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Abstract. In this paper, a reaction–diffusion system known as a bimolecular model with autocatalysis and saturation law is
considered. Firstly, we briefly obtain some characterizations for the positive solutions, including the a priori estimate of the
positive solutions and the nonexistence of non-constant positive solution. Secondly, we emphatically discusses the bifurcation
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dimensional case.
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1. Introduction

In this work, we deal with a bimolecular autocatalytic reaction–diffusion model with autocatalysis and
saturation law and attempt to present some existence analysis for the corresponding stationary problem.
First of all, let us give a brief description regarding the derivation of the system. The reaction process
[1,2] of the model is given by

A
k1−→ Y,

X + pY
k2−→ X (autocatalysis),

X
S(k3,k4)−−−−−→ P (saturation law),

in which A,X, Y and P are chemical reactants and products, and the system is considered open to
in-and-out-flow of A and P . In addition, p denotes the order of the reaction with respect to the auto-
catalytic species; k1, k2, k3 and k4 represent the reaction rates, and S(k3, k4) accounts for the Langmuir–
Hinshelwood law in heterogeneous catalysis and adsorption, the Michaelis–Menten law in enzyme-
controlled processes and the Holling law in ecology. It is assumed that all three steps of the reaction
process are irreversible and the concentrations of A and P are independent of time and spatial variables,
that is, the concentration of these two chemicals is kept uniform throughout the reactor. Disregarding
convective phenomena and considering isothermal processes only, the above scheme can be described by
the nonlinear partial differential equations

∂[X]
∂t − D[X]Δ[X] = k2[X][Y ]p − k3[X]

1+k4[X] ,

∂[Y ]
∂t − D[Y ]Δ[Y ] = k1[A] − k2[X][Y ]p,

(1.1)
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where Δ is the Laplace operator, showing the spatial dependence of the reaction, [A], [X] and [Y ] are
the concentrations of A,X and Y , respectively; D[X] and D[Y ] denote the diffusion coefficients which are
assumed to be positive constants, and the nonlinear term k3[X]

1+k4[X] represents the Holling II functional
response or the Monod equation.

To simplify the reaction–diffusion system (1.1), Peng et al. [3] introduce the following quantities with
p = 1:

U = k2
k3

[X], V = k3[Y ]
k1[A] , t = k3t,

λ′ = k1k2
k3

[A], k = k3k4
k2

, d1 = D[X]

k3
, d2 = D[Y ]

k3
.

By dropping the upper bar on t, system (1.1) becomes

∂U
∂t − d1ΔU = λ′UV − U

1+kU x ∈ Ω, t > 0,

∂V
∂t − d2ΔV = 1 − UV x ∈ Ω, t > 0,

(1.2)

where Ω is a bounded domain in the Euclidean space R
N with smooth boundary, denoted as ∂Ω. Peng

et al. [3] considered the existence and nonexistence of non-constant stationary solutions of system (1.2)
when the diffusion rate of a certain reactant is large or small, which showed that the diffusion rate of this
reactant and the size of the reactor play decisive roles in leading to the formation of stationary patterns.
Soon afterward, Yi et al. [4] discussed the Hopf bifurcations and steady-state bifurcations which bifurcate
from the unique constant positive equilibrium solution of system (1.2) in the one-dimensional space
both theoretically and numerically. They obtained the existence of spatially non-homogeneous periodic
orbits and non-constant positive stationary solutions, which implied the possibility of rich spatiotemporal
patterns in this diffusive bimolecular system. To further explore this model, Peng and Yi [5] continued
with the analysis on the steady-state bifurcation and the effect of various parameters on spatiotemporal
patterns was discussed.

By introducing the following quantities:

u = (k1[A])−1[X], V = k
1/p
2 [Y ],

d1 = D[X], d2 = D[Y ], c = k3, b = k1k4[A], λ = k1k
1/p
2 [A], a = c − b,

Zhou [6] simplified system (1.1) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1Δu + uvp − (a+b)u

1+bu x ∈ Ω, t > 0,

∂v
∂t = d2Δv + λ(1 − uvp) x ∈ Ω, t > 0,

∂v
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥�≡ 0, v(x, 0) = v0(x) ≥�≡ 0, x ∈ Ω,

(1.3)

where u and v represent the concentrations of the two reactants, respectively; Δ =
∑N

i=1
∂2

∂x2
i

is the
Laplace operator in R

N ; Ω is a bounded domain in the Euclidean space R
N with smooth boundary,

denoted as ∂Ω, ν is the unit outer normal vector on ∂Ω; d1 and d2 are the diffusion coefficients; p
denotes the order of the reaction with respect to the autocatalytic species. The constants a, b, d1, d2, p, λ
are positive constants, but p > 1. By analyzing the eigenvalues of the linearized system and using the
bifurcation theory, Zhou [6] derived the conditions to occurrence Turing instability and Hopf bifurcation
from the unique constant solution of system (1.3).
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Our main aim in this paper is to investigate the steady-state solutions of system (1.3) mathematically.
This leads us to investigate the associated steady-state problem, i.e., the following coupled elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

d1Δu + uvp − (a+b)u
1+bu = 0 x ∈ Ω,

d2Δv + λ(1 − uvp) = 0 x ∈ Ω,

∂v
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω.

(1.4)

It has been emphasized that the order p is a positive integer with p > 1, throughout this paper. It is easy
to check that (1.2) has a unique positive constant solution U∗ = (u∗, v∗) = (1/a, p

√
a).

The present paper is organized as follows: In Sect. 2, we briefly obtain some characterizations for the
positive solutions of (1.4), including the a priori estimate of the positive solutions and the nonexistence
of non-constant positive solution of (1.4). In Sect. 3, by taking λ as the parameter, we emphatically
analyze the bifurcation solution which emanates from the constant solution U∗ = (u∗, v∗) = (1/a, p

√
a),

with both simple eigenvalues and double eigenvalues, respectively, in Sects. 3.1 and 3.2. Combined with
the a priori estimates, some other existence results are shown to supplement the analytical conclusions
with the degree theory in Sect. 4. Finally, the results obtained in this paper are summarized in Sect. 5.

2. Some characterizations of positive solutions

This section is devoted to some basic properties of non-homogeneous steady-state solutions of (1.3),
namely the non-constant positive solutions of (1.4). We first set out to seek for the a priori estimate of
positive solutions of (1.4).

The following three lemmas derived from [7, Lemma 2.1-2.3] are the main tools in obtaining our
estimate. The first lemma is based on the result which is well known as a local result for weak super-
solutions of linear elliptic equations (see, for example, [8, Theorem 8.18] and [9, Theorem 6.40])

Lemma 2.1. (See also [10, Lemma 2.1]) Let Ω be a bounded Lipschitz domain in R
N , and let Λ be a

nonnegative constant. Suppose that z ∈ W 1,2(Ω) is a nonnegative weak solution of the inequalities

Δz − Λz ≤ 0 in Ω, ∂z
∂ν ≤ 0 on ∂Ω.

