
∥∥

B([0,∞);L(E))
≤ ‖S‖B([0,∞);L(E)) , lim

λ→∞
sup

t∈[0,T ]

∥∥Stx − Sλ
t x

∥∥
E

= 0.

Proof. (i) As S is strongly continuous and of negative exponential type, S belongs to B([0,∞);L(E)).
By the Feller–Miyadera–Phillips theorem, the interval (0,∞) is contained in the resolvent set of A.
Thus, the resolvent Rλ(A) := (λ IdE −A)−1 ∈ L(E) and Aλ ∈ L(E) are well defined.

(ii) The Feller–Miyadera–Phillips theorem comes with the resolvent estimate

∥∥Rλ(A)k
∥∥

L(E)
≤ ‖S‖B([0,∞);L(E))

λk
, ∀ k ∈ N, λ > 0,

which implies for each λ ∈ (0,∞) and t ∈ [0,∞) that

∥∥Sλ
t

∥∥
L(E)

= e−λt
∥∥∥etλ2Rλ(A)

∥∥∥
L(E)

≤ e−λt
∞∑

k=0

tkλ2k

k!

∥∥Rλ(A)k
∥∥

L(E)

≤ e−λt
∞∑

k=0

tkλ2k

k!

‖S‖B([0,∞);L(E))

λk
= ‖S‖B([0,∞);L(E)) .

To see the second statement, note that limλ→∞ Aλx = Ax, for all x ∈ D(A). The Trotter–Kato
approximation theorem then implies limλ→∞ Sλ

t x = Stx locally uniformly in t; see e.g., [11, Lemma
II.3.4.(ii) and Theorem III.4.8] for details. �

2.5. Weak error

We are now ready to present and prove our main technical result, which is an upper bound on the weak
error under perturbations of the noise coefficient. The proof builds on the results of Sects. 2.2, 2.3, and 2.4.

Proposition 2.4. Assume that the setting of Sect. 2.1 holds true, and additionally, let V be a separa-
ble R-Hilbert space, which is densely and continuously embedded in H, let F ∈ C2

b (H), let B, B̃ ∈
C2

b (H;L2(U ;H)), let S|V : [0,∞) → L(V ) be a uniformly bounded and strongly continuous semigroup,
let F |V ∈ Lip(V ), let B|V , B̃|V ∈ Lip(V ;L2(U ;V )), let ξ ∈ L2(Ω;V ) be F0/B (V )-measurable, and let
X, X̃ : [0, T ] × Ω → H be predictable processes which satisfy for each t ∈ [0, T ] that
P

[∫ T

0

(
‖Xt‖2

H + ‖X̃t‖2
H

)
dt < ∞

]
= 1 and
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[Xt]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF (Xs) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xs) dWs,

[X̃t]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF (X̃s) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB̃(X̃s) dWs.

Then

∣∣E[
φ (XT ) − φ(X̃T )

]∣∣ ≤ C ‖φ‖C2
b (H;R)sup

x∈V

∑
b∈U

‖B(x)b + B̃(x)b‖H‖B(x)b − B̃(x)b‖H

1 + ‖x‖2
V

,

where C = T
2 C1

(
1 + C2

2

)
and

C1 = exp
(

T

(
7
2

‖F‖C2
b (H) + 4 ‖B‖2

C1
b (H;L2(U ;H))

)
‖S‖4

B([0,∞);L(H))

)

×
√

T ‖S‖3
B([0,∞);L(H))

√
‖F‖C2

b (H) + 2 ‖B‖2
C2

b (H;L2(U ;H))

+ ‖S‖2
B([0,∞);L(H)) exp

(
T

(
2 ‖F‖C1

b (H) + ‖B‖2
C1

b (H;L2(U ;H))

)
‖S‖2

B([0,∞);L(H))

)

C2 = ‖S‖B([0,∞),L(V ))

(
‖ξ‖L2(Ω,V ) +

√
2T ‖F‖Lip(V ) +

√
2T ‖B‖Lip(;L2(U ;V )

)

× exp
(

T ‖S‖2
B([0,∞);L(V ))

(
1
2

+ ‖F‖2
Lip(V ) + ‖B‖2

Lip(V ;L2(U ;V ))

))
.

Proof. We prove the statement in two steps.
Step 1 We assume temporarily that S : [0,∞) → L(H) and S|V : [0,∞) → L(V ) are uniformly contin-

uous. The generator of S is denoted by A ∈ L(H). Let u ∈ C1,2([0, T ]×H; R) be defined as in Lemma 2.2.
Then

E [φ(X̃T ) − φ(XT )] = E [u(T, X̃T ) − u (0, X̃0)] .

As A is bounded, X̃ can be written in strong form as

[X̃t]P,B(H) =

⎡
⎣X̃0 +

t∫

0

(AX̃s + F (X̃s)) ds

⎤
⎦
P,B(H)

+

t∫

0

B̃(X̃s) dWs,

and we get by Itô’s formula and the Kolmogorov equation that

u(T, X̃T ) − u(0, X̃0)

=

T∫

0

( ∂
∂tu)(t, X̃t) dt +

T∫

0

(
∂
∂xu

)
(t, X̃t) dX̃t +

1
2

T∫

0

( ∂2

∂x2 u)(t, X̃t) d[X̃, X̃]t

=

T∫

0

(
∂
∂xu

)
(t, X̃t)B̃(X̃t) dWt +

1
2

T∫

0

∑
b∈U

( ∂2

∂x2 u)(t, X̃t)(B̃(X̃t)b, B̃(X̃t)b) dt

− 1
2

T∫

0

∑
b∈U

( ∂2

∂x2 u)(t, X̃t)(B(X̃t)b,B(X̃t)b) dt
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=

T∫

0

(
∂
∂xu

)
(t, X̃t)B̃(X̃t) dWt

+
1
2

T∫

0

∑
b∈U

( ∂2

∂x2 u)(t, X̃t)
(
B(X̃t)b + B̃(X̃t)b,B(X̃t)b − B̃(X̃t)b

)
dt.

