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Abstract. In this paper, we consider the blow-up problem of the following porous medium equations with nonlinear boundary
conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = Δum + k(t)f(u) in Ω × (0, t∗),

∂u

∂ν
= g(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) in Ω,

where m > 1, Ω ⊂ R
n (n ≥ 2) is a bounded convex domain with smooth boundary. Under appropriate assumptions on

the data, a criterion is given to guarantee that solution u blows up at finite time, and an upper bound for blow-up time is
derived. Moreover, a lower bound for blow-up time is also obtained.
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1. Introduction

Porous medium equations as representative examples of parabolic equations have been widely studied
by many authors [1,5–7,14,23,26]. There are a lot of physical applications where porous medium model
appears in a natural way to describe processes involving diffusion or heat transfer. The best known of
them is the description of the gas or fluid in porous media [24,28].

The purpose of this paper is to investigate the blow-up phenomena of the following porous medium
problems

⎧
⎪⎨

⎪⎩

ut = Δum + k(t)f(u) in Ω × (0, t∗),
∂u

∂ν
= g(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) in Ω,

(1.1)

where m > 1, Ω ⊂ R
n (n ≥ 2) is a bounded convex domain with smooth boundary, t∗ is the blow-up

time, ∂/∂ν is the outward normal derivative on ∂Ω. Set R+ = (0,+∞). We suppose, in this paper, that f
and g are nonnegative C(R+) functions, and k is a positive C1(R+) function, and u0(x) is a nonnegative
C1(Ω) function satisfying the compatibility condition.

At present, many articles are known for the study of blow-up phenomena for the parabolic equations
(for instance, [8,10–13,16–18,25,27]). Recently, some new developments have been made in the study
of the blow-up time estimates for parabolic equations under nonlinear boundary conditions. We refer to
[9,15,20–22]. In order to investigate the blow-up problems of (1.1), we focus on the papers [15,20,22]. In
[22], Payne and Schaefer studied the following problems
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⎧
⎪⎨

⎪⎩

ut = Δu in Ω × (0, t∗),
∂u

∂ν
= g(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) in Ω,

where Ω ⊂ R
n (n ≥ 2) is a bounded convex domain with smooth boundary. When Ω ⊂ R

3, authors
got a lower bound estimate for the blow-up time under the suitable conditions on the nonlinearities. In
addition, when Ω ⊂ R

n (n ≥ 2), authors derived a sufficient condition to guarantee that solution blows
up and obtained an upper bound for t∗ . Payne et al. [20] considered the following problems

⎧
⎪⎨

⎪⎩

ut = Δu − f(u) in Ω × (0, t∗),
∂u

∂ν
= g(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) in Ω,

where Ω ⊂ R
n (n ≥ 2) is a bounded convex domain with smooth boundary. They established conditions

on data sufficient to ensure that solution u exists for all time t as well as conditions on data forcing
u to blow up in finite time t∗. Moreover, an upper bound for t∗ was obtained. Under more restrictive
conditions, when Ω ⊂ R

3, a lower bound for t∗ was derived. Li and Li [15] studied the following problems
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut =
n∑

i,j=1

(
aij(x)uxi

)

xj
− f(u) in Ω × (0, t∗),

n∑

i,j=1

aij(x)uxi
νj = g(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) in Ω,

where Ω is a bounded convex domain in R
n (n ≥ 2) with smooth boundary ∂Ω. Under certain conditions

on data, they showed that the solution blows up or remains global for Ω ⊂ R
n (n ≥ 2). For Ω ⊂ R

3, a
lower bound for blow-up time was also derived.

Inspired by the above research, we study the blow-up phenomena of (1.1). The crucial idea in the
paper is to make use of the Sobolev inequality in Ω ⊂ R

n (n ≥ 3) and a modified differential inequality
technique. The key to using this method is to construct some suitable auxiliary functions. However, we
find that the auxiliary functions defined in [15,20,22] seem to be no longer applicable to (1.1). As an
innovation of this paper, we need to construct new auxiliary functions to complete our research.

