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Abstract. The development of additive manufacturing methods, such as 3D printing, allows the design of more complex
architectured materials. Indeed, the main structure can be obtained by means of periodically (or quasi-periodically) arranged
substructures which are properly conceived to provide unconventional deformation patterns. These kinds of materials which
are ‘substructure depending’ are called metamaterials. Detailed simulations of a metamaterial is challenging but accurately
possible by means of the elasticity theory. In this study, we present the steps taken for analyzing and simulating a particular
type of metamaterial composed of a pantographic substructure which is periodic in space—it is simply a grid. Nevertheless,
it shows an unexpected type of deformation under a uniaxial shear test. This particular behavior is investigated in this
work with the aid of direct numerical simulations by using the finite element method. In other words, a detailed mesh is
generated to properly describe the substructure. The metamaterial is additively manufactured using a common polymer
showing nonlinear elastic deformation. Experiments are undertaken, and several hyperelastic material models are examined
by using an inverse analysis. Moreover, a direct numerical simulation is repeated for all studied material models. We show
that a good agreement between numerical simulations and experimental data can be attained.
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1. Introduction

Additive manufacturing provides an advanced fabrication technique to produce prototypes with geome-
tries showing high degree of complexity [26,48]. Additionally, this technique enables to generate archi-
tectures constituted of the so-called microscopic elements. Such a substructure (cellular architecture)
modifies the macroscopic deformation behavior completely. The ultimate aim is to carefully design a
functional material in a macroscale manifesting novel type of a deformation pattern affected by the sub-
structure charactering the microscale [43,51]. The new conceived material is called metamaterial, and
its deformation behavior depends not only on its material characteristic but also upon the substructure.
This macroscopic deformation behavior of metamaterials has been studied by several groups, see e.g.,
[13,20]. A possible modeling has been achieved by using a discrete model based on the microscopic ele-
ments in [5,19,73,75]. Another approach is to model the metamaterial directly in the macroscale. In
this case, we need to introduce new parameters allowing the material model to take into account the
new pattern of deformation. This generalized method is characterized by different features depending
on the kinematic descriptors used. Among these models we can cite, for example, micropolar medium
[29–31], strain gradient theory [3,22,44,49,52,56,58,60], microstructured continuum [3,7,28,53], couple
stress material [50,71], peridynamics [27], for historical remarks see [21] and for a recent review see [70].
It is of paramount importance to emphasize that the theory of elasticity is valid and accurate in the
microscale, the introduction of new structure-related parameters are necessary as a homogenization pro-
cedure resulting in higher-order terms in the formulation. As easily said, it is not yet clear how these
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Fig. 1. Geometry of pantographic structures

structure-related parameters can be obtained directly out of the microscopic elements. Simply stated,
we fail to know these structure-related parameters. It is worth noting that mesoscale approaches are
available, in which the ‘micro’-elements are modeled with the help of continuous theories as beams or
plates [9].

Consider a so-called pantographic structure as shown in Fig. 1 (see for more details [25,62]). The
structure is constituted by two parallel arrays of beams connected by internal cylinders called pivots.
Such a design is well known in trusses or scissor structures; interestingly, this substructure can be used
to investigate the aforementioned generalized method [17,23,24,57]. The continuum approach to describe
such type of metamaterial is based, for the noticeable geometric similarities, on the fabric material theory
(see e.g., [14,15,55,66,69]). We emphasize that the structure-related parameters are not known. Recently,
a simple shear test on a 3D printed pantographic structure has been investigated in [12]. The uncommon
deformation behavior of this structure is the main focus in this work. For a rigorous understanding of
the characteristics of the pantographic substructure, we aim at a direct numerical simulation by using
the finite element method (FEM). The detailed modeling of the underlying substructure results in a high
computational cost [34]. However, we only need an appropriate constitutive equation for the bulk material
of the substructure produced by a 3D printer with polyamide (PA). This polymer shows a hyperelastic
behavior that is modeled by a stored energy function depending on nonlinear strain measures, among
others see [10,11,38,40,67,76].

