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Abstract. In this paper, we propose a model for the description of bone mechanics and bone remodeling processes, including
bone cell populations dynamics. The latter, described by a system of ODEs, influences the values for the elastic parameters
used in the mechanical model, which in turn determines the “stimulus” function affecting the behavior of the cells. Numerical
simulations concerning the behavior of the bone under external loads, as well as simple fracture healing processes are
presented. The model can reproduce the qualitative behavior of bone tissue remodeling and mechanical response.
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1. Introduction

In this paper, we present and numerically investigate a mathematical model aiming to describe some
bio-mechanical phenomena which occur in bone tissues. The studies on the bone remodeling were started
in the nineteenth century and are still ongoing, and especially in the last years the role of mathematical
modeling has increased significantly (see for instance [5,28,31,34,35]). However, the process of bone
remodeling is not completely understood yet, especially because of the complexity of the skeletal system
and its interactions with the other parts of the body, which limits the capability of a single model to
capture all of the relevant biological, biochemical and biophysical mechanisms occurring at all time and
space scales simultaneously.
Let us briefly recall that three populations of cells are mainly responsible for bone remodeling: osteoblasts,
which produce new bone tissue, osteoclasts, which resorb bone tissue, and osteocytes, which (roughly
speaking) are able to sense mechanical stimuli and communicate with the other cells. We also recall
that osteoblasts derive from mesenchymal stem cells, osteoclasts derive from monocyte differentiation,
while osteocytes derive from osteoblasts that have been completely surrounded by the bone tissue they
produced.
As already said, many things are still unclear from a purely biological point of view. In particular,
concerning cell populations dynamics in bones, some important things that are still unclear are (see [17]):

• Whether the decision for an osteoblast to become an osteocyte is dictated by a specific pattern of
gene expression in a subset of osteoblasts.

• Whether this is a cell autonomous response or one that is controlled via the surface cells receiving
signals from already embedded osteocytes.

• Whether every osteoblast has an equal chance of becoming an osteocyte or whether there are specific
subpopulations with predefined fates.

• Whether osteocytic differentiation is an irreversible process or whether osteocytes have the capacity
to revert to being an osteoblast or even give rise to other cell lineages, such as adipocytes and
chondrocytes.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-018-1055-1&domain=pdf
http://orcid.org/0000-0003-0256-5913
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The main idea presented herein is to introduce a system of ODEs accounting for the description of
cell populations dynamics. The solution of this system, at every time step, provides the values for the
mechanical parameters used in the mechanical model, which in turn determines the “stimulus” function
which affects cells’ behavior. The two legs of the model, the nondimensional ODEs describing cells and
the mechanical model describing the physical behavior of the bone, are therefore strongly interconnected,
which naturally arises from the complex nature of the biological phenomena under investigation: there is
a two-way game between macro and micro, as both levels influence the other one.
Of course in the model, a number of assumption will be made for the sake of simplicity, as the main
aim is to reach a suitable compromise between the capability of the model to describe the interested
phenomena and its manageability and understandability. A complete and simultaneous description of all
the phenomena occurring in bone growth or resorption may lead to models too complex to be reasonable
at this stage of the research. Our intended research line consists instead of a step by step refining of
the basic model here presented. The results from this first stage will pave the way for different kinds
of generalizations. In particular, we expect that, in order to account for the complexity of the geometry
of the bone at the microscale, more complex mechanical models suitable for microstructured continua
could be efficiently used. Micromorphic continua are, indeed, used for the modeling of both natural
materials (see for instance [29,30,33,40,48]) and materials with artificial microstructure (see for instance
[2–4,10,13,23–25,41]). Moreover, the introduction of higher gradient continuum models can also be useful
as the geometrically rather ordered structure of the trabeculae can produce typical higher gradient effects
(see [1,6,9,20,21,27]).

2. The model

The mechanical component of the model is based on [35]. This model will be enriched with the results
from [28,31,34].

2.1. Assumptions

The key assumptions of the model are the following:

• The elastic properties of the bone tissue are described by means of an isotropic Cauchy continuum
in small deformations regime.

• The communication between the sensor and actor cells is modeled by means of a scalar field called
Stimulus and denoted by S, defined at every point of the bone and depending on the overall mechan-
ical load (suitably weighted by the distance between the point where S is evaluated and the source
of the signal, as we will see) and on the density of sensor cells.

• The status of the system at a given time is given by the macro-mechanical variables as well as the
internal state, i.e., the scalar fields representing the cells densities;

• The timescale is so large that no inertial effects have to be taken into account.
• The timescale is such that loading has to be intended as averaged on a suitably long period.
• The precursor cells are indefinitely available.