We proceed as follows. In Sect. 2, when Ω ⊂ R
n (n ≥ 2), we establish conditions to guarantee that

the solution u blows up in finite time and derive an upper bound for t∗. In Sect. 3, when Ω ⊂ R
n (n ≥ 3),

a lower bound for t∗ is obtained when blowup does occur. Section 4 is devoted to presenting an example
to illustrate abstract results of this paper.

2. An upper bound for t∗

We seek, in this section, the sufficient conditions on data under which the nonnegative classical solution
of (1.1) blows up at finite time t∗. To this end, we assume that functions f and k satisfy

f(s) ≥ asq, s ≥ 0, k(t) ≥ r, t ≥ 0, (2.1)

where a, r, q are positive constants and
q > m. (2.2)

Let λ1 be the first eigenvalue and ω1 be the corresponding eigenfunction of the following fixed membrane
problem

{ Δω + λω = 0, ω > 0, in Ω,

ω = 0, on ∂Ω
(2.3)
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with ∫

Ω

ω2dx = 1. (2.4)

Inspired by [3,4,29], we define the auxiliary function of the form

B(t) =
∫

Ω

ω2
1udx, t ≥ 0.

Theorem 2.1 is the main result of this section.

Theorem 2.1. Let u be a nonnegative classical solution of problem (1.1). Suppose (2.1) and (2.2) hold. In
addition, we also assume that the initial value u0 satisfies

arBq−m(0) − 2λ1 > 0. (2.5)

Then, the solution u blows up at t∗ in measure B(t) with

t∗ ≤
+∞∫

B(0)

dη

arηq − 2λ1ηm
.

Proof. Differentiating B(t) and using (2.1), (2.3), and the divergence theorem, we have

B′(t) =
∫

Ω

ω2
1utdx =

∫

Ω

ω2
1 [Δum + k(t)f(u)] dx

≥
∫

Ω

ω2
1Δumdx + ak(t)

∫

Ω

ω2
1uqdx

=
∫

Ω

Δω2
1umdx + ak(t)

∫

Ω

ω2
1uqdx

= 2
∫

Ω

um|∇ω1|2dx + 2
∫

Ω

ω1u
mΔω1dx + ak(t)

∫

Ω

ω2
1uqdx

= 2
∫

Ω

um|∇ω1|2dx − 2λ1

∫

Ω

ω2
1umdx + ak(t)

∫

Ω

ω2
1uqdx

≥ −2λ1

∫

Ω

ω2
1umdx + ar

∫

Ω

ω2
1uqdx. (2.6)

It follows from (2.2), (2.4), and the Hölder inequality that

∫

Ω

ω2
1umdx ≤

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

⎛

⎝

∫

Ω

ω2
1dx

⎞

⎠

q−m
q

=

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

. (2.7)

Inserting (2.7) into (2.6), we get

B′(t) ≥ −2λ1

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

+ ar

∫

Ω

ω2
1uqdx

=

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

⎛

⎜
⎝ar

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

q−m
q

− 2λ1

⎞

⎟
⎠ . (2.8)
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Since
∫

Ω

ω2
1udx ≤

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

1
q

⎛

⎝

∫

Ω

ω2
1dx

⎞

⎠

q−1
q

=

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

1
q

, (2.9)

we can rewrite (2.8) as follows

B′(t) ≥
⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

⎛

⎝ar

⎛

⎝

∫

Ω

ω2
1udx

⎞

⎠

q−m

− 2λ1

⎞

⎠

=

⎛

⎝

∫

Ω

ω2
1uqdx

⎞

⎠

m
q

(
arBq−m(t) − 2λ1

)
. (2.10)

We note that (2.5) means
arBq−m(t) − 2λ1 > 0, t ≥ 0. (2.11)

In fact, if inequality (2.11) does not hold, then we let

t1 = min
{
t > 0

∣
∣ arBq−m(t) − 2λ1 ≤ 0

}
. (2.12)

We deduce

arBq−m(t) − 2λ1 > 0, 0 ≤ t < t1.