The stochastic integral on the right-hand side above is a martingale thanks to Lemma 2.1.(ii), Lemma 2.2,
and the estimate

E

⎡
⎣

T∫

0

∥∥( ∂
∂xu

)
(t, X̃t)B̃(X̃t)

∥∥2

L2(U ;H)
dt

⎤
⎦

≤ T sup
t∈[0,T ]

E

[∥∥( ∂
∂xu

)
(t, X̃t)

∥∥2

L(H;R)
‖B̃(X̃t)‖2

L2(U ;H)

]

≤ T
∥∥ ∂

∂xu
∥∥2

Cb([0,T ]×H;R)
‖B̃‖2

C1
b (H;L2(U ;H)) sup

t∈[0,T ]

E

[
(1 + ‖X̃t‖H)2

]
< ∞.

Discarding the martingale part and using that X̃ takes values in V by Lemma 2.1, we can estimate
similarly

|E [u(T, X̃T ) − u(0, X̃0)]|

≤ T

2
sup

t∈[0,T ]

E

[∥∥∥( ∂2

∂x2 u)(t, X̃t)
∥∥∥

L(2)(H;R)

∑
b∈U

‖B(X̃t)b + B̃(X̃t)b‖H ‖B(X̃t)b − B̃(X̃t)b‖H

]

≤ T

2

∥∥∥ ∂2

∂x2 u
∥∥∥

Cb([0,T ]×H;R)

(
1 + ‖X̃‖2

B([0,T ];L2(Ω;V ))

)

× sup
x∈V

∑
b∈U

‖B(x)b + B̃(x)b‖H ‖B(x)b − B̃(x)b‖H

1 + ‖x‖2
V

.

Plugging in the estimates for X̃ and u of Lemmas 2.1 and 2.2 shows the statement of the lemma in the
special case where S : [0,∞) → L(H) and S|V : [0,∞) → L(V ) are uniformly continuous semigroups.

Step 2 We next show the lemma in the general case where S : [0,∞) → L(H) and S|V : [0,∞) →
L(V ) are strongly continuous semigroups. Let Sλ and Sλ|V be the Yosida approximations of S and S|V
constructed in Lemma 2.3, and let (Xλ, X̃λ, uλ, Cλ) be defined as (X, X̃, u, C) with S replaced by Sλ and
A replaced by Aλ. Then limλ→∞

∥∥Xλ
T − XT

∥∥
L2(Ω;H)

= 0 by Lemma 2.3.(ii) and Lemma 2.1.(iii) Thus, it
follows from the Lipschitz continuity of φ : H → R that

E [φ (XT ) − φ (X̃T )] = lim
λ→∞

E
[
φ
(
Xλ

T

) − φ
(
X̃λ

T

)]
.

Therefore, using the result of Step 1,

|E [φ (XT ) − φ (X̃T )]| ≤ lim sup
λ→∞

Cλ ‖φ‖C2
b (H;R) sup

x∈V

∑
b∈U

‖B(x)b + B̃(x)b‖H ‖B(x)b − B̃(x)b‖H

1 + ‖x‖2
V

.

It follows from Lemma 2.3 that lim supλ→∞ Cλ ≤ C, which proves the lemma. �

3. Examples

The examples in this section demonstrate that Theorem 1.1 is applicable to a wide variety of semilinear
stochastic evolution equations. Beyond the examples treated below, it can also be applied to the stochastic
heat equation with spatially colored noise. The convergence rate can be obtained as for the stochastic
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Schrödinger or linearized Korteweg–de Vries equation below. However, the stochastic heat equation with
space-time white noise requires different techniques which hinge on the analyticity of the heat semigroup.

3.1. Stochastic wave equation

For the stochastic wave equation with additive noise, weak error rates of temporal discretizations were
studied in [14,18] and of spatial discretizations in [5,17,19]. For the stochastic wave equation with multi-
plicative noise, weak error rates of temporal discretizations were studied in [5] and of spatial discretizations
in [25]. See Table 1 for a summary of the obtained convergence rates. We now complement these results
by providing an essentially sharp weak convergence rate for noise discretizations of the stochastic wave
equation with additive and multiplicative noise.

Proposition 3.1. Let θ ∈ (0,∞), let ε ∈ (0, 1), let ρ = (1 − ε)/4, let σ ∈ (1/4,∞), let H be the R-
Hilbert space L2((0, 1); R), let Δ: H2((0, 1))∩H1

0 ((0, 1)) ⊂ H → H be the Laplace operator with Dirichlet
boundary conditions on H, let A = θΔ, let (Hr)r∈R be a family of interpolation spaces associated to −A,
let one of the following two statements hold true,

(a) η = 0, f0 ∈ Hρ− 1
2
, f1 ∈ L∞((0, 1)), and f : (0, 1) × R 
 (s, x) �→ f0(s) + f1(s)x ∈ R,

(b) η ∈ (0, ρ) ∩ (0, 1/4 − ρ) and f ∈ C0,2
b ([0, 1] × R; R)

let b0 ∈ H2ρ((0, 1)), let b1 ∈ H2σ((0, 1)), let H = Hη × Hη−1/2, let A : D(A) ⊂ H → H be the linear
operator which satisfies D(A) = Hη+1/2 × Hη and [∀(x1, x2) ∈ D(A) : A(x1, x2) = (x2, Ax1)], let
V = Hρ × Hρ−1/2, let U = H, let (Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis, let (Wt)t∈[0,T ] be an IdU -
cylindrical (Ft)t∈[0,T ]-Wiener process, let ξ ∈ L2(Ω;V) be F0/B (V)-measurable, for each k ∈ N let
ek = (

√
2 sin(kπs))s∈(0,1) ∈ U , and for each n ∈ N∪{∞} let Pn ∈ L(U) be the orthogonal projection onto

the closure of span
R
{ek : k ∈ N ∩ [0, n)}. Then the following statements hold:

(i) A is the generator of a strongly continuous semigroup S : [0,∞) → L(H), which restricts to a
strongly continuous semigroup S|V : [0,∞) → L(V).