The metamaterial under a uniaxial shear test has been described in Sect. 2. For the material properties,
a sample out of the metamaterial has been examined under a uniaxial tensile test in Sect. 3. Inverse
analysis is explained and used to obtain the material parameters. In Sect. 4, FEM implementation is
shown and computations are obtained by implementing various hyperelastic models with the aid of open-
source codes developed under the FEniCS project, see [37,45]. A comparison of the experiments and
computations is presented in Sect. 5.
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Table 1. Geometry sizes of the microstructure

w in mm hb in mm r in mm hp in mm

1.00 1.00 0.45 1.00

Fig. 2. Setup of the shearing test

2. Uniaxial shear experiments

The pantographic structure has been analyzed in a simple shear test [33]. Displacement-controlled shearing
experiments under large deformations were carried out on the 3D printed metamaterial. For generating the
structure, CAD model of the structure in STL format has been used as the input file for the 3D printer,
Formiga P 100 from EOS GmbH in Munich, Germany. Polyamide powder (PA2200) was employed to
produce the samples. Sample possesses macroscopic dimensions of 210 mm×70 mm, while the distance
between two adjacent pivots is 0.495 mm. It is further characterized by 4 geometrical parameters as shown
in Fig. 1 and quantified in Table 1.

The setup of the shearing experiment is presented in Fig. 2. For the shearing test, Zwick Z010 has
been employed that is equipped with a load cell (Zwick-Xforce) capable of recording the reaction force in
the range of ± 10 kN with the accuracy of 20 N (equal of 0.2%). One edge of the pantographic structure
was fixed to the adaption device, and the other edge was driven in parallel to itself by a loading rate
of 15 mm/min up to 70 mm. We remark that the structure is of the same size regarding the maximum
displacement on the boundary, and therefore, the structure is under large deformation. The displacement
data were acquired by a displacement sensor with an accuracy of ± 2.0μm. Moreover, an optical mea-
surement device Q-400 has been utilized with 4 cameras in order to record the 3D deformation during the
shearing tests. The used cameras capture pictures at a rate of 0.5 Hz with a resolution of 1600×1200 pixels.
As post-processing, all pictures are exploited for obtaining a 3D extraction of emerging displacements. Of
course, this optical measurement system implements a non-contact (non-invasive) procedure. The panto-
graphic structure clearly showed a nonlinear reaction response during the shearing tests; details will be
presented in the upcoming Sect. 4.
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Fig. 3. Uniaxial tensile test setup: picture of the sample (left), drawing of the geometry (right)

3. Modeling and parameter identification of the polymer used in 3D printing

The manufacturing method of the metamaterial is based on laser sintering of the polyamide powder in
layer by layer. A laser is used to increase the temperature of the powder at a particular location. Increased
temperature yields to a local melting of the material and forming a covalent binding to the neighboring
structure. After a subsequent cooling down, the sinter powdered polyamide forms a solid structure. Even
in the case of a ‘perfect’ production without porosity or heterogeneity, the material obtained might show
a different response than the powder material, since the cooling rate during the 3D printing modifies the
chain density in a polymer. We fail to know the constitutive equation for the laser-sintered PA forming
the pantographic structure and aim at investigating as well as determining an appropriate constitutive
model depicting the characteristics of the laser-sintered polyamide material (PA2200).

Technically, in order to ensure the accuracy of predictions, a range of standard experiments like
uniaxial, equibiaxial tension, pure shear tests, etc., are necessary. As stated in [42], there is an insignificant
difference between the predictions based on uniaxial experiments and combination of uniaxial, biaxial,
and planar tests. In this section, we perform uniaxial tests, use an inverse analysis for obtaining the
material parameters, and choose an appropriate model for further investigations solely based on the
uniaxial tensile test results.