The main novelty of the presented cell populations dynamics model (introduced in a simplified form in
[19]) is the introduction of the osteocytes (which are not present, for instance, in [34]). Most of recent
biological discoveries concern indeed the role of osteocytes. There has been experimental proof of their
essential role in the maintenance of mineralized bone, and there is clear evidence that osteocytes influence
population dynamics through several different signal transduction pathways. In particular, in addition
to already known cytokines, the role of WNT (Wingless-related integration site) signaling pathways has
been discovered (see, e.g., [50,51]).
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Fig. 1. Plot of the function H(ϕ)

Therefore, our model is designed in order to take into account:
• Cell differentiation from progenitor cells to osteoblasts and osteoclasts.
• Cell differentiation from osteoblasts to osteocytes.
• The role of mechanical stimulus.
• The multiplicity of signaling pathways between osteocytes and other cell populations.

2.2. The ODEs system

The proposed system of ODEs describing the time evolution of cell densities and bone tissue density is:
∂xk

∂t
= −βkXk + γbkxbK(ϕ) (1)

∂xb

∂t
= −βbXb − γbkxbK(ϕ) + αbS

+xk (2)

∂xc

∂t
= −βcXc + γcxcK(ϕ) + αcS

−xk (3)

∂ρ

∂t
= (axb − bxc)H(ϕ) (4)

The terms xk, xb, xc indicate, respectively, the density of osteocytes, osteoblasts and osteoclasts. The
terms Xk, Xb, Xc are defined by:

Xi =

{
xi, if xi > x̃i

0, if xi � x̃i

where i can be k, b or c.
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Fig. 2. A rectangular bone sample under simple compressive load. In color map, the (apparent) density of bone tissue is
indicated. The external rectangle represents the unstressed configuration of the sample (color figure online)

The terms −βk, −βb, −βc indicate the removal rate of the cells (mainly due to apoptosis). The presence
of the variables Xi entails that the removal begins over a certain density threshold (x̃i). Here, βk, βb,
βc are supposed constant. The terms − γbkxbK(ϕ) and +γbkxbK(ϕ) describe the differentiation from
osteoblasts to osteocytes. The γbk parameter is assumed constant, while instead K is a function of the
porosity that will be discussed in the next section. The term + γcK(ϕ) models the birth and activation
by osteoclasts and is again depending on the function K, while γc is a constant parameter. The terms
+αbS

+xk and +αcS
−xk model the creation of osteoblasts and osteoclasts due, respectively, to large or

small values of the stimulus. Indeed, S+ denotes of course the positive part of S (which tends to activate
osteoblasts), while S− the negative part (which tends to activate osteoclasts). As we will see, the density
of osteocytes xk also appears in the definition of the stimulus (see Eq. (6)). In this way, we account for
at least two different signaling pathways between osteocytes and other cell populations: one is directly
related to the density of cells, the other takes into account that the density of osteocytes can amplify the
stimulus. The two parameters αb and αc are assumed constants.
The apparent density of bone tissue, i.e., the average mass density over a REV large enough to make
it sensible to homogenize the porous structure of the bone, is denoted by ρ. In the time derivative of
ρ, there are two parameters, a and b, which represent the synthesis and resorption rate for a single
osteoblast/osteoclast. They are assumed constants. The variable ϕ indicates the porosity. The function
H is designed in order to account for the influence of effective porosity on the biological activity of cells:
when the effective porosity is too large there is not enough material on which actor cells may stay, while
when it is too small there is not enough free space in the pores to allow their mobility and deposit. The
function H(ϕ) is modeled with a parabola. The function used herein is:

H(ϕ) = H(1 − ρ) = 4(1 − ρ)ρ. (5)
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Fig. 3. Cell populations dynamics and density for a rectangular bone sample under simple compressive load. The values of
the variables are evaluated at the central point of the sample. The picture shows the time history of the cell densities and
bone tissue density. In green is shown the osteoblasts density, in blue the osteocytes density, in red the osteoclasts density
and in cyan the bone tissue density (color figure online)

2.3. The stimulus function

The stimulus function is defined as:

S(x, t) =

⎛
⎝∫

B U(y, t)ηxk(y, t)e−
‖x−y‖2

2D2 dy∫
B e−

‖x−y‖2

2D2 dy

⎞
⎠ − S0(x, t). (6)