By (2.10), we have

B′(t) > 0, 0 ≤ t < t1,

from which and (2.5), we get

B(t1) > B(0) >

(
2λ1

ar

) 1
q−m

.

Hence

arBq−m(t1) − 2λ1 > 0,

which contradicts with (2.12). This contradiction shows that inequality (2.11) holds.
Now, inserting (2.9) into (2.10) and using (2.11), we have

B′(t) ≥
⎛

⎝

∫

Ω

ω2
1uq

⎞

⎠

m
q

(
arBq−m(t) − 2λ1

) ≥
⎛

⎝

∫

Ω

ω2
1udx

⎞

⎠

m

(
arBq−m(t) − 2λ1

)

= arBq(t) − 2λ1B
m(t) > 0, t ≥ 0. (2.13)

We integrate (2.13) over [0, t] to obtain

t ≤
B(t)∫

B(0)

dη

arηq − 2λ1ηm
. (2.14)

Inequality (2.14) implies that solution u blows up at finite time t∗ in the measure B(t). In fact, if the
solution u remains global in the measure B(t), we have

B(t) < +∞, t ≥ 0
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and

t ≤
B(t)∫

B(0)

dη

arηq − 2λ1ηm
<

+∞∫

B(0)

dη

arηq − 2λ1ηm
, t ≥ 0.

Furthermore, letting t → +∞, we derive
+∞∫

B(0)

dη

arηq − 2λ1ηm
= +∞.

The fact that q > m > 1 and B(0) > 0 implies

+∞∫

B(0)

dη

arηq − 2λ1ηm
< +∞,

which is a contradiction. Therefore, u blows up at finite time t∗ in the measure B(t). Passing to the limit
as t → t∗ in (2.14), we get

t∗ ≤
+∞∫

B(0)

dη

arηq − 2λ1ηm
.

�

3. A lower bound for t∗

We look for, in this section, a lower bound for t∗ by restricting Ω ⊂ R
n (n ≥ 3). To achieve it, we suppose

that functions f, g, and k satisfy

f(s) ≤ asq, g(s) ≤ bsp, s ≥ 0, k(t) ≤ M, t ≥ 0, (3.1)

where a, b, p, q,M are some positive constants and

m + 2p > q + 2, p > 1. (3.2)

The auxiliary function is defined as follows

Φ(t) =
∫

Ω

uβdx

with
β > max {1, 3 − m, n(p − 1)} . (3.3)

In this section, we need to use the following Sobolev inequality (see [2], Corollary 9.14, p.284])
⎛

⎝

∫

Ω

(u
m+β−1

2 )
2n

n−2 dx

⎞

⎠

n−2
2n

≤ Cs

⎛

⎝

∫

Ω

um+β−1dx +
∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

1
2

, (3.4)

where Cs = Cs(n,Ω) is an embedding constant depending on n (n ≥ 3) and Ω. We state our result in
Theorem 3.1.
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Theorem 3.1. Let u be a nonnegative classical solution of problem (1.1), which becomes unbounded in the
measure Φ(t) at t∗. Assume that (3.1)–(3.3) hold. Then, there exist computable positive constants C1, C2

such that the blow-up time t∗ is bounded below by

t∗ ≥
+∞∫

Φ(0)

dτ

C1 + C2τ
n(1−p)+m+β+2p−3

n(1−p)+β

.