3.1. Uniaxial tensile tests for 3D printed PA2200 beams

Three samples were cut from the pantographic structure, and uniaxial tensile tests were undertaken as
shown in Fig. 3. One side was clamped and the other side was pulled with the prescribed displacement
by using a feedback controller. The loading rate leads to 15 mm/min of a velocity, and the test was
ended with a rupture. Reaction force was recorded by a load cell attached to the testing device. The
measured quantities are displacement and force. Often the force is divided by the initial surface area to
obtain the engineering stress; analogously, the displacement is divided by the initial length for acquiring
a strain. A nonlinear relation between strain and stress signalizes the necessity of a hypo- or hyperelastic
material model. Average of conducted tests can be depicted in Fig. 4. The stress–strain plot is shown for
a possible comparison with the literature. The initial tangent modulus, 500 MPa, is calculated from the
slope of the stress–strain curve at small strains up to 0.5%. This modulus can be seen as equivalent to
Young’s modulus for the linear elastic regime. Obviously, the material response is nonlinear. Moreover,
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Fig. 4. Uniaxial tensile tests: a stress versus strain; b force versus stretch; c strain energy density versus stretch

from the inspection and comparison of the cross section before and after rupture, we observed that the
area reduction is insignificant. By using the micrograph of the beam in Fig. 5, the width changed only
23.3 μm (2.2%). Therefore, it is reasonable to assume that the cross-sectional area reduction is negligible
and an elastic behavior up to the final deformation is preserved such that we assume a brittle fracture at
the end of the experiment. Consequently, we need a hyperelastic constitutive equation. Owing to large
deformations, these stress and strain measures are not accurate, and thus, we avoid using them and
employ an inverse analysis based on force, F , and displacement, u. As exhibited in Fig. 4b, c, we compute
the stored energy density W by evaluating,

W =
1
V0

∫
F du =

1
A0

∫
F dλ, (3.1)

with the stretch λ = L/L0 ( dλ = du/L0) normalized by the initial length L0 and cross-sectional area
A0. Herein we assume that the material is isochoric, i.e., the volume remains the same throughout the
deformation. For n (possibly equidistant) points, we calculate the integral numerically,

Wm =
n∑

m=1

Fm(λm − λm−1)
A0

(3.2)

in which Wm, Fm, and λm represent the value of strain energy density, force, and stretch, respectively,
at the point m with a total of n points. In Fig. 4c, we display the stored energy evaluated as described
foregoing.

We remark that, even if the elastic behavior seems dominant, the influence of viscoelastic, or damage,
or plastic phenomena occurring during the experiments are not negligible and their role should be further
investigated. In [68,74], some helpful ideas and a first attempt to deal with such issues specifically for
a pantographic structure are presented. A more general framework to address this study of quasi-static
brittle fracture is presented in [59,61,63]. We refer to [6,8,18,36] for a useful bibliography about the
viscoelastic effect.

3.2. Hyperelastic models

We use the standard continuum mechanical notation and summation convention over repeated indices.
The displacement gradient with respect to the reference (initial) placement is called the deformation
gradient:

Fij =
∂ui

∂Xj
+ δij , (3.3)
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Fig. 5. Microscope pictures of the sample used in the tensile test. a Beam before tensile test. b Beam after breaking

out of which we get the right Cauchy–Green deformation tensor, C = F �F , as well as the left Cauchy–
Green deformation tensor, B = FF �. According to the Hamilton–Cayley theorem, a tensor in three-
dimensional space possesses three invariants, I1, I2, I3. Left and right deformation tensors have the same
invariants. In a specially designed experiment, for example in a uni-, bi-, tri-axial tensile test, stretch
ratio in one, two, three axes, λi(i = 1, 2, 3) are used to connect the invariants to the measurable stretch
as follows:

I1 = tr(C) = tr(B) = λ1 + λ2 + λ3,

I2 =
1
2

(
(tr(C))2 − tr(C2)

)
=

1
2

(
(tr(B))2 − tr(B2)

)
= λ1λ2 + λ2λ3 + λ3λ1,

I3 = det(C) = det(B) = λ1λ2λ3.