Here, B is the reference configuration of the bone sample, U(x, t) is the deformation energy density at
point x ∈ B and time t, η is a parameter measuring how much the stimulus is affected by the density
of sensor cells, and D measures the range of action of sensor cells. The denominator is a normalization
factor introduced in order to avoid that the outermost material points are less influential than those found
inside the body only because they have less material points around (see [31]). Finally, S0 is a positive
function representing the reference value for the stimulus, associated with a physiological amount of
loading (different from zero), which entails a biological equilibrium state in which the effect of resorption
and synthesis is balanced. In fact if U = 0 then S = −S0, which will enhance the action of the osteoclasts.
That accounts for bone tissue impoverishment caused by long periods of rest or low loading (as in the
case of astronauts living in low-gravity environments for long periods). In the paper, we will consider S0

as constant and uniform, and the corresponding value will be chosen so that a steady state for the bone
tissue and cell populations densities is obtained.
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Fig. 4. Cell populations dynamics and density for a rectangular bone sample under simple compressive load. The values of
the variables are evaluated at the central point of the sample. The picture shows the time history of the cell densities and
bone tissue density. This time the function K(ρ) was K ≡ 1, which means that the amount of porosity has less effect on the
cell populations dynamics. In green is shown the osteoblasts density, in blue the osteocytes density, in red the osteoclasts
density and in cyan the bone tissue density (color figure online)

2.4. The function K(ϕ)

The function K(ϕ) deserves a special attention. In general, one may suppose that the function K(ϕ) can
change between Eqs. (1), (2) and (3), but for the sake of simplicity we started by considering just one
function for the three ODEs. We used again a parabola, like the function H shown before, since if the
bone is too dense or too rare the activity of the actor cells is stopped or hindered. A more realistic form
of this function is left to future investigation.
The constitutive equation for the porosity is:

ϕ = 1 − θ
ρ

ρmax
, 0 < θ � 1 (7)

just like in [7,35] and [8]. For simplicity, we set ρmax = θ = 1. The relation between the porosity and the
bone density is:

ϕ = 1 − ρ. (8)

Unless differently specified, the function K(ϕ) used in the simulations is:

K(ϕ) = K(1 − ρ) = 4(1 − ρ)ρ. (9)
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Fig. 5. A rectangular bone sample in absence of loading. In color map, the (apparent) density of bone tissue is indicated.
It can be seen that the density decreases, as is to be expected in a long period of absence or very limited physical activity
(color figure online)

2.5. The mechanical model

The deformation gradient (F ), its determinant (J) and the Green–Saint–Venant strain tensor (G) are
defined as usual:

F = ∇χ, J = det F , 2G = F T F − I, (10)
where χ : B → R

3 is the placement function.
It has been assumed that the deformation energy density can be expressed as a function of the Green–
Saint–Venant strain tensor, the apparent volume Lagrangian mass densities and the position of the
considered material particle. It has to be noted that the assumed deformation energy does not depend
explicitly on time and that the mass of the object changes very slowly in time. As already said, the
timescale is assumed slow enough that no inertia effects need to be taken in account, so that the behavior
can be considered quasi-static. In formulas, it is assumed the existence of a function U , representing the
strain energy, such that

U(G, ρ, x) = μtr(G2) +
λ

2
(tr(G))2. (11)

where μ and λ are the Lamé parameters. Since the material is not homogeneous, and its density evolves
with the time, μ and λ are assumed as depending on t and x. Thus:

μ = μ̂(ρ, x), λ = λ̂(ρ, x). (12)
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Fig. 6. Cell populations dynamics and density for a rectangular bone sample in absence of loading. The values of the
variables are evaluated at the central point of the sample. The picture shows the time history of the cell densities and bone
tissue density. In green is shown the osteoblasts density, in blue the osteocytes density, in red the osteoclasts density and
in cyan the bone tissue density (color figure online)

For our aims, it will be handy to use Young’s modulus and Poisson ratio, related to Lamé parameters by
the well-known relations:

λ =
Y ν

(1 + ν)(1 − 2ν)
, (13)

μ =
Y

2(1 + ν)
(14)

where Y is the Young modulus, ν is the Poisson ratio. The Young modulus for the bone tissue is assumed
to be:

Y = Ym

(
ρ

ρmax

)c

, (15)

where ρmax is the maximum value possible for ρ and Ym is the maximum value for the Young modulus,
while c is a parameter.
The mechanical equilibrium of the sample is governed by the usual balance equations:

DivT = Div
(

F · ∂U

∂G

)
= −bext, (16)

