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Abstract. In this paper, we consider wave viscoelastic equation with dynamic boundary condition in a bounded domain,
and we establish a general decay result of energy by exploiting the frequency domain method which consists in combining a
contradiction argument and a special analysis for the resolvent of the operator of interest with assumptions on past history
relaxation function.
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1. Introduction

We omit the space variable x of u(x, t), ut(x, t) and for simplicity reason denote u(x, t) = u, ut(x, t) = ut,
and when no confusion arises also, the functions considered are all real valued; here, ut = ∂u(t)/∂t,
utt = ∂2u(t)/∂t2. Our main interest lies in the following system of viscoelastic equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − Δu +

∞∫

0

g(s)Δu(x, t − s)ds = 0, x ∈ Ω, t > 0

utt = −
⎛

⎝
∂u

∂ν
(x, t) −

∞∫

0

g(s)
∂u

∂ν
(x, t − s)ds

⎞

⎠ , x ∈ Γ1, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

u(x,−t) = u0(x, t), x ∈ Ω, t > 0

ut(x, 0) = u1(x), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

The main difficulty of the problem considered is related to the nonordinary boundary conditions defined
on Γ1. Very little attention has been paid to this type of boundary conditions [2]. From the mathematical
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point of view, these problems do not neglect acceleration terms on the boundary. Such types of bound-
ary conditions are usually called dynamic boundary conditions. They are not only important from the
theoretical point of view but also arise in several physical applications [3,4]. For instance in one space
dimension, problem (1.1) can modelize the dynamic evolution of a viscoelastic rod that is fixed at one end
and has a tip mass attached to its free end. The dynamic boundary conditions represent the Newton’s law
for the attached mass (see [2,6] for more details), which arise when we consider the transverse motion of a
flexible membrane whose boundary may be affected by the vibrations only in a region. Also some of them
as in problem (1.1) appear when we assume that is an exterior domain of R3 in which homogeneous fluid
is at rest except for sound waves. Each point of the boundary is subjected to small normal displacements
into the obstacle (see [6] for more details). Among the early results dealing with the dynamic boundary
conditions are those of Grobbelaar-van Dalsen [13,14] in which the authors have made contributions to
this field, and in [15], the authors have studied the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − Δu + δΔut = |u|p−1u, x ∈ Ω, t > 0

utt = −
(

∂u(x, t)
∂ν

(x, t) + δ
∂u(x, t)

∂ν
(x, t) + α|ut|m−1u(x, t)

)

, x ∈ Γ1, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

ut(x, 0) = u1(x), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

and they have obtained several results concerning local existence which extended to the global existence
by using the concept of stable sets. The authors have also obtained the energy decay and the blow up of
the solutions for positive initial energy.

The same problem was treated by [11], they showed the existence and uniqueness of a local in time
solution and under some restrictions on the initial data, and the solution continues to exist globally in
time. On the other hand, if the interior source dominates the boundary damping, they proved that the
solution is unbounded and grows as an exponential function. In addition, in the absence of the strong
damping, they proved also the solution ceases to exist and blows up in finite time. Related problem as
[9], Cavalcanti et al. [5] studied the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + Au + a(x)g1(ut) = 0, x ∈ Ω, t > 0,

utt +
∂u(x, t)

∂νA
+ AT υ + g2(υt) = 0, x ∈ Γ1, t > 0,

u(x, t) = 0 x ∈ Γ0, t > 0,

u(x, t) = υ, x ∈ Γ1, t > 0,

(ut(x, 0), υt(x, 0)) = (u1, υ
1), x ∈ (Ω,Γ1),

(u(x, 0), υ(0)) = (u0(x), υ1), x ∈ (Ω,Γ1).

They supposed that the second-order differential operators A and AT satisfy certain uniform ellipticity
conditions, and they obtained uniform stabilization by using Riemannian geometry methods.
Motivated by the previous works, it is interesting to show more general decay result to that in [9] and
[10], we analyze the influence of the viscoelastic, on the solutions to (1.1). Under suitable assumption on
function g(.), the initial data and the parameters in the equations.