(3.4)

The isochoric or incompressibility assumption leads to, I3 = 1. In the case of a uniaxial tensile test shown
in Fig. 3b, we realize

λ1=̂λ , λ2 = λ3=̂
1√
λ

, (3.5)

effected by the incompressibility constraint. Hence, the deformation gradient and deformation tensor
become

F =

⎛
⎝λ 0 0

0 1/
√

λ 0
0 0 1/

√
λ

⎞
⎠ , B =

⎛
⎝λ2 0 0

0 1/λ 0
0 0 1/λ

⎞
⎠ . (3.6)

The latter yields to the following invariants:

I1 = λ2 +
2
λ

, I2 = 2λ +
1
λ2

, I3 = 1. (3.7)

We search for a suitable stored energy density depending on the invariants, W = W (I1, I2). The depen-
dency is restricted by the so-called ellipticity, which is also called invertibility in the case of isotropic
materials, in order to assure a smooth deformation gradient (continuity of F ), for details see [65]. The
ellipticity holds in every single argument, which is often called quasiconvexity. The choice of the functional
form and the material constants shall not violate the quasiconvexity for obtaining sufficient smoothness in
the deformation gradient. There are several hyperelastic models satisfying quasiconvexity in the literature.
They can be sorted into three groups. The first group covers Mooney–Rivlin, Biderman, Haine–Wilson,
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and Yeoh models. They are all motivated by using representation theorems and constructed phenomeno-
logically. Second group includes Rivlin–Saunders, Hart–Smith, and Gent models; the material functions
of these models are determined as the best fitting curve to the experimental data. To the third group, we
can name neo-Hooke, Isihara, Arruda–Boyce models justified by statistical average of microscopic models
at the length scale of polymer chains.

We present the results for St. Venant–Kirchhoff model (will be denoted by SV), Mooney–Rivlin models
with 2 and 5 parameters (MR2, MR5), Biderman model (Bi), Haine–Wilson model (HW), neo-Hookean
model (Neo), Isihara model (Is), and Yeoh model (Yeoh). St. Venant–Kirchhoff model reads

W =
λ

2
(
tr(E)

)2 + μ tr(E2) , E =
1
2
(C − δ), (3.8)

where we use the Green–Lagrange strain tensor, E, and two so-called Lame parameters, λ and μ. This
model has been utilized to analyze the deformation of the pantographic structure in [34]. Mooney–Rivlin
model as in [54,64] shows good accuracy in predicting the nonlinear behavior of rubber-like materials.
The general form of the energy density function according to Mooney–Rivlin model reads

W =
∞∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j , (3.9)

where Cij are material parameters to be determined by experiments, obviously, C00 = 0. Truncating the
series gives the widely used forms of Mooney–Rivlin models with 2 and 5 parameters,

WMR2 = C10(I1 − 3) + C01(I2 − 3),

WMR5 = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2.
(3.10)

The well-known neo-Hookean model,

W = C10(I1 − 3), (3.11)

is motivated by a network of randomly oriented molecular chains, see [32,46,72]. Truncating the Mooney–
Rivlin series to one order and set C01 = 0 will also lead to the neo-Hookean model, although the justifi-
cations of both models differ. Preserving Mooney–Rivlin series with i = 0 or j = 0 and taking first three
terms for I1 and one term for I2 generates Biderman’s model [16] in the following form:

WBi = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3. (3.12)

Moreover, the Haines–Wilson model proposed in [41] contains six terms, in which I1 and I2 are extended
to third and second order, respectively,

WHW = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 + C30(I1 − 3)3

(3.13)
Isiharain model as in [39] is another statistical model by using non-Gaussian distribution of polymer
chains network. Isiharain model reads

WIs = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2, (3.14)

resembling the Mooney–Rivlin series as well. As proposed in [77], Yeoh model is based on the first
invariant. We use the Yeoh model with three terms,

WYeoh = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3. (3.15)

We examine all models by using an inverse analysis and compare their capabilities related to how accu-
rately each of them fits the experimental data.
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3.3. Inverse analysis