Proof. Using (3.1), (3.3), and the divergence theorem, we have

Φ′(t) = β

∫

Ω

uβ−1 [Δum + k(t)f(u)] dx

= β

∫

Ω

uβ−1∇ · (
mum−1∇u

)
dx + βk(t)

∫

Ω

uβ−1f(u)dx

= mβ

∫

Ω

∇ · (
um+β−2∇u

)
dx − mβ(β − 1)

∫

Ω

um+β−3|∇u|2dx + βk(t)
∫

Ω

uβ−1f(u)dx

= mβ

∫

∂Ω

um+β−2 ∂u

∂ν
dS − mβ(β − 1)

∫

Ω

um+β−3|∇u|2dx + βk(t)
∫

Ω

uβ−1f(u)dx

= mβ

∫

∂Ω

um+β−2g(u)dS − mβ (β − 1)
∫

Ω

um+β−3|∇u|2dx + βk(t)
∫

Ω

uβ−1f(u)dx

≤ bmβ

∫

∂Ω

um+β+p−2dS − mβ(β − 1)
∫

Ω

um+β−3|∇u|2dx + aβM

∫

Ω

uβ+q−1dx. (3.5)

We note
4

(m + β − 1)2
|∇u

m+β−1
2 |2 = um+β−3|∇u|2. (3.6)

Inserting (3.6) into (3.5), we get

Φ′(t) ≤ bmβ

∫

∂Ω

um+β+p−2dS − 4mβ(β − 1)
(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx + aβM

∫

Ω

uβ+q−1dx. (3.7)

To the first term of right side of (3.7), we apply the Lemma in [15] to obtain
∫

∂Ω

um+β+p−2dS ≤ n

L0

∫

Ω

um+β+p−2dx +
(m + β + p − 2)d

L0

∫

Ω

um+β+p−3|∇u|dx, (3.8)

where L0 = min
∂Ω

(x · ν) and d = max
Ω

|x|. By (3.6), the Hölder inequality, and the Young inequality, we

derive

∫

Ω

um+β+p−3|∇u|dx ≤
⎛

⎝

∫

Ω

um+β−3|∇u|2dx

⎞

⎠

1
2

⎛

⎝

∫

Ω

um+β+2p−3dx

⎞

⎠

1
2

=

⎛

⎝ε1

∫

Ω

um+β−3|∇u|2dx

⎞

⎠

1
2

⎛

⎝
1
ε1

∫

Ω

um+β+2p−3dx

⎞

⎠

1
2

≤ ε1

2

∫

Ω

um+β−3|∇u|2dx +
1

2ε1

∫

Ω

um+β+2p−3dx
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=
2ε1

(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx +
1

2ε1

∫

Ω

um+β+2p−3dx, (3.9)

where

ε1 =
L0(β − 1)

bd(m + β + p − 2)
. (3.10)

Substituting (3.8)–(3.10) into (3.7), we deduce

Φ′(t) ≤ bmβ

⎛

⎝
n

L0

∫

Ω

um+β+p−2dx +
(m + β + p − 2)d

L0

∫

Ω

um+β+p−3|∇u|dx

⎞

⎠

− 4mβ(β − 1)
(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx + aβM

∫

Ω

uβ+q−1dx

≤ bmnβ

L0

∫

Ω

um+β+p−2dx +
bdmβ(m + β + p − 2)

L0

⎛

⎝
2ε1

(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx

+
1

2ε1

∫

Ω

um+β+2p−3dx

⎞

⎠ − 4mβ(β − 1)
(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx + aβM

∫

Ω

uβ+q−1dx

=
bmnβ

L0

∫

Ω

um+β+p−2dx +
bdmβ(m + β + p − 2)

2L0ε1

∫

Ω

um+β+2p−3dx

+
(

2bdmβ(m + β + p − 2)
L0(m + β − 1)2

ε1 − 4mβ(β − 1)
(m + β − 1)2

) ∫

Ω

|∇u
m+β−1

2 |2dx + aβM

∫

Ω

uβ+q−1dx

=
bmnβ

L0

∫

Ω

um+β+p−2dx +
bdmβ(m + β + p − 2)

2L0ε1

∫

Ω

um+β+2p−3dx

− 2mβ(β − 1)
(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx + aβM

∫

Ω

uβ+q−1dx. (3.11)

