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Abstract. In this paper we consider the type III thermoelastic theory with microtemperatures. We study the time decay of
the solutions and we prove that under suitable conditions for the constitutive tensors, the solutions decay exponentially. This
fact is in somehow shocking because it differs from the behavior of the solutions in the classical model of thermoelasticity
with microtemperatures.
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1. Introduction and basic equations

Experimental observation shows that the classical heat continuum theory cannot be used to describe
satisfactorily some thermal phenomena. At the same time, the behavior of the thermal waves obtained
from the combination of the Fourier law with the equation

cθ̇ = −∇q

violates the principle of causality (in the above equation θ denotes the temperature, q the heat flux and c
is the thermal capacity). To overcome these drawbacks, new mathematical models have been introduced.
As a matter of illustration, let us recall the Green and Lindsay [13] or the Lord and Shulman [37] theories.
Both of them are proposed from the Cattaneo–Maxwell heat conduction equation [5]. We can also cite the
two temperatures model proposed by Chen and Gurtin [6] and Chen, Gurtin and Williams [7,8] or the
time reversal thermoelasticity [18]. Green and Nagdhi proposed three other thermoelastic theories that
they named of type I, II and III, respectively [14–16]. The first one coincides with the classical theory
in the linear case. The second one is known as thermoelasticity without energy dissipation because there
is no dissipation and the energy is conserved. The third one is the most general, because it contains the
former two as limit cases.

On the other side, recently there is an increasing interest concerning models with microstructure
[12,22–26,28]. An important case appears when the microstructure is given by thermal effects as mi-
crotemperatures [4,9,10,41,42]. Applications of them have been proposed in the literature [27,43]. Grot
[17] developed a theory of thermodynamics for elastic materials with microstructure whose microelements,
in addition to microdeformations, possess microtemperatures in the context of the classical theory. The-
ories with microtemperatures are currently under deep investigation.

From now on, we are going to work in a three-dimensional bounded domain Ω with boundary smooth
enough to allow the application of the divergence theorem. We wil use the standard notation where “, i”
means the partial derivative with respect to the variable xi, a superposed dot means time derivative and
summation on repeated indices is assumed.

In this paper we are interested in the thermoelastic theory of type III with microtemperatures, and
the system of equations that we want to study (proposed by Aouadi, Ciarletta and Passarella [3]) is the
following:
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⎧
⎨

⎩

ρüi = (Aijkluk,l − aijθ + BijklRk,l),j

cτ̈ = −aij u̇i,j − (dijṘi),j + (Kijτ,j + K∗
ij τ̇,j),i − bijṘi,j

cijR̈j = (Bklijuk,l − bij τ̇ + CijklRk,l),j − dij τ̇,j + (C∗
ijklṘk,l),j

(1.1)

Here, ui is the displacement vector, θ is the temperature and Mi are the microtemperatures. Moreover,
τ is the thermal displacement introduced by Green and Naghdi and Ri are the microthermal displacements,
defined, respectively, by:

τ(x, t) = τ0(x) +

t∫

0

θ(x, s) ds and Ri(x, t) = R0
i (x) +

t∫

0

Mi(x, s) ds.

As usual, ρ denotes the mass density and c the thermal capacity. Aijkl is the elastic tensor, aij is the
coupling tensor between the displacement and the temperature, Bijkl is the coupling tensor between the
displacement and the microtemperatures, dij and bij are the coupling tensors between the temperature
and the microtemperatures, Kij is the tensor introduced by Green and Naghdi, K∗

ij is the thermal
conductivity tensor, cij is a typical tensor of the theories with microtemperatures, and, finally, Cijkl and
C∗

ijkl are the specific type III tensors with microtemperatures.
To have a well posed problem we need to impose initial and boundary conditions. As initial conditions

we assume
ui(x, 0) = u0

i (x), u̇i(x, 0) = v0
i (x), τ(x, 0) = τ0(x), τ̇(x, 0) = θ0(x)

Ri(x, 0) = R0
i (x), Ṙi(x, 0) = M0

i (x) for x ∈ Ω.
(1.2)

And we impose homogeneous boundary conditions:

ui(x, t) = τ(x, t) = Ri(x, t) = 0 for x ∈ ∂Ω, t ≥ 0. (1.3)

The following symmetries are satified:

Aijkl = Aklij ,Kij = Kji,K
∗
ij = K∗

ji, Cijkl = Cklij , cij = cji. (1.4)