(ii) There are unique mappings F ∈ C2
b (H) and B ∈ C2

b (H;L2(U ;H)) which satisfy for all (x1, x2) ∈ H,
u ∈ U , and s ∈ [0, 1] that

F(x1, x2)(s) = (0, f(s, x1(s))), (B(x1, x2)u)(s) = (0, b0(s) + b1(s)x1(s)u(s)).

The mappings F and B restrict to F|V ∈ Lip(V) and B|V ∈ Lip(V;L2(U ;V)).
(iii) For each n ∈ N∪{∞} there is an up to modifications unique predictable process Xn : [0, T ]×Ω → H

which satisfies that P

[∫ T

0
‖Xn

t ‖2
H dt < ∞

]
= 1 and for each t ∈ [0, T ],

[Xn
t ]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF(Xn
s ) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xn
s )Pn dWs.

(iv) There exists C ∈ (0,∞) such that for each n ∈ N and φ ∈ C2
b (H; R)\{0},

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ Cn1−ε.

Proof. (i) We will prove in two steps that for any δ ∈ R the linear operator

A : Hδ+1/2 × Hδ ⊂ Hδ × Hδ−1/2 → Hδ × Hδ−1/2
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satisfies A∗ = −A. First, A∗ is an extension of −A because for each (v1, w1), (v2, w2) ∈ D(A),

〈A(v1, w1), (v2, w2)〉Hδ×Hδ−1/2 = 〈w1, v2〉Hδ
+ 〈Av1, w2〉Hδ−1/2

= 〈(−A)1/2w1, (−A)1/2v2〉Hδ−1/2 + 〈(−A)−1/2Av1, (−A)−1/2w2〉Hδ

= 〈w1,−Av2〉Hδ−1/2 − 〈v1, w2〉Hδ
= −〈(v1, w1),A(v2, w2)〉Hδ×Hδ−1/2 .

Second, to see that A∗ = −A let (v, w) ∈ D(A∗). Then the following linear mapping is bounded:

Hδ+1/2 × Hδ ⊂ Hδ × Hδ−1/2 → R, (h, k) �→ 〈A(h, k), (v, w)〉Hδ×Hδ−1/2 .

Rewriting the last expression as

〈A(h, k), (v, w)〉Hδ×Hδ−1/2 = 〈k, v〉Hδ
+ 〈Ah,w〉Hδ−1/2

= 〈k, v〉Hδ
+ 〈−(−A)1/2h, (−A)−1/2w〉Hδ

and using that (−θΔ)1/2 : Hδ → Hδ−1/2 is an isometry shows that the following linear mappings are
bounded,

Hδ ⊂ Hδ−1/2 → R, k �→ 〈k, v〉Hδ
,

Hδ ⊂ Hδ−1/2 → R, h �→ 〈h, (−A)−1/2w〉Hδ
.

By [25, Lemma 3.10.(ii)] this implies that v and (−A)−1/2w belong to Hδ+1/2, which is equivalent to
(v, w) ∈ Hδ+1/2 × Hδ = D(A). This proves that A∗ = −A. It follows from a theorem of Stone [11,
Theorem 3.24] that A generates a strongly continuous group of isometries on Hδ × Hδ−1/2. As this holds
true for δ = η and δ = ρ, we have proven (i). We now show (ii): For each x ∈ Hη let F (x) : [0, 1] → R

and B(x) : [0, 1] → R be the mappings which satisfy for each s ∈ (0, 1) that

F (x)(s) = f(s, x(s)), B(x)(s) = b0(s) + b1(s)x(s).

We claim that F ∈ C2
b (H) and F|V ∈ Lip(V). As F(x1, x2) = (0, F (x1)), it is sufficient to show that

F ∈ C2
b (Hη;Hη−1/2) and F |Hρ

∈ Lip(Hρ;Hρ−1/2). This can be seen as follows under assumptions (a) or
(b):

(a) Recall that η = 0. The function f0 belongs to H−1/2 ∩ Hρ−1/2 = Hρ−1/2 by definition. Moreover,
multiplication x �→ f1x belongs to L(H) and therefore also to L(H;H−1/2) and L(Hρ;Hρ−1/2). This
proves the claim in the case (a).

(b) For each δ ∈ (0, 1/4) we have Hδ = H2δ by Lemma A.2.(i), F ∈ C2
b (Hδ;L1((0, 1))) by Lemma A.4,

and F ∈ C2
b (Hδ;Hδ−1/2) by Lemma A.2.(ii). Choosing δ = ρ and δ = η proves the claim in the case

(b).

