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Abstract. In this paper, we investigate a coupled Navier–Stokes/Allen–Cahn system describing a diffuse interface model
for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω ⊂ R

N (N = 2, 3). We
prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density
function ρ0 has a positive lower bound.
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1. Introduction

In this paper, we are interested in a diffusive interface model, which describes the motion of a mixture
of two viscous incompressible fluids with different densities. This thermodynamically and mechanically
consistent model has many interesting features, thus representing an important development in fluid
mechanics. In fact, this model describes two-phase mixture of fluids undergoing phase transitions, where
sharp interfaces are replaced by narrow transition layers. The latter feature has the advantage to deal
with interfaces that merge, reconnect, and hit conditions. This is in contrast to sharp interface models
which usually fail in these situations. A phase field variable χ is introduced and a mixing energy is defined
in terms of χ and its spatial gradient. The model consists of Navier–Stokes equations governing the fluid
velocity coupled with a convective Allen–Cahn equation for the change of the concentration caused by
diffusion. It is evident that, the change of the concentration is effected by the velocity of the fluids, and
the velocity of the fluids is also related with the concentration because of the surface tension. Actually,
the phase field variable χ defined by concentration difference can also be assumed to satisfy different
variants of Cahn–Hilliard or other types of dynamics, see [9,17,33].

In this paper, we investigate the following coupled Navier–Stokes/Allen–Cahn system for viscous
incompressible fluids with different densities

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇p = div(2η(χ)Du) − δdiv(∇χ ⊗ ∇χ),
divu = 0,

(ρχ)t + div(ρuχ) = −μ,

ρμ = −δΔχ + ρ
∂f

∂χ

(1.1)

for (x, t) ∈ Ω × (0,+∞), where Ω is a bounded domain in R
N (N = 2, 3) with smooth boundary ∂Ω,

ρ ≥ 0 is the total density, u denotes the mean velocity of the fluid mixture, Du =
1
2
(∇u + ∇uT ), p is the

pressure, χ represents the concentration difference of the two fluids, μ is the chemical potential, η(χ) > 0
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is the viscosity of the mixture, the free energy density satisfies double-well structure f(χ) =
1
δ
(
χ4

4
− χ2

2
),

positive constant δ denotes the width of the interface. The usual Kronecker product is denoted by ⊗, i.e.,
(a⊗ b)ij = aibj for a, b ∈ R

N . The equations (1.1)1−3 are nonhomogeneous incompressible Navier–Stokes
equations, which have an extra term ∇χ ⊗ ∇χ describing capillary effect related to the free energy

F (ρ, χ) =
∫

Ω

(

ρf(χ) +
δ

2
|∇χ|2

)

dx.

The system (1.1) is a highly nonlinear system coupling hyperbolic equations with parabolic equations.
Here, we point out some special cases of this coupled system:

(i) When the densities of the two fluids are the same or at least very close (“matched densities”), the
total density ρ is assumed to be constant, then (1.1) reduces to an incompressible Navier–Stokes/Allen–
Cahn system. From another point of view, it is also closely related to liquid crystal model, Magnetohy-
drodynamics (MHD) equations, and viscoelastic system with infinite Weissenberg number, see [40].

(ii) When χ is a constant, the system (1.1) becomes a nonhomogeneous incompressible Navier–Stokes
equations. It has been paid many attentions, see Antontsev and Kazhikov [8], Kazhikov [25], Simon [35],
Lions [28], Choe and Kim [13], and the references therein.

(iii) When ρ and χ are constants, the system (1.1) reduces to classical incompressible Navier–Stokes
equation, which is the fundamental equation to describe Newtonian fluids. It has attracted great interests,
see Lions [28] and Feireisl [37] for survey of important developments.

(iv) When ρ is a constant and u = 0, the system (1.1) turns out to be the Allen–Cahn equation,
which was originally introduced by Allen and Cahn [4] to describe the motion of antiphase boundaries in
crystalline solids. This type of equation has been extensively studied, see [14,22,36] for example.

The diffuse interface models for two-phase flow of incompressible viscous fluids with “matched densi-
ties” have been extensively studied. For incompressible Navier–Stokes/Allen–Cahn system, Xu et al. [40]
discussed the axisymmetric solutions in 3D. They prove the global regularity of the constructed solutions
in both large viscosity and small initial data cases. Zhao et al. [42] investigated the vanishing viscosity
limit. They proved that the solutions of the Navier–Stokes/Allen–Cahn system converge to that of the
Euler/Allen–Cahn system in a proper small time interval. Gal and Grasselli [20] showed the existence of
the trajectory attractor. For another type of diffuse interface model—Navier–Stokes/Cahn–Hilliard sys-
tem, Boyer [10] studied the existence of global weak and strong solutions in 2D, the existence of unique
strong solution in 3D and the stability of the stationary solutions. For the studies on well-posedness, as-
ymptotic behavior, attractor, etc, see [1,20,21] and the references cited therein. Moreover, for numerical
simulations, such as jet pinching-off and drop formation, we refer the readers to [11,29,38,41].