Then, for any q ∈ [1, N
N−2 ), there exists a positive constant C0, depending only on q, Λ and Ω, such that

||z||q ≤ C0 inf
Ω

z.

The next lemma is a simple but useful result, which was first derived by virtue of the Maximum
Principle in [11, Proposition 2.2].

Lemma 2.2. (See also [12, Lemma 2.1], [13, Lemma 2.1] and [14, Lemma 2.1]) Assume that g ∈ C(Ω×R
1).

1) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies: Δw(x) + g(x,w(x)) ≥ 0 in Ω, ∂w
∂n ≤ 0 on ∂Ω. If

w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.
2) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies: Δw(x) + g(x,w(x)) ≤ 0 in Ω, ∂w

∂n ≥ 0 on ∂Ω. If
w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Lastly, we have the following Harnack inequality for weak solutions, which is an analog of [8, Theorem
8.16].

Lemma 2.3. (See also [15, Lemma 2.2]) Let Ω be a bounded Lipschitz domain in R
N , and let c(x) ∈ Lq(Ω)

for some q > N/2. Suppose that z ∈ W 1,2(Ω) is a nonnegative weak solution of the boundary value
problem

Δz + c(x)z = 0 in Ω, ∂z
∂ν = 0 on ∂Ω.
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Then, there exists a positive constant C1, depending only on q, ||c||q and Ω, such that

sup
Ω

z ≤ C1 inf
Ω

z.

Theorem 2.1. There exists two positive constant C0 and C2, depending possibly on a, b, d1, and Ω, such
that any positive solution (u(x), v(x)) of (1.4) satisfies the following inequalities:

|Ω|
C0(a + b)

≤ u ≤ C2,
1

p
√

C2

≤ v ≤ p

√
C0(a + b)

|Ω| .

Proof. Assume that (u(x), v(x)) is a positive solution of (1.4). By integrating the two equations in (1.4)
over Ω, we first get ∫

Ω

uvpdx = |Ω| =
∫

Ω

(a + b)u
1 + bu

dx ≤ (a + b)
∫

Ω

udx. (2.1)

Since

d1Δu + uvp − (a + b)u
1 + bu

= 0

⇔ Δu +
uvp

d1
− (a + b)u

d1(1 + bu)
= 0

⇔ Δu +
uvp

d1
− (a + b)u

d1(1 + bu)
= 0

⇒ Δu − (a + b)u
d1

≤ 0,

it follows from Lemma 2.1 (when q = 1) and (2.1) that there exists a C0 := C0(a, b, d1,Ω), such that

|Ω|
a + b

≤
∫

Ω

udx ≤ C0 inf
Ω

u.

Thus, we have

inf
Ω

u ≥ |Ω|
C0(a + b)

. (2.2)

Since
d2Δv + λ(1 − uvp) = 0

⇔ Δv +
λ(1 − uvp)

d2
= 0,

it follows from Lemma 2.2 that
λ[1 − u(x0)v(x0)p]

d2
≥ 0,

where v(x0) = supΩ v(x) for some x0 ∈ Ω. Thus, by (2.2) we have

v(x0) ≤ 1
p
√

u(x0)
≤ 1

p

√
|Ω|

C0(a+b)

= p

√
C0(a + b)

|Ω| . (2.3)

Let c(x) = vp

d1
− a+b

d1(1+bu) . Since

d1Δu + uvp − (a + b)u
1 + bu

= 0

⇔ Δu + u

[
vp

d1
− a + b

d1(1 + bu)

]

= 0
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and ||c(x)||∞ = ||vp

d1
− a+b

d1(1+bu) ||∞ ≤ C0(a+b)
|Ω|d1

+ a+b
d1

. It follows from Lemma 2.3 (when q = ∞) that there
exists a C1 := C1(a, b, d1,Ω), such that

sup
Ω

u ≤ C1 inf
Ω

u. (2.4)

Now we claim that there is a positive constant C2 such that the following inequation holds:

sup
Ω

u ≤ C2. (2.5)

Suppose that (2.5) does not hold. Then by (2.4) above, we have u(x) = ∞ almost everywhere (a.e.) in
Ω. Let w = λd1u + d2v. It follows from (1.4) that w satisfies

Δw + λ

[

1 − (a + b)u
1 + bu

]

= 0. (2.6)

By integrating two sides of (2.6) over Ω, we get
∫

Ω

[

1 − (a + b)u
1 + bu

]

dx = 0. (2.7)

Since
[

1 − (a + b)u
1 + bu

]
a.e.==== 1 − a + b

b
= −a

b
< 0, in Ω,

which is a contradiction with (2.7), this verifies that (2.5) holds, where C2 := C2(a, b, d1,Ω).
Similarly as the proof of the upper boundedness (2.3) of v, it follows from Lemma 2.2 again that

v(x1) = inf
Ω

v(x) ≥ 1
p
√

u(x0)
≥ 1

p
√

C2

. (2.8)

for some x1 ∈ Ω. Summarizing (2.2), (2.3), (2.5) and (2.8), the proof is completed. �

By Theorem 2.1, we can obtain the following result easily, so we omit the proof here.

Corollary 2.1. Assume that (u(x), v(x)) is a positive solution of (1.4) and denote v = 1
|Ω|

∫

Ω

v(x)dx. Then,

there exists a positive constant C3 such that the following inequality holds:

|vp − vp| = |v − v| · |vp−1 + vp−2v + · · · + vvp−2 + vp−1| ≤ C3 · |v − v|, (2.9)

where C3 is depending possibly on a, b, d1, p and Ω.

By Theorem 2.1 and Corollary 2.1, we will give the sufficient conditions for the nonexistence of non-
constant positive solutions to (1.4).