The constitutive equation is given by the stored energy as a scalar nonlinear function depending on
invariants of the deformation tensor. Because of the nonlinearity, a nonlinear regression as Levenberg–
Marquardt method is frequently used to fit the parameters, see [42,47]. Success of a nonlinear regression
depends on a good initial estimation of the parameters. Especially in hyperelastic material models, initial
estimation can be very challenging. As a possible remedy, we present herein the energy-based method
proposed in [1, Sect. 9] and applied in [4] for another type of experiments. By using the energy-based
method, we generate a linear regression problem for determining the material parameters uniquely. In
other words, there is only one solution of the best material parameters minimizing the square of the error
between measurement and estimation. This method is possible since all models are linear in the material
parameters. In the case of the Mooney–Rivlin model with 2 parameters, we use the energy value at n
points by exploiting the numerical integration in Eq. (3.2) out of the experimental data and compute the
energy with the unknown material parameters,⎛

⎜⎜⎜⎜⎜⎜⎝

(
λ2

1 + 2
λ1

− 3
) (

2λ1 + 1
λ2
1

− 3
)

(
λ2

2 + 2
λ2

− 3
) (

2λ2 + 1
λ2
2

− 3
)

...
...(

λ2
n + 2

λn
− 3

) (
2λn + 1

λ2
n

− 3
)

⎞
⎟⎟⎟⎟⎟⎟⎠

(
C10

C01

)
=

⎛
⎜⎜⎜⎝

WMR2
1

WMR2
2
...

WMR2
n

⎞
⎟⎟⎟⎠ . (3.16)

The latter can be written as

Aijcj = bi , i = {1, 2, 3, . . . , n} , j = {1, 2, 3, . . . m} (3.17)

such that the right-hand side is known from the experiments, A can be computed as well, and c denotes
m unknown coefficients—the material parameters to be determined. The number of experimental data,
n, is more than the unknowns, m, hence, we cannot solve the system exactly. An approximation to this
problem is found by setting the goal as minimizing the error (square) between the estimation and the
experimental data. We search for the best set of unknowns ĉ in the sense of least squared error and obtain
the so-called normal equation,

ĉ = A+b = (A�A)−1A�b, (3.18)

where A+ is the pseudoinverse of the matrix A. The Eq. (3.18) is well known in statistics; we refer to
[4] for its derivation. We emphasize that the linear regression leads to the unique set of coefficients. Even
in the case of a nonlinear material model, the presented approach yields to a linear regression problem.
Solving such a system is simple and fast.

We have compiled in Fig. 6 the results of the linear regression, in which black solid line represents
experimental data and red dashed line denotes the fit curve. We use R-squared (R2) as an indicator of
the accuracy of the fit curve. It is a statistical measure defined as follows:

R2 = 1 − Sres

Stot
, (3.19)

using the total sum of squares, Stot, and the residual sum of squares, Sres, i.e.,

Stot =
∑

i

(yi − ȳ)2 , Sres =
∑

i

(yi − fi)2, (3.20)

where fi symbolizes the fitted data, for a data set with n values marked by y1 . . . yi . . . yn and the mean
value is

ȳ =
1
n

n∑
i=1

yi. (3.21)
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Fig. 6. Data fitting of different material models. Black continuous line is the experimental data and red dashed line shows
the corresponding fit curve. On the horizontal axis stretch, λ, and on the vertical axis the strain (or stored) energy density,
W , are written. Cij are the material parameters in different models
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Table 2. Comparison of hyperelastic models

Model Year Number of parameters Variables Type R2

MR2 1940 2 I1, I2 Phenomenological 0.99
MR5 1948 5 I1, I2, I21 , I22 , I1I2 Phenomenological 1.0
Neo 1943 1 I1 Mechanistic 0.96

Bi 1958 4 I1, I2, I21 , I31 Phenomenological 0.99
HW 1975 6 I1, I2, I1I2, I21 , I22 , I31 Phenomenological 1.0

Is 1951 3 I1, I2, I21 Mechanistic 0.99
Yeoh 1993 3 I1, I21 , I31 Phenomenological 0.99

By using the normal equation (3.18), we have obtained the fit curves. A comparison of all applied hyper-
elastic models with their corresponding R2 values are summarized in Table 2.