We claim that B ∈ C2
b (H;L2(U ;H)) and B|V ∈ Lip(V;L2(U ;V)). The conditions on b0, b1 guarantee

that B ∈ C2
b (Hη) and B|Hρ

∈ Lip(Hρ) by Lemmas A.2.(i) and A.3.(i). As B(x1, x2)(u) = (0, B(x1)u), it
remains to show that the multiplication operator M : x �→ (u �→ xu) belongs to L(Hη;L2(U ;Hη−1/2)) and
L(Hρ;L2(U ;Hρ−1/2)). We will prove the more general statement that M belongs to L(Hγ ;L2(H−γ ;Hβ))
for each γ ∈ [0, 1/4) and β ∈ (−∞,−1/4 − γ). This can be seen as follows. By Lemma A.2.(i) and
Lemma A.3.(ii) the following is a finite constant for each γ ∈ [0, 1/4),

Cγ := sup
0 �=f∈W 1,∞((0,1))

0 �=u∈Hγ

‖fu‖Hγ

‖u‖Hγ
‖f‖1−2γ

L∞((0,1)) ‖f‖2γ
W 1,∞((0,1))

< ∞.
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Therefore, it holds true for each x ∈ Hγ that

‖M(x)‖2
L2(H−γ ;Hβ) =

∑
n∈N

‖(−A)γen‖2
H ‖xen‖2

Hβ
=

∑
n∈N

‖x(−A)γen‖2
Hβ

=
∑
n∈N

‖(−A)β(x(−A)γen)‖2
H

=
∑
n∈N

∑
m∈N

∣∣〈(−A)β(x(−A)γen), em

〉
H

∣∣2 =
∑
n∈N

∑
m∈N

∣∣〈x(−A)γen, (−A)βem

〉
H

∣∣2

=
∑
n∈N

∑
m∈N

∥∥(−A)βem

∥∥2

H
|〈x(−A)γen, em〉H |2 =

∑
n∈N

∑
m∈N

∥∥(−A)βem

∥∥2

H
|〈(−A)γen, xem〉H |2

=
∑
m∈N

∥∥(−A)βem

∥∥2

H
‖xem‖2

Hγ
≤ C2

γ

∑
m∈N

∥∥(−A)βem

∥∥2

H
‖x‖2

Hγ
‖em‖2(1−2γ)

L∞((0,1)) ‖em‖4γ
W 1,∞((0,1))

= 2C2
γ ‖x‖2

Hγ

∑
m∈N

(mπ)4β(1 + m)4γ < ∞.

This proves that M ∈ L(Hγ ;L2(H−γ ;Hβ)), and we have shown (ii). (iii) follows from (i) and (ii) by
Lemma 2.1.(i). We now show (iv): For each n ∈ N ∪ {∞} the conditions of Theorem 1.1 are satisfied
thanks to (i), (ii), and (iii). The convergence rate provided by Theorem 1.1 can be estimated as follows.
As η < ρ − 1/4, we have M ∈ L(Hρ;L2(H−ρ;Hη−1/2)), as shown in the proof of (ii). Therefore,

sup
(x1,x2)∈V

∑∞
k=n ‖B(x1, x2)ek‖2

H

1 + ‖(x1, x2)‖2
V

≤ nε−1 sup
(x1,x2)∈V

∑
k∈N

k1−ε ‖B(x1, x2)ek‖2
H

1 + ‖(x1, x2)‖2
V

= nε−1 sup
x∈Hρ

∑
k∈N

‖ek‖2
Hρ

‖B(x)ek‖2
H−1/2

1 + ‖x‖2
Hρ

= nε−1 sup
x∈Hρ

‖M(B(x))‖2
L2(H−ρ;H−1/2)

1 + ‖x‖2
Hρ

≤ nε−1 ‖M‖2
L(Hρ;L2(H−ρ;H−1/2))

‖B‖2
Lip(Hρ) < ∞.

�

Remark 3.2. Choosing V = H in Proposition 3.1 leads to a worse convergence rate. In fact, this means
η = ρ, and in this case the proof of Proposition 3.1.(ii) requires ρ < 1/8, which entails ε = 1 − 4ρ > 1/2.
Thus, one gets only a rate of ≈ 1/2 with V = H compared to the rate of ≈ 1 with V � H.

3.2. HJMM-type equations

HJMM-type equations are used to model the stochastic evolution of interest rates. Weak error rates
of numerical discretizations of HJMM-type equations were studied in [9,10,20]; see also the references
therein. The following proposition provides an upper bound on the weak error of noise discretizations
of HJMM equations with additive noise, i.e., of infinite-dimensional Ornstein–Uhlenbeck forward rate
models. The result does not generalize to multiplicative noise because this would lead to a quadratic
term in the drift and to explosion of the solution in finite time [12, Section 6.4.1]. To ensure that the
noise discretization preserves the HJMM-condition and thereby the absence of arbitrage, we discretize
the drift together with the volatility.

Proposition 3.3. Let H = U be a separable R-Hilbert space of real-valued functions on [0,∞), let
(Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis, let (Wt)t∈[0,T ] be an IdU -cylindrical (Ft)t∈[0,T ]-Wiener pro-
cess, let S : [0,∞) → L(H) be a strongly continuous semigroup which satisfies for each x ∈ H and
s, t ∈ [0,∞) that (Stx)(s) = x(t + s), let H0 be a subspace of H consisting of locally integrable functions,
let m : H0 × H0 → H be a bounded bilinear mapping which satisfies for all x, y ∈ H0 and t ∈ [0,∞) that
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m(x, y)(t) = x(t)

t∫

0

y(s) ds,

let B ∈ L2(U ;H0), let (ek)k∈N be an orthonormal basis of U , for each n ∈ N ∪ {∞} let Pn ∈ L(U)
denote the orthogonal projection onto the closure of span

R
{ek : k ∈ N ∩ [0, n)}, and let ξ ∈ L2(Ω;H) be

F0/B (H)-measurable. Then the following statements hold:
(i) For each n ∈ N∪{∞} there is an up to modifications unique predictable process Xn : [0, T ]×Ω → H

which satisfies that P

[∫ T

0
‖Xn

t ‖2
H dt < ∞

]
= 1 and for each t ∈ [0, T ]

[Xn
t ]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−s tr
(
m(BPn, BPn)

)
ds

⎤
⎦
P,B(H)

+

t∫

0

St−sBPn dWs.