It is well known that the axioms of thermomechanics imply that the thermal conductivity tensor,
K∗

ij , cannot have negative sign. However, these axioms do not imply any other condition over none of
the remaining tensors, including the elasticity tensor [29]. It is also known that for elastic materials
initially prestressed, the elasticity tensor does not have necessarily positive sign [20,21,29]. Therefore,
it is relevant to analyze the problem determined by thermoelastic systems when the elasticity tensor is
not positive definite (see, for example, [2,31,34,35,44]). It is important to notice that this problem can
be ill posed in the sense of Hadamard. Hence it is difficult to deal with. For this reason it is difficult
to obtain results about the qualitative properties of the solutions. Nevertheless, results on uniqueness,
instability of solutions, continuous dependence in the sense of Hölder, structural stability, etc., have been
found for different situations [1,32,33,40]. In fact, this kind of results can also be obtained for the type
III thermoelasticity with microtemperatures, the situation we analyze. Nevertheless, the techniques used
to prove them are quite standard and we will not write the developments here. We will focus on the
exponential stability of the solutions.

On the other hand, it is worth noting that the existence of solutions is, in general, a very difficult
property to prove. Knops [30] showed the existence of solutions in a weak sense for the isothermal case, but,
up to now, this result has not been extended to any other thermoelastic situation. From a mathematical
point of view, the existence of solutions is strongly easier when the elasticity tensor is positive definite.
Usually, this fact implies the stability of the system in the sense of Lyapunov. With this hypothesis, the
existence and uniqueness of solutions were established [3] for our problem, but the exponential stability
remained unsolved. In this work we prove that under suitable conditions for the constitutive tensors, the
system is exponentially stable. This fact differs from the result known for the classical heat conduction
theory.

We want to highlight that, in their work, Aouadi, Ciarletta and Passarella [3] set the system of
equations, gave conditions to have a well posed problem and obtained asymptotic stability of the solutions
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under appropriate hypotheses. In this paper, using the semigroups method, we obtain exponential stability
of the solutions under suitable conditions for the constitutive tensors (our conditions differ from the
ones used in [3] to prove the asymptotic stability, although related to them). The exponential stability
is a remarkable fact because it does not happen for the three-dimensional case in the context of the
classical theory with microtemperatures. In our case, a strong coupling between the displacement and
the microtemperatures appears. This coupling is not present in the classical theory.

2. Exponential decay of solutions

In this section we will prove the exponential decay of the solutions of system (1.1). We need to impose
some assumptions over the constitutive coefficients. For each vector ξi and each pair of tensors ξij and
ηij the following inequalities are assumed:

Aijklξijξkl + 2Bijklξijηkl + Cijklηijηkl ≥ C0(ξijξij + ηijηij),

Kijξiξj ≥ C1ξiξi, K∗
ijξiξj ≥ C2ξiξi

cijηiηj ≥ C3ηiηi, C∗
ijklηijηkl ≥ C4ηijηij ,

ρ ≥ ρ0 > 0, c ≥ c0 > 0,

(2.1)

for positive constants c0, C0, C1, C2, C3, C4 and ρ0.
Besides the assumptions for the coefficients given by (2.1), we also assume that

Bklijξklξij ≥ Cξijξij or Bklijξklξij ≤ −Cξijξij (2.2)

for a positive constant C.
Our assumptions agree with the thermomechanical axioms and the empirical experience. We want

to emphasize that the first condition in (2.1) can be interpreted with the help of the elastic stability as
well as the condition on the tensor Kij . We have also hardened a little bit the condition on the thermal
conductivity. The assumption concerning the thermal capacity is also obvious. The condition (2.2) says
that the coupling between microtemperatures and the displacement is very strong, which is a different
property with respect what happens in the classical theory.

We will use the semigroup arguments, and we will follow several ideas of the work of Aouadi, Ciarletta
and Passarella [3]. First of all, we transform the initial boundary problem defined by system (1.1), initial
conditions (1.2) and boundary conditions (1.3) to an abstract problem on a suitable Hilbert space. To
this end, we introduce the following notation:

vi = u̇i, θ = τ̇ ,Mi = Ṙi.