Theorem 2.2. Assume that the following inequality holds:

μ1 > max
{

(a + b)(2C0 + 2|Ω| + C0λ) + C2C3|Ω|
2d1|Ω| ,

C0λ(a + b) + C2C3|Ω|(1 + 2λ)
2d2|Ω|

}

, (2.10)

where C0, C2 are defined in Theorem 2.1, and C3 in Corollary 2.1. Then, (1.4) has no non-constant
positive solutions.
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Proof. Denote w = 1
|Ω|

∫

Ω

w(x)dx. It is obviously that
∫

Ω

(u−u)dx =
∫

Ω

(v −v)dx = 0. Multiplying the both

sides of the first two equations in (1.4) by (u − u) and (v − v), respectively, it follows that

d1

∫

Ω

|∇(u − u)|2dx =
∫

Ω

[

uvp − (a + b)u
1 + bu

]

(u − u)dx

=
∫

Ω

[

uvp − uvp +
(a + b)u
1 + bu

− (a + b)u
1 + bu

]

(u − u)dx

=
∫

Ω

{

(uvp − uvp) + (uvp − uvp) +
[
(a + b)u
1 + bu

− (a + b)u
1 + bu

]}

(u − u)dx

=
∫

Ω

[

vp(u − u) + u(vp − vp) − (a + b)(u − u)
(1 + bu)(1 + bu)

]

(u − u)dx

=
∫

Ω

{[

vp − a + b

(1 + bu)(1 + bu)

]

(u − u) + u(vp − vp)
}

(u − u)dx

≤
∫

Ω

[
C0(a + b)

|Ω| + (a + b)
]

(u − u)2dx +
∫

Ω

C2C3|u − u||v − v|dx

≤
[
C0(a + b)

|Ω| + (a + b) +
C2C3

2

] ∫

Ω

(u − u)2dx +
C2C3

2

∫

Ω

(v − v)2dx,

(2.11)

and

d2

∫

Ω

|∇(v − v)|2dx = λ

∫

Ω

(1 − uvp)(v − v)dx = λ

∫

Ω

(uvp − uvp)(v − v)dx

= λ

∫

Ω

[uvp − uvp + uvp − uvp](v − v)dx

= λ

∫

Ω

[(u − u)vp + u(vp − vp)](v − v)dx

≤ λ

∫

Ω

[(u − u)vp + u(vp − vp)](v − v)dx

≤ λ

∫

Ω

C0(a + b)
|Ω| |u − u||v − v|dx + λ

∫

Ω

C2C3(v − v)2dx

≤ C0(a + b)λ
2|Ω|

∫

Ω

(u − u)2dx +
[
C0(a + b)λ

2|Ω| + C2C3λ

] ∫

Ω

(v − v)2dx.

(2.12)

Thanks to the well-known Poincaré inequality

μ1

∫

Ω

(w − w)2dx ≤
∫

Ω

|∇(w − w)|2dx, ∀ w ∈ H1(Ω),
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where μ1 is the first positive eigenvalue of −Δ with Neumann homogeneous boundary condition, we have

μ1d1

∫

Ω

(u − u)2dx ≤
[

C0(a+b)
|Ω| + (a + b) + C2C3

2

] ∫

Ω

(u − u)2dx + C2C3
2

∫

Ω

(v − v)2dx,

μ1d2

∫

Ω

(v − v)2dx ≤ C0(a+b)λ
2|Ω|

∫

Ω

(u − u)2dx +
[

C0(a+b)λ
2|Ω| + C2C3λ

] ∫

Ω

(v − v)2dx.
(2.13)

Adding the two inequalities of (2.13), we get

μ1d1

∫

Ω

(u − u)2 + μ1d2

∫

Ω

(v − v)2dx ≤ (a + b)(2C0 + 2|Ω| + C0λ) + C2C3|Ω|
2|Ω|

∫

Ω

(u − u)2dx

+
C0λ(a + b) + C2C3|Ω|(1 + 2λ)

2|Ω|
∫

Ω

(v − v)2dx,

(2.14)

which yields that u = u and v = v by the condition (2.10). That is to say, (1.4) has no non-constant
positive solutions. The proof is completed. �

Corollary 2.2. If λ is small enough or d2 is large enough, then (1.4) has no non-constant positive solutions.

Proof. Assume that (u, v) is a positive solution of (1.4). Note that v = 1
|Ω|

∫

Ω

v(x)dx. It follows from the

proof of Theorem 2.2 that (v − v) satisfies the second inequality of (2.13). So we must have v = v if λ is
small enough or d2 is large enough, and then, u = 1/ p

√
v by the second equation of (1.4). The proof is

completed. �

Remark 1. Theorem 2.1 will be still valid, if p > 1 is a positive constant, but not an integer.

3. Existence of bifurcation solutions: one-dimensional space

3.1. The bifurcation from simple eigenvalues

In this and next section, we will consider the steady-state bifurcations from both simple eigenvalues
and double eigenvalues, which imply the existence of non-constant positive solution of (1.4). The idea in
constructing this paper is partly due to the techniques developed in [13,16].

By using the Crandall–Rabinowitz bifurcation theorem [17, Theorem 13.5], we first take λ as the
parameter to discuss the bifurcation solutions of (1.4) with Ω = (0, π), i.e., the local bifurcation of the
following system: ⎧

⎪⎪⎨

⎪⎪⎩

d1Δu + uvp − (a+b)u
1+bu = 0 x ∈ (0, π),

d2Δv + λ(1 − uvp) = 0 x ∈ (0, π),

ux = vx = 0, x = 0, π,

(3.1)

where the Laplace operator Δ can be understood as Δ = ∂2

∂x2 in R.
It is common knowledge that all the eigenvalues of problem (3.2) (See Theorems 2.44 and 2.55 in [18])

{
φ′′ + μu = 0, x ∈ (0, π),

φx = 0, x = 0, π
(3.2)

are μn = n2, n = 0, 1, 2, . . ., and the corresponding eigenfunction are

φn(x) =

⎧
⎪⎨

⎪⎩

√
1
π , n = 0,

√
2
π cos nx, n > 0,
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which construct the normal orthogonal basis of L2(0, π).
Let X = {(u, v) : u, v ∈ W 2,p(0, π), ux = vx = 0, x = 0, π} and Y = Lp(0, π) × Lp(0, π). Then, X is a

Banach space, and Y is a Hilbert space with the inner product (U1, U2)Y = (u1, u2)L2(0,π)+(v1, v2)L2(0,π).
Define the mapping F : (0,∞) × X → Y by

F (λ,U) =

(
d1Δu + g(u, v) − h(u)

d2Δv + λ[1 − g(u, v)]

)

,

where U = (u, v), g(u, v) = uvp and h(u) = (a+b)u
1+bu . Then for any (u, v) ∈ X, that U = (u, v) is a zero of

(3.1) is equivalent to F (λ,U) = 0.
The Fréchet derivative of F (γ, U), with respect to U at U∗, could be characterized by

L(λ) =

(
d1Δ + ab

a+b
p

p
√

a

−λa d2Δ − λp
p
√

a

)

. (3.3)

The characteristic equation of L(λ) is L(λ)(ξ, η)� = Λ(ξ, η)�, where (ξ, η) ∈ X. That is to say, (ξ, η)
satisfies

⎧
⎪⎪⎨

⎪⎪⎩

d1Δξ + ab
a+bξ + p

p
√

a
η = Λξ, x ∈ (0, π),

d2Δη − λp
p
√

a
η − λaξ = Λη, x ∈ (0, π),

ux = vx = 0, x = 0, π.