(ii) There exists C ∈ R such that for each n ∈ N and φ ∈ C2
b (H; R)\{0},

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ C

∞∑
k=n

‖Bek‖2
H .

Proof. (i) Follows from Lemma 2.1.(i).
(ii) By Lemma 2.1.(i) there exists for each n ∈ N ∪ {∞} an up to modifications unique predictable

process Y n : [0, T ] × Ω → H which satisfies that P

[∫ T

0
‖Y n

t ‖2
H dt < ∞

]
= 1 and for each t ∈ [0, T ],

[Y n
t ]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−s tr
(
m(B,B)

)
ds

⎤
⎦
P,B(H)

+

t∫

0

St−sBPn dWs.

As X∞ = Y ∞ one has for each φ ∈ C2
b (H; R)\{0} and n ∈ N that

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ 2 ‖Y ∞
T − Y n

T ‖2
L2(Ω;H) +

|E [φ (Y ∞
T )] − E [φ (Y n

T )]|
‖φ‖C2

b (H;R)

+ 2 ‖Y n
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (Y n
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ 2 ‖Y ∞
T − Y n

T ‖2
L2(Ω;H) +

|E [φ (Y ∞
T )] − E [φ (Y n

T )]|
‖φ‖C2

b (H;R)

+ 2 ‖Y n
T − Xn

T ‖2
H + ‖Y n

T − Xn
T ‖H ,

where it was used in the last step that ‖φ‖Lip(H;R) ≤ ‖φ‖C2
b (H;R) and that Y n

T − Xn
T is deterministic. The

first two summands on the right-hand side can be bounded using Theorem 1.1, and the third and fourth
summands can be bounded as follows:

‖Y n
T − Xn

T ‖H =
∥∥∥∥

T∫

0

ST−t

(
tr

(
m(B,B) − tr

(
m(BPn, BPn)

)))
dt

∥∥∥∥
H

≤ T ‖S‖B([0,T ];L(H))

∥∥tr
(
m(B(P∞ + Pn), B(P∞ − Pn))

))∥∥
H

≤ 2T ‖S‖B([0,T ];L(H)) ‖m‖L(2)(H0;H)

∞∑
k=n

‖Bek‖2
H .

�
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3.3. Stochastic Schrödinger equations

Weak error rates for temporal discretizations of Schrödinger’s equation were established in [8]. In the
following, we provide a convergence rate of the weak error under noise discretizations of Schrödinger’s
equation. The equation is formulated on a Hilbert space of complex-valued functions. Nevertheless, we
do not require the coefficients of the equation to be complex differentiable because this would be overly
restrictive, and real differentiability is sufficient for our purpose. Thus, we will treat all complex Hilbert
spaces, including the field of complex numbers itself, as Hilbert spaces over the real numbers.

Proposition 3.4. Let CR =
{
( a −b

b a
) ∈ R

2×2 : a, b ∈ R
}

be the R-Hilbert space with inner product given
by

〈
( a −b

b a
), ( c −d

d c
)
〉
CR

= ac + bd for all ( a −b
b a

), ( c −d
d c

) ∈ CR, let i = ( 0 −1
1 0 ) ∈ CR, let d ∈ N, let α ∈

(0,∞), let ε ∈ (0,∞), let r > d/2, let H = U = L2(Rd; CR), let Δ: H2(Rd; CR) ⊂ H → H be the
Laplace operator, acting componentwise, let V = Hr(Rd; CR), let f0, f1, b0, b1 ∈ V , let Σ ∈ L2(U ;V ), let
(Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis, let (Wt)t∈[0,T ] be an IdU -cylindrical (Ft)t∈[0,T ]-Wiener process,
let (ek)k∈N be an orthonormal basis of U , and for each n ∈ N ∪ {∞} let Pn ∈ L(U) be the orthogonal
projection onto the closure of the linear span of {ek : k ∈ N ∩ [0, n)}, and let ξ ∈ L2(Ω;V ) be F0/
B (V )-measurable. Then the following statements hold true.

(i) The operator −iΔ generates a strongly continuous group of isometries S : R → L(H), which restricts
to a strongly continuous group of isometries S|V : R → L(V ).

(ii) There are unique mappings F ∈ C2
b (H;H) and B ∈ C2

b (H;L2(U ;H)) which satisfy for all u, v ∈ H
and x ∈ R

d that

F (v)(x) = f0(x) + f1(x)v(x), B(v)(u)(x) =
(
b0(x) + b1(x)v(x)

)
(Σu)(x).

The mappings F and B restrict to F |V ∈ Lip(V ;V ) and B|V ∈ Lip(V ;L2(U ;V )).
(iii) For each n ∈ N∪{∞} there is an up to modifications unique predictable process Xn : [0, T ]×Ω → H

which satisfies for each t ∈ [0, T ] that P

[∫ T

0
‖Xn

t ‖2
H dt < ∞

]
= 1 and

[Xn
t ]P,B(H) =

⎡
⎣Stξ − i

t∫

0

St−sF (Xn
s ) ds

⎤
⎦
P,B(H)

− i

t∫

0

St−sB(Xn
s )Pn dWs.