We use the Hölder inequality and the Young inequality to the first and fourth terms of right side of (3.11)
to obtain

∫

Ω

um+β+p−2dx ≤
⎛

⎝

∫

Ω

um+β+2p−3dx

⎞

⎠

m+β+p−2
m+β+2p−3

|Ω| p−1
m+β+2p−3

≤ m + β + p − 2
m + β + 2p − 3

∫

Ω

um+β+2p−3dx +
p − 1

m + β + 2p − 3
|Ω| (3.12)

and

∫

Ω

uβ+q−1dx ≤
⎛

⎝

∫

Ω

um+β+2p−3dx

⎞

⎠

β+q−1
m+β+2p−3

|Ω| m+2p−q−2
m+β+2p−3

≤ β + q − 1
m + β + 2p − 3

∫

Ω

um+β+2p−3dx +
m + 2p − q − 2
m + β + 2p − 3

|Ω|, (3.13)
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where 0 < m+β+p−2
m+β+2p−3 < 1 and 0 < m+2p−q−2

m+β+2p−3 < 1 in consideration of (3.2) and (3.3), and |Ω| is the
measure of Ω. Inserting (3.12) and (3.13) into (3.11), we have

Φ′(t) ≤A1 + A2

∫

Ω

um+β+2p−3dx − 2mβ(β − 1)
(m + β − 1)2

∫

Ω

|∇u
m+β−1

2 |2dx, (3.14)

where

A1 =
bmnβ(p − 1) + aβL0M(m + 2p − q − 2)

L0(m + β + 2p − 3)
|Ω| (3.15)

and

A2 =
bmnβ(m + β + p − 2) + aβML0(β + q − 1)

L0(m + β + 2p − 3)
+

bdmβ(m + β + p − 2)
2L0ε1

. (3.16)

By making use of (3.4) and the Hölder inequality, the second term on the right-hand side of (3.14) can
be estimated as follows

∫

Ω

um+β+2p−3dx

≤
⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

(
u

m+β−1
2

) 2n
n−2

dx

⎞

⎠

(m+2p−3)(n−2)
n(m−1)+2β

≤
⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎜
⎝C

2n
n−2
s

⎛

⎝

∫

Ω

um+β−1dx +
∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

n
n−2

⎞

⎟
⎠

(m+2p−3)(n−2)
n(m−1)+2β

= C
2n(m+2p−3)
n(m−1)+2β

s

⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

um+β−1dx +
∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

, (3.17)

where 0 < (m+2p−3)(n−2)
n(m−1)+2β < 1 in view of (3.3). For (3.17), by using the following basic inequality

(j1 + j2)l ≤ 2l(jl
1 + jl

2), j1 > 0, j2 > 0, l > 0,

we deduce
∫

Ω

um+β+2p−3dx

≤ (
2C2

s

) n(m+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

um+β−1dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

+
(
2C2

s

) n(m+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

. (3.18)

Due to (3.3), we have

0 <
n(m + 2p − 3)
n(m − 1) + 2β

< 1. (3.19)
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By (3.19) and the Young inequality, the first term of (3.18) can be rewritten as

(
2C2

s

) n(m+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

um+β−1dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

=

⎛

⎜
⎝

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β

(
n(m − 1) + 2β
n(m + 2p − 3)

)− n(m+2p−3)
2n(1−p)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β

⎞

⎟
⎠

2n(1−p)+2β
n(m−1)+2β

×
⎛

⎝
n(m − 1) + 2β
n(m + 2p − 3)

∫

Ω

um+β−1dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

≤ 2n(1 − p) + 2β
n(m − 1) + 2β

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β

(
n(m − 1) + 2β
n(m + 2p − 3)

)− n(m+2p−3)
2n(1−p)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β

+
∫

Ω

um+β−1dx. (3.20)

It follows from the Hölder inequality and the Young inequality that
∫

Ω

um+β−1dx

≤
⎛

⎝
m + β + 2p − 3
2(m + β − 1)