T [N ] = F · ∂U

∂G
· N = fext, (17)

where T is the first Piola stress tensor. Equation (16) gives the force (−bext) acting on a representative
elementary volume of the considered sample, while eq. (17) gives the force acting on the unity surface
(fext) (with outward unit normal N).
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Fig. 7. The same simulation as in Fig.6, but this time with K ≡ 1. In green is shown the osteoblasts density, in blue the
osteocytes density, in red the osteoclasts density and in cyan the bone tissue density. It can be seen that there is a faster
decrease of ρ but a faster increase of the osteocytes density (color figure online)

Summarizing, the proposed model consists of ODEs (1–4) and of balance equations (16) and (17), recalling
that the energy density U depends on ρ through equation (15), while the stimulus S appearing in Eqs.
(1–3) depends on U .

2.6. Parameters and initial data

As already outlined in the previous paragraphs, the complexity of the phenomena investigated, requires
a large number of constitutive parameters, in order to model both the mechanical and the biological
behavior. The initial values used for the numerical simulations shown later are here indicated. They do
not have experimental confirmation, and for some of them (in particular parameter η) it is even difficult
to imagine an experimental procedure which is capable of estimating it. Therefore, the values given here
are to be considered provisional and chosen in order to capture the qualitative behavior in the largest
possible set of different cases. All the parameters are dimensionless. Future investigation will be devoted
to the proper parametrization of the model. The values used are indicated in the following table:

a = 1 b = 7 S0 = 0.6 ρ0 = 0.5
xk0 = 1 xb0 = 0.5 xc0 = 0.1 η = 1000
βk = 20 βb = 20 βc = 10 αb = 0.03
γbk = 0.1 γc = 0.1 αc = 0.1 x̃k = 1.1
x̃c = 0.11 x̃b = 0.75 Ym = 1 ν = 0.15
D = 0.02 L = 1 l = 0.2 c = 2
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Fig. 8. A rectangular bone sample under a bending test. In color map, the (apparent) density of bone tissue is indicated.
It can be seen that the density increases along the external portion of the sample (color figure online)

Here, Y mb is the maximum possible value for the Young modulus (set at 1), ν is the Poisson ratio, L
and l are the normalized length and the height of the sample of considered bone tissue.

3. Numerical results

In this section, we will show numerical simulations of the behavior of the model presented in the previous
part of the paper. The bone sample which will be considered is a rectangle, and we will show the effects
of the application of constant loads. In all simulations, we considered clamped the left side of the sample,
while the load is applied on the right side. A bidimensional example has been considered at this stage
of the investigation as a good compromise between numerical costs and predicting ability. Indeed, these
rectangular samples can be considered as sections of symmetric bodies, like cylindrical bones.

The model has been simulated using the mathematical library of Comsol Multiphysics (Weak Form and
ODE): FEM has been employed to build and solve discrete systems of algebraic equations. In particular,
for the mechanical content Hermite elements with third-order polynomials have been used, whereas the
ODE system has been solved using the backward differentiation formula, with a variable order depending
on the accuracy required.
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Fig. 9. Cell populations dynamics and density for a rectangular bone sample under a bending test. The values of the
variables are evaluated at t = 600 along a central cut-line representing the neutral axis for the given bending test. In red is
shown the osteoclasts density, in blue the osteocytes density, in green the osteoblasts density and in cyan the bone tissue
density (color figure online)

3.1. Simple load

In the first simulations, we will apply a dimensionless compressive load orthogonal to the clamped side of
the sample. The load is constant in time and large enough to make positive the stimulus (Its modulus is
set at 1). The model can simulate the physiological increase of density in the bone tissue as a consequence
of this external action. The initial values were uniform over all the sample and are given in section 2.6.
As expected, the load leads to an increase of the apparent bone mass density (see fig. 2), a strong initial
boost of osteoblasts density and an increase of osteocytes densities (see Fig. 3), while the osteoclast
density has very small changes. Therefore, this simulation is compatible with the physiological behavior
of the bone tissue.