(iv) There exists C ∈ R such that for each n ∈ N and φ ∈ C2
b (H; R)\{0},

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ C

∞∑
k=n

‖Σek‖2
H .

Proof. (i) As the mapping C 
 λ �→ ( Re λ − Im λ
Im λ Re λ

) ∈ CR is an isometric isomorphism of R-Hilbert spaces,
the statement is equivalent to the following well-known fact: the linear operator√−1Δ: H2(Rd; C) ⊂ L2(Rd; C) → L2(Rd; C) generates the strongly continuous group of isome-
tries G : R → L(L2(Rd; C)) which satisfies for all t ∈ R, v ∈ L2(Rd; C) and ξ ∈ R

d that Ĝtv(ξ) =
exp(

√−1tξ2)v̂(ξ), and G|Hr(Rd;C) : R → L(Hr(Rd; C)) is a strongly continuous group of isometries.
(ii) This follows from the fact that V is a Banach algebra, and multiplication V × H → H is bounded

bilinear, as shown in Lemma A.3.(i). (iii) follows from (i) and (ii) by Lemma 2.1.(iv) follows from
Theorem 1.1 and the estimate

sup
x∈V

∑∞
k=n ‖B(x)ek‖2

H

1 + ‖x‖2
V

≤ sup
x∈V

‖b0 + b1x‖2
V

1 + ‖x‖2
V

∞∑
k=n

‖Σek‖2
H ,

noting that the first factor is finite because V is a Banach algebra.
�
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Remark 3.5. Proposition 3.4 remains valid if the condition f1, b1 ∈ V is replaced by f1, b1 ∈ R. In fact,
all that is needed is that the mappings x �→ f1x and x �→ b1x belong to L(H) and L(V ). Furthermore,
nonlinear Nemytskii operators F could be accommodated by increasing the Sobolev regularity of H,
which however potentially lowers the convergence rate.

3.4. Linearized stochastic Korteweg–de Vries equation

Due to its non-linearity the Korteweg–de Vries equation is not directly amenable to the current methods
of numerical weak error analysis, but its linearization, which is sometimes called Airy’s equation, is. In
the following we establish a weak convergence rate for the discretization of additive and multiplicative
noise.

Proposition 3.6. Let α ∈ (0,∞), let ε ∈ (0,∞), let r > 1/2, let H = U = L2(R), let A : H3(R) ⊂ H → H
be the linear operator which satisfies for all v ∈ H3(R) and x ∈ R that Av(x) = −v′′′(x), let V = Hr(R),
let f0, f1, b0, b1 ∈ V , let Σ ∈ L2(U ;V ), let (Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis, let (Wt)t∈[0,T ] be an
IdU -cylindrical (Ft)t∈[0,T ]-Wiener process, let (ek)k∈N be an orthonormal basis of U , for each n ∈ N∪{∞}
let Pn ∈ L(U) be the orthogonal projection onto the closure of the linear span of {ek : k ∈ N∩ [0, n)}, and
let ξ ∈ L2(Ω;V ) be F0/B (V )-measurable. Then the following statements hold true.

(i) The operator A generates a strongly continuous group of isometries S : R → L(H), which restricts
to a strongly continuous group of isometries S|V : R → L(V ).

(ii) There are unique mappings F ∈ C2
b (H) and B ∈ C2

b (H;L2(U ;H)) which satisfy for all u, v ∈ H
and all x ∈ R

d that

F (v)(x) = f0(x) + f1(x)v(x), B(v)(u)(x) =
(
b0(x) + b1(x)v(x)

)
(Σu)(x).

The mappings F and B restrict to F |V ∈ Lip(V ) and B|V ∈ Lip(V ;L2(U ;V )).
(iii) For each n ∈ N∪{∞} there is an up to modifications unique predictable process Xn : [0, T ]×Ω → H

which satisfies that P

[∫ T

0
‖Xn

t ‖2
H dt < ∞

]
= 1 and for each t ∈ [0, T ]

[Xn
t ]P,B(H) =

⎡
⎣Stξ +

t∫

0

St−sF (Xn
s ) ds

⎤
⎦
P,B(H)

+

t∫

0

St−sB(Xn
s )Pn dWs.

(iv) There exists C ∈ R such that for each n ∈ N and φ ∈ C2
b (H; R)\{0},

‖X∞
T − Xn

T ‖2
L2(Ω;H) +

|E [φ (X∞
T )] − E [φ (Xn

T )]|
‖φ‖C2

b (H;R)

≤ C

∞∑
k=n

‖Σek‖2
H .

Proof. (i) Letˆdenote the Fourier transform, and let i =
√−1. For each v ∈ H and t ∈ [0,∞) let Stv

be the unique element of H which satisfies for each ξ ∈ R that Ŝtv(ξ) = exp(itξ3)v̂(ξ). This defines
a strongly continuous group of isometries on H, whose generator is A. Moreover, S restricts to a
strongly continuous group of isometries on V .

(ii) can be seen in the same way as Proposition 3.4.(ii).
(iii) and (iv) can be shown similarly as in Proposition 3.4.

�

Remark 3.7. Proposition 3.6 remains valid if the condition f1, b1 ∈ V is replaced by f1, b1 ∈ R. Nonlinear
Nemytskii operators F can be treated as mentioned in Remark 3.5 for the Schrödinger equation.
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A. Auxiliary results from interpolation theory

We will use several results from interpolation theory to apply the abstract setting of Theorem 1.1 and
Proposition 2.4 to the concrete equations in Sect. 3. Throughout this section, we will often write Hα :=
Hα((0, 1)), Lp := Lp((0, 1)), Wα,p := Wα,p((0, 1)), α ∈ R, p ∈ [1,∞].