∫

Ω

um+β+2p−3dx

⎞

⎠

m+β−1
m+β+2p−3 ((

m + β + 2p − 3
2(m + β − 1)

)− m+β−1
2(p−1)

|Ω|
) 2(p−1)

m+β+2p−3

≤ 1
2

∫

Ω

um+β+2p−3dx +
2(p − 1)

m + β + 2p − 3

(
m + β + 2p − 3
2(m + β − 1)

)− m+β−1
2(p−1)

|Ω|, (3.21)

where 0 < m+β−1
m+β+2p−3 < 1 in view of (3.2) and (3.3). For the second term of (3.18), we apply (3.19) and

the Young inequality to obtain

(
2C2

s

) n(m+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

uβdx

⎞

⎠

2n(1−p)+2(m+β+2p−3)
n(m−1)+2β

⎛

⎝

∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

=

⎛

⎜
⎝

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β ε

− n(m+2p−3)
2n(1−p)+2β

2

⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β

⎞

⎟
⎠

2n(1−p)+2β
n(m−1)+2β

×
⎛

⎝ε2

∫

Ω

|∇u
m+β−1

2 |2dx

⎞

⎠

n(m+2p−3)
n(m−1)+2β

≤ 2n(1 − p) + 2β
n(m − 1) + 2β

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β ε

− n(m+2p−3)
2n(1−p)+2β

2

⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β
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+
n(m + 2p − 3)
n(m − 1) + 2β

ε2

∫

Ω

|∇u
m+β−1

2 |2dx, (3.22)

where

ε2 =
mβ(β − 1) [n(m − 1) + 2β]

nA2(m + 2p − 3)(m + β − 1)2
. (3.23)

Now inserting (3.20)–(3.22) into (3.18), we get
∫

Ω

um+β+2p−3dx

≤ 4n(1 − p) + 4β
n(m − 1) + 2β

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β

⎛

⎝

(
n(m − 1) + 2β
n(m + 2p − 3)

)− n(m+2p−3)
2n(1−p)+2β

+ ε
− n(m+2p−3)

2n(1−p)+2β

2

⎞

⎠

×
⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β

+
4(p − 1)

m + β + 2p − 3

(
m + β + 2p − 3
2(m + β − 1)

)− m+β−1
2(p−1)

|Ω|

+
2n(m + 2p − 3)
n(m − 1) + 2β

ε2

∫

Ω

|∇u
m+β−1

2 |2dx. (3.24)

We substitute (3.24) into (3.14) to derive

Φ′(t) ≤ A1 + A2
4(p − 1)

m + β + 2p − 3

(
m + β + 2p − 3
2(m + β − 1)

)− m+β−1
2(p−1)

|Ω|

+ A2

⎡

⎣
4n(1 − p) + 4β
n(m − 1) + 2β

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β

⎛

⎝

(
n(m − 1) + 2β
n(m + 2p − 3)

)− n(m−1)+2β
2n(1−p)+2β

+ ε
− n(m+2p−3)

2n(1−p)+2β

2

⎞

⎠

⎤

⎦

×
⎛

⎝

∫

Ω

uβdx

⎞

⎠

n(1−p)+m+β+2p−3
n(1−p)+β

= C1 + C2Φ
n(1−p)+m+β+2p−3

n(1−p)+β (t), (3.25)

where

C1 = A1 + A2
4(p − 1)

m + β + 2p − 3

(
m + β + 2p − 3
2(m + β − 1)

)− m+β−1
2(p−1)

|Ω| (3.26)

and

C2 = A2
4n(1 − p) + 4β
n(m − 1) + 2β

(
2C2

s

) n(m+2p−3)
2n(1−p)+2β

⎛

⎝

(
n(m − 1) + 2β
n(m + 2p − 3)

)− n(m+2p−3)
2n(1−p)+2β

+ ε
− n(m+2p−3)