The content of this paper is organized as follows: In Sect. 2, we provide assumptions that will be used
later. In Sect. 3, we state and prove the local existence result. In Sect. 4, by exploiting the frequency
domain method used also in [1] we prove the stability result.
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2. Preliminaries

In this section, we present some materials and assumptions for the proof of our results. Denote

H1
Γ0

(Ω) =
{
u ∈ H1(Ω) : uΓ0 = 0

}
,

H1
Γ0

(Γ) =
{
u ∈ H1(Γ) : uΓ0 = 0

}
,

we set γ1 the trace operator from H1
Γ0

(Ω) on L2(Γ1) and H
1
2 (Γ1) = γ1(H1

Γ0
(Ω)). We denote by B the

norm of γ1, namely

∀u ∈ H1
Γ0

(Ω), ‖u‖2.Γ1 ≤ B‖∇u‖2.

We will use the following embeddings

H1
Γ0

(Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ 2n

n − 2
, if n ≥ 3 and q ≥ 2, if n = 1, 2

Lr(Ω) ↪→ Lq(Ω), for q < r.

Then for some cs > 0,

‖ν‖q ≤ cs‖∇ν‖2, ‖ν‖q ≤ cs‖ν‖r for ν ∈ H1
Γ0

(Ω).

We recall that H
1
2 (Γ1) is dense in L2(Γ1). We denote

E(Δ, L2(Ω)) =
{
u ∈ H1(Ω) such that Δu ∈ L2(Ω)

}

and recall that for a function u ∈ E(Δ, L2(Ω)),
∂u

∂ν
∈ H− 1

2 (Γ1). We will usually use the following Green’s
formula

∫

Ω

∇u(x)∇ω(x)dx = −
∫

Ω

Δu(x)ω(x)dx +
∫

Γ1

∂u

∂ν
(x)ω(x)dΓ1, ∀ω ∈ H1

Γ0
(Ω). (2.3)

For studying problem (1.1), we will need the following assumptions (A1).
• The relaxation function g is differentiable function such that, for s ≥ 0

g(s) ≥ 0, 1 −
∞∫

0

g(s)ds = 
 > 0, (2.4)

•
∃ ζ0, ζ1 > 0 : −ζ1g(t) ≤ g′(t) ≤ −ζ0g(t), ∀ t ∈ R. (2.5)

3. Well-posedness of the problem

In order to prove the existence of solutions of problem (1.1), we follow the approach of Dafermos [8], by
considering a new auxiliary variable the relative history of u as follows:

η := ηt(x, s) = u(x, t) − u(x, t − s) in Ω × (0,∞) × (0,∞),

and the weighted L2− spaces

M = L2
g(R+;H1

Γ0
(Ω))

=

⎧
⎨

⎩
ξ : R+ → H1

Γ0
(Ω)) :

∞∫

0

g(s)‖∇ξ(s)‖2
2ds < ∞

⎫
⎬

⎭
,
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which is a Hilbert space endowed with inner product and norm consecutively

〈ξ, ζ〉M =

∞∫

0

g(s)

⎛

⎝

∫

Ω

∇ξ(s)∇ζ(s)dx

⎞

⎠ds,

and

‖ξ‖2
M =

∞∫

0

g(s)‖∇ξ(s)‖2
2ds.

Our analysis is given on the phase space

H = H1
Γ0

(Ω) × ×L2(Ω) × L2(Γ1) × M. (3.6)

If we denote V := (u, ut, γ1(ut), η), then it is clear that H is a Hilbert space with respect to the following
inner product

〈V1, V2〉H = (1 − g0)
∫

Ω

∇u1 · ∇u2dx +
∫

Ω

υ1 · υ2dx +
∫

Γ1

w1 · w2dσ

+

∞∫

0

g(s)

⎛

⎝

∫

Ω

∇η1(s) · ∇η2(s)dx

⎞

⎠ds, (3.7)

for V1 = (u1, υ1, w1, η1)T and V2 = (u2, υ2, w2, η2)T. Therefore, problem (1.1) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − 
Δu −
∞∫

0

g(s)Δηt(x, s)ds = 0, x ∈ Ω, t > 0,

utt = −
⎛

⎝
∂u

∂ν
(x, t) +

∞∫

0

g(s)
∂u

∂ν
(x, t − s)ds

⎞

⎠ , x ∈ Γ1, t > 0,

ηt
t(x, t) + ηt

s(x, s) = ut(x, t), x ∈ Ω, t > 0, s > 0,

u(x, t) = ηt(x, 0) = 0, x ∈ Γ0, t > 0,

u(x,−t) = u0(x, t), x ∈ Ω, t > 0,

ut(x, 0) = u1(x), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω.