Let H be the Hilbert space defined by

H = {(ui, vi, τ, θ, Ri,Mi) : ui, τ, Ri ∈ W 1,2
0 (Ω), vi, θ,Mi ∈ L2(Ω)},

where W 1,2
0 (Ω) and L2(Ω) are the usual Sobolev spaces. As we consider that our functions take values in

the complex field1, the inner product that we define in H is

〈U ,U∗〉 =
1
2

∫

Ω

(
ρviv

∗
i + cθθ

∗
+ cijMiM

∗
j + 2W[(ui, τ, Ri), (u∗

i , τ
∗, R∗

i )]
)

dV, (2.3)

where U = (ui, vi, τ, θ, Ri,Mi), U∗ = (u∗
i , v

∗
i , τ∗, θ∗, R∗

i ,M
∗
i ) and

2W[(ui, τ, Ri), (u∗
i , τ

∗, R∗
i )] = Aijklui,juk,l + Bijkl(ui,jR

∗
k,l + u∗

i,jRk,l) + Kijτ,iτ
∗
,j + CijklRi,jR

∗
k,l.

1It is worth noting that this consideration is a difference with respect the approach followed in [3]. However, it does
not represent a relevant difference in the arguments.
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The inner product defined at (2.3) is equivalent to the usual one in H.
In order to obtain a synthetic expression for our problem, and following [3] we consider the operators

defined below:
Ai(u) = 1

ρ (Aijkluk,l),j

Biθ = − 1
ρ (ajiθ),j

CiR = 1
ρ (BjiklRl,k),j

Dv = − 1
caijvi,j

Eτ = 1
c (Kijτ,j),i

Gθ = 1
c (K∗

ijθ,j),i

JM = − 1
c ((dijMj),i + bjiMi,j)

Lsu = lsi (Bklijuk,lj),i

Zsθ = −lsi ((bjiθ),j + dijθ,j)

NsR = lsi (CjiklRk,l),j

PsM = lsi

(
C∗

jiklMk,l

)

,j

where lsi is defined by lsicij = δsj , being δsj the Kronecker delta. Notice that that means that lsi is the
inverse of the matrix cij .

Therefore, system (1.1) with initial conditions (1.2) and boundary conditions (1.3) can be written as

d

dt
U(t) = AU(t), U(0) = U0, (2.4)

where U0 =
(
ui

0, vi
0, τ0, θ0, R0

i ,M
0
i

)
, and A is the following matrix operator

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Id 0 0 0 0

A 0 0 B C 0
0 0 0 Id 0 0

0 D E G 0 J

0 0 0 0 0 Id

L 0 0 Z N P

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.5)

where A = (Ai), B = (Bi), C = (Ci), L = (Ls) and Z = (Zs).
The domain of the operator A is D(A) = {U ∈ H : AU ∈ H} . It is clear that it contains a dense

subspace of H and, therefore, D(A) is dense in the Hilbert space H.
Aouadi et al. (Lemma 1 in [3]) proved that A is a dissipative operator because

Re〈AU ,U〉H ≤ 0.

In fact, they found that

Re〈AU ,U〉H = −1
2

∫

Ω

(K∗
ijθ,iθ,j + C∗

ijklMi,jM l,k) dV.

They also proved (Lemma 2 in [3]) that the operator A satisfies that Range(I − A) = H. Following
an analogous argument, it can be proved that 0 belongs to the resolvent of A (in short, 0 ∈ ρ(A)).

Therefore, using the Lumer–Phillips theorem (see, e.g., [38]), we get the following result.

Theorem 2.1. The operator given by matrix A generates a contraction C0-semigroup S(t) = {eAt}t≥0 in
H.
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We have now the basic tools to prove the main result of this section. But before that, we recall the
caractherization stated in the book of Liu and Zheng that ensures the exponential decay (see [19], [36] or
[39]).

Theorem 2.2. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space. Then S(t) is
exponentially stable if and only if the following two conditions are satisfied:

(i) iR ⊂ ρ(A),
(ii) lim

|λ|→∞
‖(iλI − A)−1‖L(H) < ∞.

Lemma 2.3. The operator A defined at (2.5) satisfies that iR ⊂ ρ(A).

Proof. Following the arguments given by Liu and Zheng ([36], page 25), the proof consists of the following
three steps:

(i) Since 0 is in the resolvent of A, using the contraction mapping theorem, we have that for any real
λ such that |λ| < ||A−1||−1, the operator iλI −A = A(iλA−1 −I) is invertible. Moreover, ||(iλI −A)−1||
is a continuous function of λ in the interval (−||A−1||−1, ||A−1||−1).