A.1. Interpolation spaces of negative order

Recall that for a (real or complex) Hilbert space H and a symmetric diagonal linear operator A : D(A) ⊆
H → H with inf σP (A) > 0 there exists an up to isometric isomorphisms unique family of interpolation
spaces associated to A (see [16, Theorem 3.5.24] or [27, Section 3.7]). This is a family of Hilbert spaces
(Hr)r∈R which satisfies for all v ∈ H and r, s, t ∈ R with r ≥ s and t ≥ 0 that Hr is densely contained in
Hs, D(At) = Ht, ‖·‖Ht

= ‖At(·)‖H , and ‖v‖H−t
= ‖A−tv‖H .

The following lemma is well known in the more elaborate setting of sectorial operators (see e.g., [23,
Theorem 1.18]) and reads as follows in the present simpler setting of diagonal operators.

Lemma A.1. Let K ∈ {R, C}, let H be a K-Hilbert space, let A : D(A) ⊆ H → H be a symmetric diagonal
linear operator with inf σP (A) > 0, let (Hr)r∈R be a family of interpolation spaces associated to A, and
let r ∈ [0,∞). Then there is a unique isometric isomorphism φ : H−r → H∗

r which satisfies for all u ∈ H
and v ∈ Hr that φ(u)(v) = 〈u, v〉H .

Proof. Uniqueness of φ follows from the density of H in H−r. It remains to show existence. Letting Â−r

denote the isometric extension of A−r to H−r, one has isometries Â−r : H−r → H and Ar : Hr → H. Both
mappings are surjective: they have closed range because they are isometric, and dense range because their
range contains the dense subset Hr of H. Thus, they are isometric isomorphisms. Let j : H → H∗ be the
Riesz isomorphism, and let (Ar)∗ : H∗ → (Hr)∗ be the Banach space adjoint of Ar. As Ar is isometric
and injective, (Ar)∗ is isometric and surjective. Then the mapping φ = (Ar)∗ ◦ j ◦ Â−r : H−r → (Hr)∗ is
an isometric isomorphism, which satisfies for each u ∈ H and v ∈ Hr that

φ(u)(v) =
〈
Â−ru,Arv

〉
H

=
〈
A−ru,Arv

〉
H

= 〈u, v〉H .

�

A.2. Interpolation spaces associated to the Dirichlet Laplacian

The interpolation spaces of the Dirichlet Laplacian on the unit interval coincide with certain Sobolev
spaces. This is described in the following lemma, which summarizes several well-known results in this
regard.

Lemma A.2. Let H be the R-Hilbert space L2((0, 1)), let θ ∈ (0,∞), let D(Δ) := H2((0, 1)) ∩ H1
0 ((0, 1))

and Δ: D(Δ) ⊂ H → H be the Laplace operator with Dirichlet boundary conditions, and let (Hr)r∈R be
a family of interpolation spaces associated to −θΔ. Then the following statements hold true:

(i) For each r ∈ [0, 3/4)\{1/4} the spaces Hr and H2r
0 ((0, 1)) are equal and carry equivalent norms.

(ii) For each r ∈ (1/4,∞) the inclusion of H into H−r extends to a unique continuous embedding
φ : L1((0, 1)) → H−r.

Proof. The operator −θΔ is symmetric diagonal linear with inf σP (−θΔ) > 0, which implies that the
interpolation spaces associated to −θΔ are well defined.

(i) For each r ∈ [0, 1/4) let H2r
D = H2r, and for each r ∈ (1/4, 1) let H2r

D = {u ∈ H2r : u(0) = u(1) = 0}.
Then the spaces Hr and H2r

D are equal and carry equivalent norms by [28, Theorem 1.18.10] and
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[13, Theorem 8.1]. Moreover, by [22, Theorem 11.4] it holds for each r ∈ [0, 1/4) that H2r
0 = H2r,

and it holds for each r ∈ (1/4, 3/4) that H2r
0 = {u ∈ H2r : u(0) = u(1) = 0}. Hence, it holds for each

r ∈ [0, 3/4]\{1/4} that the spaces Hr and H2r
0 are equal and carry equivalent norms. This proves

(i).
(ii) It is sufficient to show the statement for each r ∈ (1/4, 3/4). Uniqueness of φ follows from the density

of H in L1, and existence follows from the following estimate: by Lemma A.1 one has for each u ∈ H
that

‖u‖H−r
= sup

0 �=v∈Hr

|〈u, v〉H |
‖v‖Hr

≤ ‖u‖L1 sup
0 �=v∈Hr

‖v‖L∞

‖v‖Hr

,

and the right-hand side is finite by (i) and the Sobolev embedding theorem.
�

A.3. Multiplication operators on Sobolev–Slobodeckij spaces

The following lemma summarizes some well-known conditions for the continuity of pointwise multiplica-
tion of functions with Sobolev–Slobodeckij regularity. Point (ii) is specialized to the setting in Proposi-
tion 3.1 where the supremum norms of the multiplier f and its derivative f ′ can be calculated explicitly.

Lemma A.3. The following statements hold:
(i) Let α, β ∈ [0,∞) and p, q ∈ [1,∞) satisfy β ≥ α, β − α ≥ 1/q − 1/p, β > 1/min{p, q}. Then

sup
0 �=f∈W β,q((0,1))
0 �=g∈W α,p((0,1))

‖fg‖W α,p((0,1))

‖f‖W β,p((0,1)) ‖g‖W α,q((0,1))

< ∞.