Let ξ =
∞∑

n=0
anφn, η =

∞∑

n=0
bnφn. Then, the above characteristic equation translates into

∞∑

n=0

Mn(λ)
(

an

bn

)

φn = 0,

where

Mn(λ) =

(
−d1μn + ab

a+b
p

p
√

a

−λa −d2μn − λp
p
√

a

)

. (3.4)

Letting |Mn(λ)| = 0, n = 0, 1, 2, . . ., we have

Λ2 − TnΛ + Dn = 0, n = 0, 1, 2, . . . , (3.5)

where
Tn(λ) = −(d1 + d2)μn + ab

a+b − λp
p
√

a
,

Dn(λ) = d2μn

(
d1μn − ab

a+b

)
+ p

p
√

a

(
a2

a+b + d1μn

)
λ.

Letting Λ = 0 in (3.5), which yields Dn(λ) = 0, we have

λn :=
p
√

ad2(ab − d1(a + b)μn)μn

p(a2 + d1(a + b)μn)
. (3.6)

Hereafter in this paper, we will impose the condition

(H) : ab > d1(a + b).

Accordingly, there exists a positive integer nλ such that −d1μn + ab
a+b > 0 for 1 ≤ n ≤ nλ. Now, we will

prove the existence of non-constant positive solutions of F (λ,U) = 0 near (λn, U∗) with 1 ≤ n ≤ nλ.
By the Crandall and Rabinowitz bifurcation theorem (See Theorem 13.5 in [17]), (λ0, U

∗) is a bifur-
cation point of F (λ,U) = 0 if the following conditions hold:
(1) Fλ, FU and Fλ,U exist and are continuous;
(2) dim ker FU (λ0, U

∗) = codim R(FU (λ0, U
∗)) = 1;
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(3) ker FU (λ0, U
∗) = span{Φ}, Fλ,U (λ0, U

∗)Φ �∈ R(FU (λ0, U
∗)).

Theorem 3.1. Suppose that (H) holds and takes

λn =
p
√

ad2(ab − d1(a + b)μn)μn

p(a2 + d1(a + b)μn)
, where 1 ≤ n ≤ nλ and μn = n2.

If λi �= λj when i �= j (1 ≤ i, j ≤ nλ), then (λi, U
∗) with 1 ≤ i ≤ nλ is a bifurcation point of F (λ,U) = 0

with respect to the curve (λ,U∗), λ > 0.
Moreover, there is a curve of non-constant positive solutions

(λ(s), (u(s), v(s))) = (λ(s), (u∗ + s(φi + o(s)), v∗ + s(biφi + o(s))))

with |s| � 1, satisfying λ(0) = λi, u(0) = u∗, v(0) = v∗ and λ(s), u(s), v(s) are continuous functions with
respect to s. Here, bi = −λia

d2μi+
λip
p√a

.

Proof. Note that

L(λi) := FU (λi, U
∗) =

(
d1Δ + ab

a+b
p

p
√

a

−λia d2Δ − λip
p
√

a

)

,

and from (3.4), we have

|Mn(0)| = 0 ⇔ λ = λn =
d2μn

(
−d1μn + ab

a+b

)

p
p
√

a

(
a2

a+b + d1μn

) .

By some simple calculations, we obtain that ker L(λi) = span{Φ},Φ = (1, bi)⊥φi, where

bi =
d1μi − ab

a+b
p

p
√

a

=
−λia

d2μi + λip
p
√

a

< 0.

The adjoint operator of L(λi) can be expressed as

L∗(λi) =

(
d1Δ + ab

a+b −λia
p

p
√

a
d2Δ − λip

p
√

a

)

.

Similarly, we get ker L∗(λi) = span{Φ∗},Φ∗ = (1, b∗
i )

⊥φi, where

b∗
i =

−d1μi + ab
a+b

λia
=

p
p
√

a

d2μi + λip
p
√

a

> 0.

Since R(L) = (ker L∗)⊥, we obtain

codim R(L(λi)) = dim ker L∗(λi) = 1.

Besides,

Fλ,U (λi, U
∗)Φ =

(
0 0

−a − p
p
√

a

)

Φ =

[
0

−
(
d1μi + a2

a+b

)

]

φi

and

(Fλ,U (λi, U
∗)Φ,Φ∗)Y = −

(

d1μi +
a2

a + b

) p
p
√

a

d2μi + λip
p
√

a

< 0, �= 0. (3.7)

Inequation (3.7) implies that Fλ,U (λi, U
∗)Φ �∈ R(L(λi)), which concludes the proof. �

Remark 2. Theorem 3.1 will be still valid, if p > 1 is a positive constant, but not an integer.
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Fig. 1. a The relation between λ′(μ) (the vertical axis) and μ (the horizontal axis), b the relation between λ(μ) (the vertical
axis) and μ (the horizontal axis)

3.2. The bifurcation from double eigenvalues

Recall the definition of λn in (3.6) and take λ(μ) =
d2μ(−d1μ+ ab

a+b )
p
p√a

(
a2

a+b +d1μ
) with μ ≥ 0. It can be easily verified

from the continuity and monotonicity for λ(μ) (see Fig. 1), that λi in (3.6) may be or not be equal to λj

when i �= j, 1 ≤ i, j ≤ nλ. So there are two cases:

(1) For any i, j ∈ [1, nλ], λi �= λj when i �= j;
(2) For any i, j ∈ [1, nλ], there will be at most two positive integers i �= j with λi = λj .

Case (1) was discussed by Theorem 3.1, which implies the bifurcation from simple eigenvalues. In this
section, we will discuss the bifurcation solutions of (3.1) from double eigenvalues, i.e., Case (2), by using
the implicit function theorem.

Theorem 3.2. Suppose that (H) holds and there exist two positive integers i �= j, but λi = λj = λ and
j = 2i, 1 ≤ i, j ≤ nγ . Take ω0 ∈ R with cos ω0 �= 0 and (a + p

p
√

a
bi) cos2 ω0c1c3 �= (a + p

p
√

a
bj) sin2 ω0c2c4.

If 1 + bib
∗
i �= 0, 1 + bjb

∗
j �= 0, then (γ̂, U∗) is a bifurcation point of F (γ, U) = 0 with respect to the curve

(λ,U∗), λ > 0.
Moreover, there is a curve of non-constant positive solutions (γ(ω), U∗+s(cos ω Φi+sin ω Φj +W (ω)))

with |ω − ω0| � 1, satisfying λ(ω0) = λ, s(ω0) = 0,W (ω0) = 0 and λ(ω), s(ω),W (ω) are continuously
differentiable functions with respect to ω. Here, λi and λj are defined by (3.6) and

Φi = (1, bi)⊥φi, Φj = (1, bj)⊥φj ,

bi = −λa

d2μi+
λp
p√a

, bj = −λa

d2μj+
λp
p√a

, b∗
i =

p
p√a

d2μi+
λp
p√a

, b∗
j =

p
p√a

d2μj+
λp
p√a

.