(3.8)

If V0 ∈ H and V ∈ H , problem (3.8) is formally equivalent to the following abstract evolution equation
in the Hilbert space H

⎧
⎨

⎩

V ′(t) = AV (t), t > 0

V (0 = V0, .
(3.9)
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such that V0 = (u0, u1, γ1(u1), η0)T and the operator A is defined by

A

⎛

⎜
⎜
⎝

u
υ
ω
η

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

υ

(1 − g0)Δu +

∞∫

0

g(s)Δη(s)ds

−∂u

∂ν
−

∞∫

0

g(s)
∂ω

∂ν
(x, t − s)ds

−∂η

∂s
+ υ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.10)

The domain of A is given by

D(A) =

⎧
⎪⎪⎨

⎪⎪⎩

(u, υ, ω, η) ∈ (
H2(Ω) ∩ H1

Γ0
(Ω)

)× H1
Γ0

(Ω) × L2(Γ1) × M,

(1 − g0)u +

∞∫

0

g(s)η(s)ds ∈ L2(Ω), ω = γ1(u) = u0(., 0), η(0) = 0 on Γ1

⎫
⎪⎪⎬

⎪⎪⎭

Now, our main result concerning this section is stated as follows:

Theorem 3.1. Let V0 ∈ H. Then, system (3.8) has a unique weak solution

V ∈ C(R+;H)

Moreover, if V0 ∈ D(A), then the solution of (3.9) satisfies

V ∈ C1(R+;H) ∩ C(R+;D(A))

Proof. By Lumer–Phillips’ theorem[17], it suffices to show that A is m-dissipative.
We first prove that A is dissipative. Indeed, for any V = (u, υ, ω, η)T ∈ D(A), we have

〈AV, V 〉H =

〈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

υ

(1 − g0)Δu +

∞∫

0

g(s)Δη(s)ds

−∂u

∂ν
−

∞∫

0

g(s)
∂u

∂ν
(x, t − s)ds

−∂η

∂s
+ υ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎝

u
υ
ω
η

⎞

⎟
⎟
⎠

〉

= (1 − g0)
∫

Ω

∇υ · ∇udx + (1 − g0)

⎧
⎨

⎩

∫

Ω

Δu · υdx +
∫

Ω

∞∫

0

g(s)Δη(s)υ(s)ds

⎫
⎬

⎭

+
∫

Γ1

⎛

⎝
−∂u

∂ν
−

∞∫

0

g(s)
∂u

∂ν
(x, t − s)ds

⎞

⎠ωdσ +
〈−∂η

∂s
+ υ, η

〉

L2
g

.

(3.11)

Noting that
∫

Γ1

⎛

⎝
−∂u

∂ν
−

∞∫

0

g(s)
∂u

∂ν
(x, t − s)ds

⎞

⎠ωdσ = 0 (3.12)

By exploiting Green’s formula, integrating by parts and using the fact that η(0) = 0 (from the definition
of D(A)), we obtain
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〈−∂η

∂s
, η

〉

L2
g

=
1
2

∞∫

0

g′(s)‖∇η(s)‖2ds.

Inserting the previous identity into (3.11) , we get

〈AV, V 〉H =
1
2

∞∫

0

g′(s)‖∇η(s)‖2ds,

which implies that

〈AV, V 〉H ≤ 0,

since g is nonincreasing. This means that A is dissipative. Note that, thanks to (A1) and the fact that
η ∈ L2

g(R;H1
Γ0

(Ω)),
∣
∣
∣
∣
∣
∣

∞∫

0

g′(s)‖∇η(s)‖2ds

∣
∣
∣
∣
∣
∣
= −

∞∫

0

g′(s)‖∇η(s)‖2ds

≤ ζ1

∞∫

0

g(s)‖∇η(s)‖2ds

< +∞.