All models have a fairly good agreement to the experimental data. Mooney–Rivlin model with 5
parameters and Haines–Wilson model have both a R2 of 1.0, indicating that the constitutive equation
perfectly model materials response. In contrast, neo-Hookean model shows a relatively poorer fit with a
R2 of 0.96. We emphasize that we use a uniaxial tensile test and want to generalize the outcome for any
other type of deformation. From the inverse analysis in this section, one may think that any model might
be used to simulate the experiment in Sect. 2. We will show, unfortunately, that this fact fails to be true.

4. Direct numerical simulation

We essentially follow [3] and start with the Lagrange an possessing kinetic energy, stored energy, and
potential energy because of gravity. We assume that the deformation because of inertial effects as well as
the weight are negligible. After a variational formulation, we obtain the weak form:

Π =
∫

Ω

∂W

∂ui,j
δui,j dV −

∫

∂Ω

t̂iδui dA, (4.1)

for a domain Ω ⊂ R
3 occupied by the continuum body, under Dirichlet boundary conditions, where the

displacement is given, or under Neumann boundary conditions, where the traction vector t̂i is prescribed.
The latter integral form vanishes, Π = 0, in the case of correct displacements, u = 0, but it is nonlinear
in displacements such that we need to linearize it by using the Newton–Raphson formalism. The solution
is found in an incremental manner,

u := u + Δu, (4.2)
where the numerical value of u is overwritten in each increment by u+Δu. By using standard argumen-
tation for linearization, we obtain

Π + J · Δu = 0, (4.3)
with the Jacobian J = ∂Π/∂u and the Gateaux derivative:

J · Δu = lim
ε→0

d
dε

Π(u + εΔu). (4.4)

For the computation we exploit open-source packages developed under the FEniCS project [37]. Python
language is used for implementing the geometry, boundary conditions, weak form, and its Jacobian. Espe-
cially for the linearization, the Newton–Raphson formalism is employed by using a symbolic derivative
at the level of partial differential equations such that all hyperelastic material models are applied just by
renewing their definition. The CAD models of the pantographic samples were built by the open-source
platform SALOME 7. The triangulation, i.e., FEM discretization in space has been established with the
aid of the mesh generator NetGen, already built-in SALOME 7. These steps are presented in detail in [2,
Appendix 3]. Paraview 5 is used to post-process the results.
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Quadratic tetrahedron elements are used in order to achieve a high element quality in meshing the
complicated geometry. As a consequence of a standard h-convergence analysis—decreasing size of each
element in the domain results in a solution with higher accuracy—we have determined a model with
approximately 3 million degrees of freedom. The computations are established on 16 CPUs (Intel Xeon
E7-4850 on SuperMicro server) by using mpirun for about 4 h. As in the experiments, one side of the
whole structure is clamped by setting displacements in all directions zero. On the other side, prescribed
displacement from up to 70 mm has been employed in 1 mm increments. The geometric nonlinearities
necessitate to linearize and solve by using an initial estimation. Although the simulation is for the quasi-
static case, the solution from the previous step is used as the initial estimation in linearization. This
approach is sometimes called the arc-length method. From the experiments, we know an out-of-plane
displacement in shear test. We intend to investigate this specific deformation pattern. For circumventing
any bifurcation, as suggested in [35], we apply additional forces of 1 mN at the positions where the
out-of-plane displacement is expected. In the experiments, the total reaction force is measured. In the
corresponding simulations, reaction force along the shear direction is computed by summing the nodal
forces on this boundary.