Proof. Take the translation U = U∗ + (y, z), then F (γ, U) = 0 yields a new map F : R × X → Y :

F(λ, (y, z)) =
(

d1Δy + g(u∗ + y, v∗ + z) − h(u∗ + y)
d2Δz + λ − λg(u∗ + y, v∗ + z)

)

= L(λ)(y, z)� + (f1, f2)�,

(3.8)

where L(λ) is defined by (3.3), g(u, v) = uvp, h(u) = (a+b)u
1+bu and

f1
.= f1(y, z) = g(u∗ + y, v∗ + z) − h(u∗ + y) − ab

a+by − p
p
√

a
z,

f2
.= f2(y, z) = λ − λg(u∗ + y, v∗ + z) + λay + λp

p
√

a
z.
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By the most basic version of Taylor’s theorem, the third-order expansion of f1 and f2 at (0, 0) can be
expressed as follows:

f1 = 1
2Ay2 + Byz + 1

2Cz2 + 1
6Dy3 + 1

2Eyz2 + 1
6Hz3 + O(|y|4, |y||z|3),

f2 = B̂yz + 1
2 Ĉz2 + 1

2 Êyz2 + 1
6Ĥz3 + O(|y||z|3, |z|4),

(3.9)

where
A = 2a3b

(a+b)2 > 0, B = pa
p−1

p > 0,

C = p(p − 1)a− 2
p > 0, D = − 6a4b2

(a+b)3 < 0,

E = p(p − 1)a
p−2

p > 0, H = p(p − 1)(p − 2)a− 3
p ,

B̂ = −λpa
p−1

p < 0, Ĉ = −λp(p − 1)a− 2
p < 0.

Ê = λp(p − 1)a
p−2

p < 0 Ĥ = −λp(p − 1)(p − 2)a− 3
p .

(3.10)

Recall L(λ) in (3.3) and Mn(λ) in (3.4) and let L(λ)(ξ, η)� = 0. It’s easy to check that |Mn(0)| = 0
is equivalent to n = i, j. Accordingly, we have

ker L(λ) = span{Φi,Φj}, Φi = (1, bi)�φi, Φj = (1, bj)�φj ,

where

bi =
−λa

d2μi + λp
p
√

a

< 0, bj =
−λa

d2μj + λp
p
√

a

< 0, bi �= bj .

Similarly, for the adjoint operator L∗(λ) we have

ker L∗(λ) = span{Φ∗
i ,Φ

∗
j}, Φi = (1, b∗

i )
�φi, Φj = (1, b∗

j )
�φj ,

where

b∗
i =

p
p
√

a

d2μi + λp
p
√

a

> 0, b∗
j =

p
p
√

a

d2μj + λp
p
√

a

> 0, b∗
i �= b∗

j .

Therefore, the image space of L(λ) can be expressed by

R(L(λ)) =

⎧
⎨

⎩
(ϕ,ψ) ∈ Y :

π∫

0

(ϕ + b∗
i ψ)φidx =

π∫

0

(ϕ + b∗
jψ)φjdx = 0

⎫
⎬

⎭
,

which yields

codim R(L(λ)) = dim ker L∗(λ) = 2.

Set X1 = span{Φi,Φj}. Decomposes X = X1 ⊕ X2 with

X2 =

⎧
⎨

⎩
(ϕ,ψ) ∈ Y :

π∫

0

(ϕ + biψ)φidx =

π∫

0

(ϕ + bjψ)φjdx = 0

⎫
⎬

⎭
.

And again, we define a projection from Y to X1 ⊂ Y by

P

(
y
z

)

=
1

1 + bib∗
i

⎡

⎣

π∫

0

(ϕ + b∗
i ψ)φidx

⎤

⎦Φi +
1

1 + bjb∗
j

⎡

⎣

π∫

0

(ϕ + b∗
jψ)φjdx

⎤

⎦Φj .

Thus, we can decomposes Y = Y1 ⊕ Y2 with Y1 = R(P ) = X1 and Y2 = ker(P ) = R(L(λ)). One can see
[19] for the detailed decomposition.
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Now, we will find solutions of F(λ, (y, z)) = 0 in the following form

(y, z)� = s(cos ω Φi + sinω Φj + W ), W = (w1, w2)� ∈ X2, (3.11)

where s, ω ∈ R are parameters. Take a fixed ω0 ∈ R such that cos ω0 �= 0 and (a + p
p
√

a
bi) cos2 ω0c1c3 �=

(a + p
p
√

a
bj) sin2 ω0c2c4. Define a new mapping G(γ, s,W ;ω) : R × R × X2 × (ω0 − δ, ω0 + δ) → Y by

G(λ, s,W ;ω) = s−1F(γ, s(cos ω Φi + sinω Φj + W ))

= L(λ)(cos ω Φi + sin ω Φj + W ) + s−1(f1, f2)�,

= L(λ)(cos ω Φi + sin ω Φj + W ) + s(g1, g2)�,

where
g1 = 1

2Ay2 + Byz + 1
2Cz2 + s( 1

6Dy3 + 1
2Eyz2 + 1

6Hz3) + O(|s|2),
g2 = B̂yz + 1

2 Ĉz2 + s( 1
2 Êyz2 + 1

6Ĥz3) + O(|s|2),
and (y, z) = (cos ω φi + sin ω φj + w1, bi cos ω φi + bj sin ω φj + w2).

It is obvious that G(λ, 0, (0, 0);ω0) = 0. At (λ, s,W ;ω) = (λ, 0, (0, 0);ω0), the Fréchet derivative of
G(λ, s,W ;ω) with respect to (λ, s,W ) can be characterized by the mapping

G(λ,s,W )(λ, 0, (0, 0);ω0)(λ, s,W )

= L(λ)W − λ
(
a + p

p
√

a
bi

)
cos ω0

(
0
φi

)

− λ
(
a + p

p
√

a
bj

)
sin ω0

(
0
φj

)

+s cos ω2
0

( 1
2A + Bbj + 1

2Cb2
j

B̂bj + 1
2 Ĉb2

j

)

φ2
i + s sin ω0 cos ω0

(
A + Bbj + Bbi + Cbibj

B̂bj + B̂bi + Ĉbibj

)

φiφj

+s sin ω2
0

( 1
2A + Bbj + 1

2Cb2
j

B̂bj + 1
2 Ĉb2

j

)

φ2
j .