(3.13)

Next, we shall prove that λI − A is surjective for λ > 0. Indeed, let F = (f1, f2, f3, f4)T ∈ H, and we
look for W = (ω1, ω2, ω3, ω4)T ∈ D(A) satisfying

(Iλ − A)W = F (3.14)

As previously, we have

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 0

(1 − g0)Δ 0 0

∞∫

0

g(s)Δds

− ∂

∂ν
0 −

∞∫

0

g(s)
∂

∂ν
ds 0

0 I 0 − ∂

∂s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and (3.14) gives us
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λω1 − ω2 = f1

−(1 − g0)Δω1 + λω2 −
∞∫

0

g(s)Δω4(s)ds = f2

λω3 +
∂ω1

∂ν
+

∞∫

0

g(s)
∂ω3(s)

∂ν
ds = f3

−ω2 + λω4 +
∂

∂s
ω4 = f4.

(3.15)

We note that the first equation in (3.15) gives

ω2 = λω1 − f1 (3.16)
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and the last equation in (3.15) with η(0) = 0 has unique solution

ω4(s) =

⎛

⎝

s∫

0

ey(f4(y) + ω2(y))dy

⎞

⎠ e−s. (3.17)

From the first and the second equation in (3.15), we can deduce the following

λ2ω1 − (1 − g0)Δω1 = (f2 + λf1) +

∞∫

0

g(s)ω4(s)ds. (3.18)

Putting ū = ω1 +

∞∫

0

g(s)ω3(s)ds. Then from equation (3.18), ū must satisfy

λ2ū − (1 − g0)Δū = λ2

∞∫

0

g(s)ω3(s)ds − (1 − g0)

∞∫

0

g(s)Δω3(s)ds

+ (f2 + λf1) +

∞∫

0

g(s)ω4(s)ds

(3.19)

with the boundary conditions

ū = 0 on Γ0 (3.20)
∂ū

∂ν
= f3 − λū + λu0(x)(1 − 
) on Γ1. (3.21)

It is sufficient to prove that (3.19) has a solution ū in H2(Ω)∩H1
Γ0

(Ω) and replacing it in (3.17) and (3.16)
to conclude that (3.8) has a solution V ∈ D(A). So we multiply (3.19) by a test function ϕ ∈ H1

Γ0
(Ω)

and we integrate by parts, obtaining the following variational formulation of (3.19):

a(ū, ϕ) = l(ϕ) ∀ ϕ ∈ H1
Γ0

(Ω) (3.22)

where
a(ū, ϕ) =

∫

Ω

[
λ2ū · ϕ + (1 − g0) ∇ū · ∇ϕ

]
dx + λ

∫

Γ1

ū(σ)ϕ(σ)dσ (3.23)

and

l(ϕ) =
∫

Ω

⎡

⎣λ2

∞∫

0

g(s)ω3(s)dsϕdx + (1 − g0)

∞∫

0

g(s)∇ω3(s)ds∇ϕdx + (f2 + λf1)ϕdx

⎤

⎦

+
∫

Ω

∞∫

0

g(s)ω4(s)dsϕdx + λ

∫

Γ1

u0(σ)ϕ(σ)dσ

(3.24)

It is clear that a is a bilinear and continuous form on H1
Γ0

(Ω) and l is linear and continuous form on
H1

Γ0
(Ω). On the other hand, (3.23) implies that there exists a positive constant a0 such that

a(ū, ū) =
∫

Ω

λ2|ū|2dx + (1 − g0)
∫

Ω

|∇ū|2dx + λ

∫

Γ1

|ū(σ)|2dσ

≥ a0‖ū‖2
2 ∀ū ∈ H1

Γ0
(Ω),

(3.25)

which implies that a is coercive. Therefore, using the Lax–Milgram theorem, we conclude that (3.19)
has a unique solution ū in H1

Γ0
(Ω). By classical regularity arguments, we conclude that the solution ū of
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(3.19) belongs into H2(Ω)∩H1
Γ0