3.2. Absence of loading

In absence of loading, the stimulus S is always negative. This promotes the osteoclasts genesis and
therefore the bone tissue resorption, as shown in Fig. 5. The corresponding behavior of the cell populations
(evaluated at the central point of the sample) is shown in Fig. 6, while the same simulation with K(ρ) ≡ 1
is shown in Fig. 7. This means that the amount of porosity has less effect on the cell populations dynamics
and leads to a faster decrease of ρ but a faster increase of the osteocytes density. The behavior of osteocytes
deserves some comments. According to biological literature, liberated osteocytes die, or in some occasion
can escape from the lacunae, after which it is still not completely clear what they can do. However, in
the model there is no attempt at simulating this complex pathological process, as the main focus is the
description of normal physiology. Therefore, below a certain threshold in the bone density the system
(1–4) will need to be adapted in future studies.
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Fig. 10. A rectangular bone sample with a central fracture zone under simple compressive load. In color map, the (apparent)
density of bone tissue is indicated. The external rectangle represents the unstressed configuration of the sample (color figure
online)

3.3. Bending test

Here, we consider a simple bending test, in which the left side of the rectangular sample is clamped,
while on the opposite side there is a (linear) distribution of forces producing a roto-translation. The
corresponding simulation, with bone tissue density in color map, is shown in Fig. 8. It can be seen that
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Fig. 11. Cell populations dynamics and density for a rectangular bone sample with a central fracture zone under simple
compressive load. The values of the variables are evaluated at the central point of the sample. The picture shows the time
history of the cell densities and bone tissue density. In green is shown the osteoblasts density, in blue the osteocytes density,
in red the osteoclasts density and in cyan the bone tissue density (color figure online)

the density gradually increases along the external portion of the sample (Over a very long period, the
density tends to become larger also in the central region). This is due to the fact that the deformation
energy becomes larger when going far from the center neutral axis. As a consequence, the stimulus S
becomes then larger, which gives in turn a higher production rate of osteoblasts. In Fig. 9, the cell
populations densities along a central cut-line representing the neutral axis of the bending test are shown.
As in that region there is very limited deformation energy, the stimulus is small and the cells densities
are quite homogeneous and relatively low when compared to the external region. The simulations are in
good agreement with normal physiological results.

3.4. Fracture healing test

In this section, we want to model the physiological healing of a small fracture and the related evolution
of cell populations. We model the fracture zone in the bone sample as a region with negligible density.
The model is able to simulate the healing in a reasonable way, as shown in Fig. 10. It can be noticed an
increment of apparent bone tissue density at first outside the fracture zone, and then inside, a phenomenon
which is related to the initial low density of osteocytes in the interested region. We used the following
initial densities:

xi0(x) =

⎧⎪⎨
⎪⎩

xi0 if 0 � x � 0.45L
xi0
10 if 0.45L < x < 0.55L

xi0 if 0.55 � x � L

i = k, b, c.
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Fig. 12. The same simulation as in Fig. 11, but this time with K ≡ 1. In green is shown the osteoblasts density, in blue the
osteocytes density, in red the osteoclasts density and in cyan the bone tissue density (color figure online)

ρ0(x) =

⎧⎪⎨
⎪⎩

ρ0 if 0 � x � 0.45L
ρ0
10 if 0.45L < x < 0.55L

ρ0 if0.55 � x � L

Dimensionless load used has modulus equal to 1.
In Fig. 11, cell populations densities and bone tissue density, evaluated in the fracture zone, are shown.

The initial peak of osteoblasts density is compatible with well-known physiological data. The model seems
capable of describing the increase of the apparent density of the bone tissue. The density of osteocytes
also increases, but rather slowly with K = 4(1 − ρ)ρ, while the same simulation with K ≡ 1 (see Fig.
12) better describes the osteocytes repopulation phase. These results are useful to understand what the
model can do, but it will be necessary to describe more accurately the fracture from a mechanical point
of view, if one wants to obtain more realistic outputs (interesting in this direction are the results shown,
e.g., in [16,46,47,49], and the applications in [36,43,44,52,56]).

4. Conclusions

In this paper, we presented a model for the description of bone physiology that couples a variational
mechanical model with an ODEs system accounting for cell populations dynamics. The model we pre-
sented is able to describe qualitatively the principal features and behaviors of a bone tissue and relative
cell populations dynamics in case of different loads as well as small fracture healing processes. Motivated
by the present results, further refinements of the model are required in the following aspects:

• Evaluation of the parameters of the model according to experimental data.
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• Inclusion of the possibility of cell migration, using a suitable diffusion tensor (see [11,26,53]).
• Adaptation of the model in case of very low density, especially for what concerns the behavior of

osteocytes.
• Introduction of more general continuum models [12,42,54] and of the possibility of large deformations

[14,22,32,45,55].
• The study of the dynamical behavior of bone tissue.

The latter is especially interesting as experimental results have shown that high-frequency stimulation can
enhance significantly bone formation (see [15]). Therefore, the study of the dynamic behavior, including
the analysis of the dynamical stability to ensure the safety of the therapeutic mechanical stimulation (see
[18,37–39] for interesting results), can be of great importance in the future.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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