(3.12)

By the projection P from Y to Y1, we have
(

0
φi

)

= c1Φi +
(

y1

z1

)

,

(
0
φj

)

= c2Φj +
(

y2

z2

)

,

where

c1 = b∗
i

1+bib∗
i

�= 0,

(
y1

z1

)

=
[ −c1φi

(1 − c1bi)φi

]

∈ Y2,

c2 = b∗
j

1+bjb∗
j

�= 0,

(
y2

z2

)

=
[ −c2φj

(1 − c2bj)φi

]

∈ Y2.

Note that j = 2i. Thus, we have
π∫

0

φ2
i φjdx =

√
1
2π �= 0 and

π∫

0

φ2
jφidx = 0. In addition,

π∫

0

φ3
i dx =

π∫

0

φ3
jdx = 0 is valid. Accordingly,

(
y5

z5

)
.=
( 1

2A + Bbj + 1
2Cb2

j

B̂bj + 1
2 Ĉb2

j

)

φ2
j ∈ Y2.
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Then, we decompose

( 1
2A + Bbj + 1

2Cb2
j

B̂bj + 1
2 Ĉb2

j

)

φ2
i = c3Φj +

(
y3

z3

)

,

(
A + Bbj + Bbi + Cbibj

B̂bj + B̂bi + Ĉbibj

)

φiφj = c4Φi +
(

y4

z4

)

,

where

c3 =
√

1
2π

( 1
2A+Bbj+

1
2C)+b∗

j ( 1
2 Â0+B̂0bj)

1+bjb∗
j

,

c4 =
√

1
2π

(A+Bbj+Bbi+Cbibj)+b∗
i (B̂bj+B̂bi+Ĉbibj)

1+bib∗
i

,

and

(
y3

z3

)

=

[
( 1
2A + Bbj + 1

2Cb2
j )φ

2
i − c3φj

(B̂bj + 1
2 Ĉb2

j )φ
2
i − c3bjφj

]

∈ Y2,

(
y4

z4

)

=
[

(A + Bbj + Bbi + Cbibj)φiφj − c4φi

(B̂bj + B̂bi + Ĉbibj)φiφj − c4biφi

]

∈ Y2.

In order to use the implicit function theorem, it suffices to verify that G(λ,s,W )(λ, 0, (0, 0);ω0) : R ×
R × X2 → Y is an isomorphism, in other words, G(λ,s,W )(λ, 0, (0, 0);ω0) is injective and surjective. Let

G(λ,s,W )(λ, 0, (0, 0);ω0)(λ, s,W ) = 0. (3.13)

Note that L(λ) is an isomorphism from X2 to Y2, Φi,Φj ∈ Y1 and (yk, zk)� ∈ Y2, k = 1, 2, 3, 4, 5. By
(3.12), (3.13) translates into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−λ

(
a + p

p
√

a
bi

)
cos ω0c1 + s sin ω0 cos ω0c4

]
Φi

+
[
−λ

(
a + p

p
√

a
bj

)
sin ω0c2 + s cos ω2

0c3

]
Φj = 0,

L(λ)W − λ
(
a + p

p
√

a
bi

)
cos ω0

(
y1

z1

)

− λ
(
a + p

p
√

a
bj

)
cos ω0

(
y2

z2

)

+s cos ω2
0

(
y3

z3

)

+ s sin ω0 cos ω0

(
y4

z4

)

+ s sin ω2
0

(
y5

z5

)

= 0,

(3.14)

Since (a + p
p
√

a
bi) cos2 ω0c1c3 �= (a + p

p
√

a
bj) sin2 ω0c2c4, we obtain λ = 0, s = 0 from the first equation of

(3.14). Since L(λ) is an isomorphism from X2 to Y2, we obtain W = 0 from the second equation of (3.14).
This yields that G(λ,s,W )(λ, 0, (0, 0);ω0) is injective.

Next, for any (y, z) ∈ Y , we will prove that there exists (λ, s,W ) ∈ R × R × X2 such that

G(λ,s,W )(λ, 0, (0, 0);ω0)(λ, s,W ) = (y, z)�. (3.15)
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By the decomposition of Y , there exist α, β ∈ R and (y0, z0) ∈ Y2 such that (y, z)� = αΦi+βΦj+(y0, z0)�.
Substituting (y, z) in (3.15), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−λ

(
a + p

p
√

a
bi

)
cos ω0c1 + s sin ω0 cos ω0c4

]
Φi

+
[
−λ

(
a + p

p
√

a
bj

)
cos ω0c2 + s cos ω2

0c3

]
Φj = αΦi + βΦj ,

L(λ)W − λ
(
a + p

p
√

a
bi

)
cos ω0

(
y1

z1

)

− λ
(
a + p

p
√

a
bj

)
cos ω0

(
y2

z2

)

+s cos ω2
0

(
y3

z3

)

+ s sin ω0 cos ω0

(
y4

z4

)

+ s sin ω2
0

(
y5

z5

)

=
(

y0

z0

)

,

(3.16)

Since (a + p
p
√

a
bi) cos2 ω0c1c3 �= (a + p

p
√

a
bj) sin2 ω0c2c4 again and cos ω0 �= 0, we obtain

λ =
α cos ω0c3 − β sin ω0c4

(a + p
p
√

a
bj) sin2 ω0c2c4 − (a + p

p
√

a
bi) cos2 ω0c1c3

,

s =
α(a + p

p
√

a
bj) sin ω0c2 − β(a + p

p
√

a
bi) cos ω0c1

(a + p
p
√

a
bj) sin2 ω0c2c4 − (a + p

p
√

a
bi) cos2 ω0c1c3

from the first equation of (3.16). Since L(λ) is an isomorphism from X2 to Y2 again, we obtain W =
L−1(λ)(ỹ, z̃)� ∈ X2 from the second equation of (3.16), where

(
ỹ
z̃

)

=
(

y0

z0

)

+ λ
(
a + p

p
√

a
bi

)
cos ω0

(
y1

z1

)

+ λ
(
a + p

p
√

a
bj

)
cos ω0

(
y2

z2

)

−s cos ω2
0

(
y3

z3

)

− s sin ω0 cos ω0

(
y4

z4

)

− s sin ω2
0

(
y5

z5

)

,

This yields that G(λ,s,W )(λ, 0, (0, 0);ω0) is surjective. Consequently, G(λ,s,W )(λ, 0, (0, 0);ω0) : R×R×
X2 → Y is an isomorphism.