(Ω) and satisfies (3.19). Consequently, using (3.16) and (3.17), we deduce
that (3.8) has a unique solution V ∈ D(A). This proves that (λI − A) is surjective, and hence, A is an
infinitesimal generator of a linear C0 semigroup of contractions on H. �

The energy associated with (3.8) is defined by

E(t) =
1
2

{
‖ut(t)‖2

Γ1
+ ‖∇u(t)‖2

2 + ‖η‖2
L2

g

}
, (3.26)

Lemma 3.2. The functional defined in (3.26) satisfies the following inequality

E′(t) ≤ 1
2

∞∫

0

g′(s)‖∇η(s)‖2
2ds, ∀ t ≥ 0, (3.27)

Proof. By multiplying the first equation in (3.8) by ut(t), and integrating over Ω, we get

0 =
1
2

d

dt

{‖ut(t)‖2
Γ1

+ ‖∇u(t)‖2
2

}
+

∞∫

0

g(s)
∫

Rn

∇η(s)∇ut(t)dsdx. (3.28)

Since

ut(x, t) = ηt(x, s) + ηs(x, s), (x, s) ∈ Ω × R
+, t ≥ 0,

we have
∞∫

0

g(s)
∫

Ω

∇η(s)∇ut(t)dxds =

∞∫

0

g(s)
∫

Ω

∇η(s)∇ηt(t)dxds

+

∞∫

0

g(s)
∫

Ω

∇η(s)∇ηs(t)dxds

=
1
2

∞∫

0

g(s)
d

dt
‖∇η(s)‖2

2ds

− 1
2

∞∫

0

g′(s)‖∇η(s)‖2
2ds

+

∞∫

0

g(s)
∫

Ω

∇η(s)∇ηt(t)dxds.

(3.29)

Due to Young’s inequality, we have for any δ > 0
∞∫

0

g(s)
∫

Ω

∇η(s)∇ηt(t)dxds ≤
∞∫

0

g(s)
(

1
4δ

‖∇η(s)‖2
2 + δ‖∇ηt‖2

2

)

ds

≤ δ

⎛

⎝

∞∫

0

g(s)ds

⎞

⎠ ‖∇ηt‖2
2 +

1
4δ

∞∫

0

g(s)‖∇η(s)‖2
2ds

= δg0‖∇ηt‖2
2 +

1
4δ

‖η‖2
L2

g
,

(3.30)

by replacing (3.29) and (3.30) into (3.28), we get the desired result. �
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4. Stability result

The necessary and sufficient conditions for the exponential stability of the C0-semigroup of contractions
on a Hilbert space were obtained by Gearhart [12] and Huang [16] independently (see also Prüss [18]).
We will use the following result due to Gearhart.

Lemma 4.1. A semigroup {etA}t≥0 of contractions on a Hilbert space X is exponentially stable if and
only if

iR ≡ {iβ; β ∈ R} ⊂ ρ(A) (4.31)
and

lim sup
|β|→∞

‖(iβI − A)−1‖X < ∞ (4.32)

Our main result reads as follows:

Theorem 4.2. The semigroup of system (3.8) decays exponentially as

‖etAV0‖H ≤ Ce−γt‖V0‖D(A), ∀ V0 ∈ D(A), t > 0 (4.33)

Proof. The proof is splinted into two parts: the first part consists to prove (4.31) which is equivalent to
prove the following two assertions
1. If β is a real number, then (iβI − A) is injective and
2. If β is a real number, then (iβI − A) is surjective.
It is the objective of the two following lemmas.

Lemma 4.3. If β is a real number, then iβ is not an eigenvalue of A.