(ii) Let p ∈ [1,∞], α ∈ [0, 1]. Then

sup
0 �=f∈W 1,∞((0,1))
0 �=g∈W α,p((0,1))

‖fg‖W α,p((0,1))

‖f‖1−α
L∞((0,1)) ‖f‖α

W 1,∞((0,1)) ‖g‖W α,p((0,1))

< ∞.

Proof. (i) This is a special case of [4, Theorem 7.5].
(ii) For each f ∈ W 1,∞ the multiplication operator Mf : g �→ fg is continuous on the spaces Lp and

W 1,p and satisfies ‖Mf‖L(Lp) ≤ ‖f‖L∞ and ‖Mf‖L(W 1,p) ≤ 2 ‖f‖W 1,∞ because it holds true for
each g ∈ Lp and h ∈ W 1,p that ‖fg‖Lp ≤ ‖f‖L∞ ‖g‖Lp and

‖fh‖W 1,p ≤ ‖fh‖Lp + ‖(fh)′‖Lp ≤ ‖f‖L∞ ‖h‖Lp + ‖f ′‖L∞ ‖h‖Lp + ‖f‖L∞ ‖h′‖Lp

≤ 2 ‖f‖W 1,∞ ‖h‖W 1,p .

Therefore, Mf acts continuously on the real interpolation space (Lp,W 1,p)α,p, which equals Wα,p

by [23, Example 1.26] and satisfies ‖Mf‖L(W α,p) ≤ 2α ‖f‖α
W 1,∞ ‖f‖1−α

L∞ .
�

A.4. Nemytskii operators on Bessel potential spaces

The following lemma gives sufficient conditions for twice continuous differentiability of certain Nemytskii
operators on function spaces below the Sobolev threshold. Similar results in slightly different settings can
be found in [3,26].

Lemma A.4. Let f ∈ C0,2
b ([0, 1] × R), let α ∈ (0, 1/2), and for all u ∈ Hα((0, 1)) and x ∈ (0, 1) let

F (u)(x) := f(x, u(x)). Then F ∈ C2
b (Hα((0, 1));L1((0, 1))).
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Proof. Let p = 1/(2α) and q = 2/(1 − 2α). We will use repeatedly that Hα embeds continuously in Lq.
For each u, v, w ∈ Hα and x ∈ (0, 1) let

(F ′(u)v)(x) := f (0,1)(x, u(x))v(x), (F ′′(u)(v, w))(x) := f (0,2)(x, u(x))v(x)w(x).

We will show below that F ′ and F ′′ are indeed the derivatives of F . For each u ∈ Hα one has F (u) ∈ L1

because
‖F (u)‖L1 ≤ ∥∥f (0,1)

∥∥
L∞((0,1)×R)

‖u‖L1 + ‖f(·, 0)‖L1 < ∞.

For each u, v ∈ Hα one has F ′(u)v ∈ L1 because

‖F ′(u)v‖L1 ≤ ∥∥f (0,1)
∥∥

L∞((0,1)×R)
‖v‖L1 < ∞.

This also shows that F ′ : Hα → L(Hα;L1) is bounded. For each u, v, w ∈ Hα one has F ′′(u)(v, w) ∈ L1

because

‖F ′′(u)(v, w)‖L1 ≤ ∥∥f (0,2)
∥∥

L∞((0,1)×R)
‖v‖L2 ‖w‖L2 < ∞.

This also shows that F ′′ : Hα → L(2)(Hα;L1) is bounded. Moreover, F ′′ is continuous. To see this, let
(un)n∈N be a sequence which converges to u in Hα. For any sequence (nk)k∈N there exists a subsequence
(nkl

)l∈N such that unkl
converges to u almost everywhere. By Hölder inequality, the continuity of f (0,2)

and the dominated convergence theorem,

lim sup
l→∞

∥∥(F ′′(unkl
) − F ′′(u))(v, w)

∥∥
L1

≤ lim sup
l→∞

∥∥f (0,2)(·, unkl
(·)) − f (0,2)(·, u(·))∥∥

Lp ‖v‖Lq ‖w‖Lq = 0.

This implies the continuity of F ′′. The function F ′ is the Fréchet derivative of F . This follows from the
following estimate for u, v ∈ Hα, v �= 0,

‖v‖−1
Hα ‖F (u + v) − F (u) − F ′(u)v‖L1

= ‖v‖−1
Hα

1∫

0

∣∣∣∣∣∣

1∫

0

(
f (0,1)(x, u(x) + tv(x)) − f (0,1)(x, u(x))

)
dt v(x)

∣∣∣∣∣∣
dx

≤ ‖v‖−1
Hα

∥∥f (0,2)
∥∥

L∞((0,1)×R)
‖v‖2

L2 ,

noting that for each u ∈ Hα the right-hand side converges to zero as v → 0 in Hα. The function F ′′ is
the Fréchet derivative of F ′. This follows from the following estimate for u, v, w ∈ Hα,

‖F ′(u + w)v − F ′(u)v − F ′′(u)(v, w)‖L1

=

1∫

0

∣∣∣∣∣∣

1∫

0

(
f (0,2)(x, u(x) + tw(x)) − f (0,2)(x, u(x))

)
dt v(x)w(x)

∣∣∣∣∣∣
dx

≤
1∫

0

∥∥f (0,2)(·, u(·) + tw(·)) − f (0,2)(·, u(·))∥∥
Lp dt ‖v‖Lq ‖w‖Lq .

By the above subsequence argument and dominated convergence theorem the integral term converges to
0, as w → 0 in Hα. Using this and that Hα is continuously embedded in Lq we finally get

lim
w∈Hα\{0}

w→0

‖F ′(u + w) − F ′(u) − F ′′(u)(·, w)‖L(Hα;L1)

‖w‖Hα

= 0.

�
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