By using the implicit function theorem to G(λ, s,W ;ω) = 0, there is a curve of non-constant solutions
(λ(ω), s(ω),W (ω)) with |ω − ω0| � 1, satisfying λ(ω0) = λ, s(ω0) = 0,W (ω0) = 0, and λ(ω), s(ω),W (ω)
are continuously differentiable functions with respect to ω. Hence, (λ(ω), U∗ + s(cos ω Φi + sinω Φj +
W (ω))) are non-constant positive solutions of F (λ, u) = 0. The proof is completed. �

Remark 3. Note that if i = 2j, then
π∫

0

φiφ
2
jdx =

√
1
2π �= 0,

π∫

0

φ2
i φjdx = 0. By using the different space

decomposition to

(
0
φi

)

,

(
0
φj

)

,

(
φ2

i

φ2
i

)

,

(
φiφj

φ2
i φj

)

and

(
φ2

j

φ2
j

)

, ones will come up with similar bifurcation

conclusions for (3.1) by repeating the above procedure.

Remark 4. Theorem 3.2 will be still valid, if p > 1 is a positive constant, but not an integer.

Remark 5. Note that Sect. 3 mainly discusses the existence of bifurcation solutions of system (1.4) with
one-dimensional space, especially the bifurcations from double eigenvalues. Next section will consider the
higher dimension case, for the completeness of our results.
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4. Existence of non-constant positive steady states: the degree theory

In view of the nonexistence results in Sect. 2, it is particularly interesting to know if (1.4) admit non-
constant solutions when the system parameters take on small or larger values. We shall give a positive
answer this section, by using a standard approach based on the Leray–Schauder degree theory for compact
operators in Banach space.

We first reformulate the system (1.4) in the framework that the degree theory can be easily applied.
Let (u, v) = (u∗v∗) + (y, z). It follows from (3.8), (3.9) and (3.10), that (1.4) is shifted to

⎧
⎪⎪⎨

⎪⎪⎩

−d1Δy = a1y + a2z + f1(y, z) x ∈ Ω,

−d2Δz = b1y + b2z + f2(y, z) x ∈ Ω,

∂v
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω.

(4.1)

where

a1 =
ab

a + b
, a2 =

p
p
√

a
, b1 = −λa, b2 = − λp

p
√

a

and f1, f2 consist of higher order terms of y and z, which are defined by (3.9). The constant positive
solution (u∗v∗) is thus shifted to (0, 0), and if (u, v) is a positive solution of (1.4), then (y, z) must satisfy

R =

{

(y, z) :
|Ω|

C0(a + b)
− 1 + ε0

a
< u < C2 − 1 − ε0

a
,

1
p
√

C2

− p
√

a − ε0 < v < p

√
C0(a + b)

|Ω| − p
√

a + ε0

}

,

where ε0 is a positive constant with ε0 � 1 and C0, C2 are defined in Theorem 2.1.
Denote a space E by

E =
{

(u, v) : u, v ∈ C1,α(Ω),
∂v

∂ν
=

∂v

∂ν
= 0 on ∂Ω

}

and W = (y, z). Then, (1.4) can be interpreted as the following equation

W = K(λ)W + H(W ) (4.2)

in E, where

K(λ)W = (2a1K1y + a2K1z, b1K2y), H(W ) = (K1f1,K2f2) = o(W ),

are two compact linear operators on E, and K1 = (−d1Δ + a1)−1,K2 = (−d2Δ − b2)−1.
Let 0 = λ0 < μ1 ≤ μ2 ≤ μ3 ≤ · · · be the sequence of eigenvalues for the elliptic operator −Δ subject

to the Neumann boundary condition on Ω, where each μi has multiplicity mi ≥ 1. Let φij , 1 ≤ j ≤ mi,
be the normalized eigenfunctions corresponding to μi. Then, the set {φij}, i ≥ 0, 1 ≤ j ≤ mi, forms a
complete orthonormal basis in L2(Ω).

Take

λ0 =
p
√

aab

p(a + b)
, λS(μi) =

p
√

ad2(ab − d1(a + b)μi)μi

p(a2 + d1(a + b)μi)
. (4.3)

and assume that

(H’) : ab > d1μ1(a + b), i.e., a1 > d1μi.

Accordingly, there exists a positive integer ñλ such that ab > d1μi(a + b), i.e., a1 > d1μi, for 1 ≤ i ≤ ñλ.
Then we can define λ̃ and λ̂ by

λ̃ := max
1≤i≤ñλ

{λS(μi)}, λ̂ := max
i>0

{λS(μi)}. (4.4)

We first give the asymptotic stability of the unique positive constant solution (u∗v∗) for (1.3).
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Lemma 4.1. (See [6, Theorem 3.1]) If λ > max{λ0, λ̂}, then (u∗v∗) is linear stable (and then local
asymptotic stable) with respect to (1.3); if λ < max{λ0, λ̃}, then (u∗v∗) is unstable.

Theorem 4.1. Assume (H’) holds. Assume that a, b, p, d1, λ are fixed positive constant. If μ1 < ab
d1(a+b) < μ2

and μ1 has an odd multiplicity m1, then (1.4) possesses at least one non-constant positive solution if
λ < λS(μ1) and d1 ≥ 1.

Proof. By Theorem 2.1, (1.4) has no solution on the boundary of R. Thus, the Leray–Schauder degree
deg(I −K(λ)−H,E

⋂
R, 0) is well defined, and by the homotopy invariance it is a constant for all d2 > 0.

By [20, Theorem 6.3.9], we note that if (0, 0) is an isolated zero of I − K(λ) − H and the linear operator
I − K(λ) is a bijection, then

deg(I − K(λ) − H,B(0), 0) = i(I − K(λ), (0, 0)) = (−1)σ,

where σ is the sum of the algebraic multiplicities of the positive eigenvalues of K(λ) − I and B(0) is a
small open ball with center at (0, 0). Note that if ζ is an eigenvalue of K(λ) − I with a corresponding
eigenfunction (ξ, η), then

−d1(ζ + 1)Δξ = (1 − ζ)a1ξ + a2η,
−d2(ζ + 1)Δη = b1ξ + (ζ + 1)b2η.

Let

ξ =
∑

0≤i<∞,1≤j≤mj

aijφij , η =
∑

0≤i<∞,1≤j≤mj

bijφij .

Then
∑

0≤i<∞,1≤j≤mj

Mi

(
aij

bij

)

φij = 0,

where

Mi(λ) =
(

(1 − ζ)a1 − d1(ζ + 1)μi a2

b1 (ζ + 1)b2 − d2(ζ + 1)μi

)

.