Proof. We will show that the equation
AZ = iβZ (4.34)

with Z = (u, υ, ω, η)T ∈ D(A) and β ∈ R has only the trivial solution. Equation (4.34) can be written as

iβu − υ = 0 (4.35)
iβυ − (1 − g0)Δu − ∫∞

0
g(s)Δη(s)ds = 0 (4.36)

iβω +
∂u

∂ν
+

∞∫

0

g(s)
∂ω(s)

∂ν
ds = 0 (4.37)

iβη +
∂η

∂s
− υ = 0 (4.38)

By taking the inner product of (4.34) with Z ∈ D(A) and using (3.27), we get:

�(〈AZ,Z〉H) ≤
∞∫

0

g′(s)‖∇η(s)‖2ds

≤ −
∞∫

0

g(s)‖∇η(s)‖2ds

= −‖η‖2
M

≤ 0

(4.39)

Thus, we obtain that η = 0; moreover, as η satisfies (4.38), by integration, we obtain

η(s) =

⎛

⎝

s∫

0

eiβyυ(y))dy

⎞

⎠ e−iβs.



95 Page 10 of 13 A. B. Aissa and M. Ferhat ZAMP

Since η = 0, we deduce that υ = 0, and from (4.35), we have u = 0. Moreover, as ω = γ1(u) = u0(., 0), we
obtain also ω = 0. Thus, the only solution of (4.34) is the trivial one. Hence, the proof is completed. �

Next, we show that A has no continuous spectrum on the imaginary axis.

Lemma 4.4. If β is a real number, then iβ lies in the resolvent set ρ(A) of A.

Proof. In view of Lemma 4.3, it is enough to show that iβI − A is surjective.
In fact, for F = (f1, f2, f3, f4)T ∈ H, let V = (u, υ, ω, η)T ∈ D(A) solution of

(iβI − A)V = F (4.40)

which is ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iβu − υ = f1

−(1 − g0)Δu + iβυ −
∞∫

0

g(s)Δη(s)ds = f2

iβω +
∂u

∂ν
+

∞∫

0

g(s)
∂ω(s)

∂ν
ds = f3

−υ + iβη +
∂η

∂s
= f4.

(4.41)

The first equation in (4.41) gives
υ = iβω1 − f1. (4.42)

The last equation in (4.41) with η(0) = 0 has unique solution

ω4(s) =

⎛

⎝

s∫

0

eiβy(f4(y) + ω2(y))dy

⎞

⎠ e−iβs (4.43)

Another time, from the first and the second equation in (4.41), we can deduce the following

(iβ)2ω1 − (1 − g0)Δω1 = (f2 + iβf1) +

∞∫

0

g(s)ω4(s)ds (4.44)

If we take ω1 +

∞∫

0

g(s)ω3(s)ds = ū, then from Eq. (4.44) ū must satisfy

(iβ)2ū − (1 − g0)Δū = (iβ)2
∞∫

0

g(s)ω3(s)ds − (1 − g0)

∞∫

0

g(s)Δω3(s)ds

+ (f2 + iβf1) +

∞∫

0

g(s)ω4(s)ds

(4.45)

with the boundary conditions

ū = 0 on Γ0 (4.46)
∂ū

∂ν
= f3 − iβū + iβu0(x)(1 − 
) on Γ1. (4.47)

It is sufficient to prove that (4.45) has a solution ū in H2 ∩ H1
Γ0

(Ω), and then, we replace in (4.42) and
(4.43) to conclude that (4.40) has a solution V ∈ D(A). Then, we multiply (4.45) by a test function
ϕ ∈ H1

Γ0
(Ω) and we integrate by parts, obtaining the following variational formulation of (4.45):

b(ū, ϕ) = l(ϕ) ∀ ϕ ∈ H1
Γ0

(Ω) (4.48)
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where

b(ū, ϕ) =
∫

Ω

[
(iβ)2ū.ϕ + (1 − g0) ∇ū.∇ϕ

]
dx + iβ

∫

Γ1

ū(σ)ϕ(σ)dσ (4.49)

and

l(ϕ) =
∫

Ω

⎡

⎣(iβ)2
∞∫

0

g(s)ω3(s)dsϕdx + (1 − g0)

∞∫

0

g(s)∇ω3(s)ds∇ϕdx + (f2 + iβf1)ϕdx

⎤

⎦

+
∫

Ω

∞∫

0

g(s)ω4(s)dsϕdx + iβ

∫

Γ1

u0(σ)ϕ(σ)dσ

(4.50)