5. Comparison of computations with experiments

We perform the experiments undertaken in Sect. 2 as seen in Fig. 2. A possible comparison can be
done using the measured reaction force as the prescribed displacement is applied. Several hyperelastic
models are employed and all computational results are summarized in Fig. 7. Yeoh model (Yeoh) shows
an outstanding match with respect to other models—especially for displacements greater than 20 mm.
We remark that all used hyperelastic models are evaluated by using the parameters as determined and
shown in Fig. 6. Hence, it is challenging to justify, why a particular model performs significantly better.
As expected, the linear St. Venant–Kirchhoff model (SV) starts deviating from the experimental results
for displacements greater than 15 mm. Biderman model (Bi), Haine–Wilson model (HW), and Isihara
model (Is) generate the same result with an adequate matching to the experiment up to 20 mm of the
prescribed displacement. They are identical to Mooney–Rivlin model with 5 parameters (MR5) up to
45 mm prescribed displacements. A possible explanation to the distinction among the models is as follows:
Yeoh model possesses only the first invariant of the deformation tensor, but the other models incorporate
the second invariant as well. By using the uniaxial tensile testing, we fail to identify accurately the material
parameters responsible for a shearing deformation mainly given by the second invariant. Therefore, we
conclude hypothetically that a combination of tests would result in Bi-HW-Is-MR5 hyperelastic material
models’ parameters matching the experiments as good as Yeoh model.

Furthermore, we investigate the out-of-plane behavior by comparing the computation of Yeoh model
with the experimental result in Fig. 8 when the maximum displacement of 70 mm has been reached. The
experimental result is post-processed by using a digital image correlation (DIC), see [12] for details. Upper
left part displacement is missing as a consequence of setting the focus of the camera to the out-of-plane
displacement. Qualitatively, the experimental and numerical results are identical: the maximum values of
displacement are both located at the lower left corner. Quantitatively, their results have 2.3% deviation:
simulation calculates the maximum displacement of 20.5 mm, whereas the experiment measures 19.6 mm.
Additionally, we present in Fig. 9 the out-of-plane displacement at the point of maximum deflection
over the whole simulation and experiment. All constitutive models describe this behavior fairly well.
St. Venant–Kirchhoff model (SV), Biderman model (Bi), Isihara model (Is), and Haine–Wilson model
(HW) show the same behavior. Analogously, Mooney–Rivlin with 5 parameters (MR5) and Yeoh model
have the same out-of-plane movements. Qualitatively, numerical results are adequate. We emphasize that
experiments involve errors as well. We know that the initial out-of-plane deflection in experiments is
sensitive to the accuracy in the colinearity between the adaption device. The deviations between the
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Fig. 7. Reaction force in the displacement controlled shear test: experiment (dash-dotted line); numerical simulations (solid
lines)

Fig. 8. Deformation obtained from the computation by using Yeoh model (left) and experimental results acquired by a
digital image correlation (right)

Fig. 9. Out-of-plane displacement versus applied shearing displacement
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experimental and computational results are justified by the fact that the boundary conditions in the
experiments lack the high accuracy necessary to detect this behavior quantitatively.

We encourage to investigate this phenomenon by using two-dimensional continuum models as they
describe similar effects with a fraction of the computational cost used herein. Such models, for example as
in [35,66], can be compared with the experimental results and shed more light on the complex deformation
pattern because of the substructure by means of a micro-macro identification.

6. Conclusions

Metamaterials possess an internal substructure leading to unconventional deformation patterns. In this
work, we have analyzed a 3D printed pantographic structure made of laser-sintered polyamide (PA).
Shearing experiments are conducted, and their computational modeling has been rigorously discussed by
using simulations realized with the help of open-source codes in the FEniCS platform. For a successful
material modeling, additional uniaxial tensile tests are undertaken leading to a necessity of a nonlinear
material behavior. We have discussed various hyperelastic material models and used a novel method for
determining the material parameters. The comparison between the numerical and experimental results
is carried out by using reaction force and displacement. We emphasize that the whole study is necessary
to gain a better understanding of systems with an internal substructure. The pantographic structure is
only a very simple example to study the effect of a substructure at macroscopic length scale. Indeed, the
study of the response at microscopic length scale can lead to a possible explanation of unconventional
materials response.
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