(ii) If sup{||(iλI −A)−1||, |λ| < ||A−1||−1} = M < ∞, then by the contraction theorem, the operator

iλI − A = (iλ0I − A)
(
I + i(λ − λ0)(iλ0I − A)−1

)
,

is invertible for |λ−λ0| < M−1. It turns out that, by choosing λ0 as close to ||A−1||−1 as we can, the set
{λ, |λ| < ||A−1||−1 +M−1} is contained in the resolvent of A and ||(iλI −A)−1|| is a continuous function
of λ in the interval (−||A−1||−1 − M−1, ||A−1||−1 + M−1).

(iii) Let us assume that the intersection of the imaginary axis and the spectrum is not empty, then
there exists a real number 
 with ||A−1||−1 ≤ |
| < ∞ such that the set {iλ, |λ| < |
|} is in the
resolvent of A and sup{||(iλI −A)−1||, |λ| < |
|} = ∞. Therefore, there exist a sequence of real numbers
λn with λn → 
, |λn| < |
| and a sequence of vectors Un = (un,vn, τn, θn,Rn,Mn) in the domain of
the operator A and with unit norm such that

‖(iλnI − A)Un‖ → 0. (2.6)

If we write (2.6) in components, we obtain the following conditions:

iλnun − vn → 0, in W1,2 (2.7)

iλnvn − Anun − Bθn − CRn → 0, in L2 (2.8)

iλnτn − θn → 0, in W 1,2 (2.9)

iλnθn − Dvn − Eτn − Gθn − JMn → 0, in L2 (2.10)

iλnRn − Mn → 0, in W1,2 (2.11)

iλnMn − Lun − Zθn − NRn − PMn → 0, in L2. (2.12)

In view of the dissipative term for the operator, we see that

θn, Mn → 0 in W1,2. (2.13)

From (2.9) we also have that τn → 0 in W 1,2. And from (2.11), Rn → 0 in W1,2.
If we multiply (2.12) by un we obtain that

〈iλnMn,un〉 − 〈Lun,un〉 − 〈Zθn,un〉 − 〈NRn,un〉 − 〈PMn,un〉 → 0. (2.14)

Or, equivalently,

〈Mn,−iλnun〉 − 〈Lun,un〉 − 〈Zθn,un〉 − 〈NRn,un〉 − 〈PMn,un〉 → 0. (2.15)
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As iλnun is bounded in L2 and un is bounded in W1,2, we conclude that

〈Mn,−iλnun〉 → 0, 〈Zθn,un〉 → 0, 〈NRn,un〉 → 0 and 〈PMn,un〉 → 0.

Therefore,

〈Lun,un〉 → 0.

Taking into account the definition of the operators and also assumptions (2.2), we obtain that un → 0
in W1,2 and, in consequence, from (2.7)–(2.8), vn → 0 in L2. These facts show that it is not possible
the existence of such a unit sequence, and, therefore, the imaginary axis in contained in the resolvent of
A. �
Lemma 2.4. The operator A defined at (2.5) satisfies that

lim
|λ|→∞

‖(iλI − A)−1‖L(H) < ∞.

Proof. The proof is similar to the one proposed for Lemma 2.3. �
Theorem 2.5. The C0-semigroup S(t) = {eAt}t≥0 is exponentially stable. That is, there exist two positive
constants M and α such that ‖S(t)‖ ≤ M‖S(0)‖e−αt.

Proof. The proof is a direct consequence of Lemma 2.3, Lemma 2.4 and Theorem 2.2. �
It is worth noting that the behavior of the solutions using this model completely differs from the

behavior in the three-dimensional classical thermoelasticity, where slow decay or even undamped solutions
are observed. The exponential stability obtained in this case is a consequence of the strong coupling
between the displacement and the microtemperatures, coupling that is not present in the classical model.
This behavior is a shocking effect of the type III thermoelasticity theory with microtemperatures.

3. Conclusions

In this paper we have proved that under hypotheses of positivity for different tensors, the solutions
of the system of equations that models the type III thermoelasticity with microtemperatures decay
exponentially. This behavior differs extremely from the one obtained for the classical theory. Even more,
the exponential stability holds for symmetric domains. This fact is also very different from what happens
in the classical case, where undamped solutions could appear [11].
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