It is clear that b is a bilinear and continuous form on H1
Γ0

(Ω) and l is linear and continuous form on
H1

Γ0
(Ω). On the other hand, (4.49) implies that there exists a positive constant C0 such that

b(ū, ū) =
∫

Ω

(iβ)2|ū|2dx + (1 − g0)
∫

Ω

|∇ū|2dx + iβ

∫

Γ1

|ū(σ)|2dσ

≥ C0‖ū‖2
2 ∀ū ∈ H1

Γ0
(Ω),

(4.51)

which implies that b is coercive. Therefore, using the Lax–Milgram theorem, we conclude that (4.45) has
a unique solution ū in H1

Γ0
(Ω). By classical regularity arguments, we conclude that the solution ū of

(4.42) belongs into H2(Ω) ∩ H1
Γ0

(Ω). Consequently, using (4.42) and (4.43), we deduce that (4.34) has a
unique solution V ∈ D(A). This proves that (iβ − A) is surjective. �

Lemma 4.5. The resolvent operator of A satisfies (4.32).

Proof. Suppose that condition (4.32) is false. By Banach–Steinhaus theorem [7, Theorem A.3.19], there
exists a sequence of real numbers βn → +∞ and a sequence of vectors

Zn = (un, υn, ωn, ηn)T ∈ D(A) with ‖Zn‖H = 1 (4.52)

such that
‖(iβnI − A)Zn‖H → 0 as n → ∞. (4.53)

That’s

(iβnun − υn) ≡ fn → 0, in H1
Γ0

(Ω) (4.54)
⎛

⎝iβnυn − (1 − g0)Δun −
∞∫

0

g(s)Δηn(s)ds

⎞

⎠ ≡ gn → 0, in L2(Ω) (4.55)

⎛

⎝iβnωn +
∂un

∂ν
+

∞∫

0

g(s)
∂ωn(s)

∂ν
ds

⎞

⎠ ≡ hn → 0, in L2(Γ1) (4.56)

(

iβnηn +
∂ηn

∂s
− υn

)

≡ kn → 0, in M. (4.57)

Our aim is to derive from (4.53) that ‖Zn‖H converges to zero; thus, there is a contradiction.

|� 〈(iβnI − A)Zn, Zn〉H| ≤ ‖(iβnI − A)Zn‖H. (4.58)

Using the hypotheses on g , we find that

ηn → 0 in L2
g(R+;H1

Γ0
(Ω)) (4.59)
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and

ηn(s) =

⎛

⎝

s∫

0

eiβykn(y)

⎞

⎠ e−iβs +

⎛

⎝

s∫

0

eiβyυn(y)dy

⎞

⎠ e−iβs. (4.60)

By exploiting the convergence (4.59) and (4.60), we can deduce from (4.54) that

υn → 0 in L2(Ω) and un → 0 in L2(Ω). (4.61)

Now, multiplying equation (4.54) by υn and (4.55) by un, adding them and taking the real parts , we
obtain

− ‖υn‖2
2 + (1 − g0)‖∇un‖2

2 +

∞∫

0

g(s)∇ηn(s)∇un(t)ds → 0 in L2(Ω). (4.62)

According to Young’s inequality, we have for any δ > 0
∞∫

0

g(s)
∫

Ω

∇ηn(s)∇un(t)dxds ≤
∞∫

0

g(s)
(

1
4δ

‖∇ηn(s)‖2
2 + δ‖∇un‖2

2

)

ds

≤ δ

⎛

⎝

∞∫

0

g(s)ds

⎞

⎠ ‖∇un‖2
2 +

1
4δ

∞∫

0

g(s)‖∇ηn(s)‖2
2ds

= δg0‖∇un‖2
2 +

1
4δ

‖η‖2
L2

g
.

(4.63)

Replacing the last inequality in (4.62), for δ sufficiently small, we get

∇un → 0 in L2(Ω). (4.64)

Consequently, we have
un → 0 in H1

Γ0
(Ω). (4.65)

By using (4.56) and trace theorem, we get

ωn → 0 in L2(Γ1) (4.66)

which contradicts (4.52). Thus, (4.32) is proved. �

�
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