2n(1−p)+2β

2

⎞

⎠ . (3.27)

Integrating (3.25) from 0 to t, we have

t ≥
Φ(t)∫

Φ(0)

dτ

C1 + C2τ
n(1−p)+m+β+2p−3

n(1−p)+β

.
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Since u blows up in measure Φ(t) at t∗, we pass the limits as t → t∗− to obtain a lower bound

t∗ ≥
+∞∫

Φ(0)

dτ

C1 + C2τ
n(1−p)+m+β+2p−3

n(1−p)+β

,

where n(1−p)+m+β+2p−3
n(1−p)+β > 1 in view of (3.2) and (3.3). �

4. Application

We present an example to demonstrate applications of Theorems 2.1 and 3.1.

Example 4.1. Let u be a nonnegative classical solution of the following problem
⎧
⎪⎪⎨

⎪⎪⎩

ut = Δu2 + 10 (3 − e−t) u3, in Ω × (0, t∗),
∂u

∂ν
=

1
128

u2 on ∂Ω × (0, t∗),

u(x, 0) =
1

256
|x|2 +

255
256

in Ω,

where Ω = {x = (x1, x2, x3) | |x|2 = x2
1 + x2

2 + x2
3 < 1

}
be a unit ball of R3. Now

f(u) = 10u3, k(t) = 3 − e−t, g(u) =
1

128
u2, u(x, 0) =

1
256

|x|2 +
255
256

, m = 2, n = 3.

It follows from (2.3) and (2.4) that λ1 = π2 and ω1(x) = sin π|x|√
2π|x| . We then have

B(t) =
∫

Ω

ω2
1udx =

∫

Ω

(
sin π|x|√

2π|x|

)2

udx

and

B(0) =
∫

Ω

ω2
1u0dx =

∫

Ω

(
sin π|x|√

2π|x|

)2 (
1

256
|x|2 +

255
256

)

dx = 0.9972.

By choosing a = 10, r = 2, and q = 3, we easily check that (2.1), (2.2), and (2.5) hold. From Theorem
2.1, it follows that u blows up at finite time t∗ in measure B(t) and

t∗ ≤
+∞∫

B(0)

dη

arηq − 2λ1ηm
=

+∞∫

0.9972

dη

20η3 − 2π2η2
= 0.1842, (4.1)

which is an upper bound for t∗.
In order to obtain a lower bound for t∗, we select a = 10, b = 1

128 , M = 3, p = 2, q = 3,
and β = 8. By a simple computation, we have L0 = 1, d = 1, and |Ω| = 4

3π. It is easy to see that
(3.1)–(3.3) are valid. It follows from Theorems 2.1 and 3.2 in [19] that the Sobolev embedding constant
Cs = 5.6948. Putting the above paraments into (3.10), (3.15)–(3.16), (3.23), and (3.26)–(3.27), we get
ε1 = 89.6, ε2 = 1.0633 × 10−2, A1 = 91.5346, A2 = 274.5227, C1 = 3926.7819, and C2 = 7.4362 × 105.
Now we have

Φ(t) =
∫

Ω

u8dx



99 Page 12 of 13 J. Ding and X. Shen ZAMP

and

Φ(0) =
∫

Ω

u8
0dx =

∫

Ω

(
1

256
|x|2 +

255
256

)8

dx = 4.1369.

Since u blows up in measure B(t) at t∗, u must blow up in measure Φ(t) at t∗. By Theorem 3.1, we obtain

t∗ ≥
+∞∫

Φ(0)

dτ

C1 + C2τ
n(1−p)+m+β+2p−3

n(1−p)+β

=

+∞∫

4.1369

dτ

3926.7819 + 7.4362 × 105τ
8
5

= 9.5580 × 10−7, (4.2)

which is a lower bound for t∗. Combining (4.1) and (4.2), we have

9.5580 × 10−7 ≤ t∗ ≤ 0.1842.
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