Hence the set of eigenvalues of K(λ) − I consists exactly of all roots of the characteristic equation

(a1 + d1μi)ζ2 + 2d1μiζ + d1μi − a1 +
a2b1

b2 − d2μi
= 0. (4.5)

Note a1 = ab
a+b , a2 = p

p
√

a
, b1 = −λa, b2 = − λp

p
√

a
and let Pi := 2d1μi, Qi := d1μi − a1 + a2b1

b2−d2μi
. Then we

obtain that
(1) If i = 0, then Pi = 0, Qi = a2

a+b > 0 for any λ > 0;
(2) If 1 ≤ i ≤ ñλ, then Pi > 0 and Qi > 0 since λ > λS(μ1) ≥ λ̂;
(3) If i > ñλ, it is obviously that Pi > 0 and Qi > 0 for any λ > 0.

In summary, (4.5) has no positive root for any i ≥ 0, and thus, K(λ)−I has no positive eigenvalue, which
yields that i(I − K(λ), (0, 0)) = (−1)σ = (−1)0 = 1.

It follows from Corollary 2.2 that, if we chose a constant λ0 small enough, then (4.1) with λ = λ0 has
no solution other than (0, 0) in R. Thus,

deg
(
I − K(λ) − H,E

⋂
R, 0

)
= i(I − K(λ0), (0, 0)) = 1. (4.6)

Now suppose for contradiction that there exists d > D such that (1.4) does not admit any non-constant
solution under our assumption. Then (0, 0) is an isolated zero of I − K(λ) − H in R. Recall that

λS(μ1) =
p
√

ad2(ab − d1(a + b)μ1)μ1

p(a2 + d1(a + b)μ1)
.
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Since μ1 < ab
d1(a+b) < μ2, we have

(1) For i = 1, (4.5) has one positive root ζ1, and a negative root;
(2) For i �= 1, (4.5) has no roots with positive real parts.

In summary, we conclude that K(d) − I has exactly one positive eigenvalue μ1 > 0, and all other
eigenvalues have non-positive real parts. Thus,

deg
(
I − K(λ) − H,E

⋂
R, 0

)
= i(I − K(λ), (0, 0)) = (−1)σ (4.7)

for all λ < λS(μ1).
Next, we prove that σ = m1. By the definition of the algebraic multiplicities,

σ = dim
∞⋃

i=1

ker Li, L = K(λ) − (ζ1 + 1)I.

Note that m1 = dim ker L. It is obviously that σ ≥ m1. It is now sufficient to prove

ker L2 = ker L, (4.8)

which implies ker Li = ker L for all i ≥ 1. It is known that (4.8) holds if and only if ker L⋂R(L) = {0}.
Let L∗ be the adjoint operator of L, then R(L) = (ker L∗)⊥. Note that L∗ = K(λ)∗ − (ζ1 + 1)I, where
K(λ)∗ is the adjoint of K(λ).

By the above statement, we have

ker L =
{(

a2

(ζ1 − 1)a1 + d1(ζ1 + 1)μ1

)

φ1j , 1 ≤ j ≤ mi

}

.

By some similarly standard argument, we also have that

ker L∗ =
{(

d1(ζ1 + 1)(a1 + μ1)
a2

)

φ1j , 1 ≤ j ≤ mi

}

.

Since d1 ≥ 1, we have

(ζ1 − 1)a1 + d1(ζ1 + 1)μ1+d1(ζ1 + 1)(a1 + μ1) =

2d1μ1(ζ1 + 1) + a1[ζ1(1 + d1) + (d1 − 1)] > 0,
(4.9)

so, we have ker L⋂R(L) = {0}, which implies that σ = m1. Thus, we have

deg(I − K(λ) − H,E
⋂

R, 0) = i(I − K(λ), (0, 0)) = (−1)σ = (−1)m1 = −1 (4.10)

for all λ < λS(μ1), which is a contradiction to (4.6). This completes the proof. �

Remark 6. The condition “d1 ≥ 1” in Theorem 4.1 is a technical condition in the proof procedure. In
fact, we just need to seek out some appropriate parameters such that the inequality of (4.9) is established.

Remark 7. Note that Theorem 4.1 discusses the existence of non-constant positive solutions of system
(1.4) with higher dimension space. Unfortunately, it does not give us the definite expressions of the
solutionis, as Theorems 3.1 and 3.2.

5. Conclusions

In this paper, we investigate a bimolecular autocatalytic model, which appears in a diffusion–reaction
process with autocatalysis and the Langmuir–Hinshelwood (Michaelis–Menten, Holling) saturation law.
The main motivation is to propose the effects of the reaction rate λ on the bimolecular reaction kinetics,
which is characterized by the parameter k1 in Sect. 1.
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In the introduction, by some changes in variables the original system (1.1) essentially has the same
dynamical behavior as the reaction–diffusion system corresponding to (1.3). For the bimolecular station-
ary model (1.4) and its corresponding reaction–diffusion system (3.1) in one-dimensional case, we have
obtained the existence results of spatially non-homogeneous steady states by the bifurcation theory and
the Leray–Schauder degree theory. In addition, some boundedness and nonexistence results steady state
is investigated in terms of parameters.

On the other hand, the steady-state bifurcations from simple and double eigenvalues are intensively
studied. The techniques of space decomposition and implicit function theorem are adopted to deal with
the case of double eigenvalues, which is an extension of the classical Crandall and Rabinowitz bifurcation
theorem (Bifurcation from simple eigenvalues).
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[19] Lou, Y., Mart́ınez, S., Poláčik, P.: Loops and branches of coexistence states in a Lotka–Volterra competition model. J.

Differ. Equ. 230(2), 720–742 (2006)
[20] Ye, Q., Li, Z., Wang, M., Wu, Y.: Introduction to Reaction–Diffusion Equations (in Chinese). Science Press, Beijing

(2011)

https://doi.org/10.1016/j.camwa.2018.08.025


ZAMP The existence of steady states for a bimolecular model Page 19 of 19 131

Wenbin Yang
School of Science
Xi’an University of Posts and Telecommunications
Xi’an 710121, Shaanxi
China
e-mail: yangwenbin-007@163.com

Zhaoying Wei
School of Science
Xi’an Shiyou University
Xi’an 710065, Shaanxi
China

Hongling Jiang and Haixia Li
Institute of Mathematics and Information Sciences
Baoji University of Arts and Sciences
Baoji 721013, Shaanxi
China

Yanling Li
College of Mathematics and Information Science
Shaanxi Normal University
Xi’an 710119, Shaanxi
China

(Received: December 23, 2017; revised: June 1, 2018)


	The existence of steady states for a bimolecular model with autocatalysis and saturation law
	Abstract
	1. Introduction
	2. Some characterizations of positive solutions
	3. Existence of bifurcation solutions: one-dimensional space
	3.1. The bifurcation from simple eigenvalues
	3.2. The bifurcation from double eigenvalues

	4. Existence of non-constant positive steady states: the degree theory
	5. Conclusions
	Acknowledgements
	References