It is evident that, the densities in two fluids are often quite different. Therefore, the investigations
on the phase field models for two-phase flow with non-matched densities are significant. To our knowl-
edge, there are only a few theoretical results available to compressible models. For compressible Navier–
Stokes/Allen–Cahn system, Feireisl et al. [18] proved the existence of weak solutions in 3D. Kotschote
[26] got the existence of unique local strong solutions. In [16], we obtained the global well-posedness in 1D
with constant mobility. We prove the existence of the initial boundary value problem in various regularity
classes, as well as uniqueness for strong solutions. For compressible Navier–Stokes/Cahn–Hilliard system,
Abels and Feireisl [6] derived the existence of weak solutions. Kotschote and Zacher [27] established the
local existence of unique strong solutions. There are also some investigations on incompressible fluids
with different densities under the assumption of ρ = ρ(χ). Helmut Abels has done a series of researches
on it. In [5], he studied the existence of weak solutions of a modified Navier–Stokes/Cahn–Hilliard system
which had been obtained by himself in [7]. A coupled system of a nonhomogeneous generalized Navier–
Stokes system and a Cahn–Hilliard equation was considered in [3], and he proved the existence of weak
solutions by using L∞-truncation method and Galerkin approximation. For related studies of Helmut
Abels, one can find in [2,3,5,7] and the references therein. In 2015, Chun Liu [32] deduced another type
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of Navier–Stokes/Cahn–Hilliard equations by the energetic variational approaches, and carried out nu-
merical experiments to validate the model and the schemes for problems with large density and viscosity
ratios. A similar Navier–Stokes/Allen–Cahn system has been derived by Jie Jiang et al. [23], they got
the existence of weak solutions in 3D as well as the well-posedness of strong solutions in 2D, and then
investigated the longtime behavior of the 2D strong solutions.

In this paper, we investigate the Navier–Stokes/Allen–Cahn system for two fluids with non-matched
densities, ρ = ρ(x, t) is an unknown function, but the velocity u satisfies the divergence-free condition
divu = 0, i.e., the fluids are incompressible and with different densities. As far as we know, there are not
any results about this type of model until now. This paper concerned with the existence and uniqueness
of local strong solutions. The main mechanism for possible breakdown of such a local strong solution has
been investigated in our another work [30].

We supplement the system (1.1) with the following initial conditions

(ρ, u, χ)
∣
∣
∣
t=0

= (ρ0, u0, χ0), x ∈ Ω, (1.2)

the usual no-slip boundary condition on the velocity and Neumann boundary condition on the phase field
variable

(
u,

∂χ

∂n

)∣
∣
∣
∂Ω

= (0, 0), t ≥ 0, (1.3)

where n is the unit outward normal vector of ∂Ω.
Notations For p ≥ 1, denote Lp = Lp(Ω) as the Lp space with the norm ‖·‖Lp . For k ≥ 1 and p ≥ 1, denote
W k,p = W k,p(Ω) for a Sobolev space, whose norm is denoted by ‖ · ‖Wk,p , and specially Hk = W k,2(Ω).

Definition 1.1. For T > 0, (ρ, u, p, χ, μ) is called a strong solution of the coupled Navier–Stokes/Allen–
Cahn system (1.1) in Ω × (0, T ], if

ρ ∈ L∞(0, T ;W 2,6), ρt ∈ L∞(0, T ;W 1,6), 0 < c−1 ≤ ρ ≤ c,

u ∈ L∞(
0, T ;H2 ∩ H1

0

) ∩ L2(0, T ;W 2,6), ut ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1
0 ),

p ∈ L∞(0, T ;H1) ∩ L2(0, T ;W 1,6),

χ ∈ L∞(0, T ;H3) ∩ L2(0, T ;H4), χt ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), χtt ∈ L2(0, T ;L2),

μ ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), μt ∈ L2(0, T ;L2),

and (ρ, u, p, χ, μ) satisfies (1.1) a.e. in Ω × (0, T ].

Our main result is the existence and uniqueness of local strong solutions.

Theorem 1.1. Assume that ρ0 ∈ W 2,6(Ω) satisfies 0 < c−1
0 ≤ ρ0 ≤ c0 for some constant c0, u0 ∈

H2(Ω) ∩ H1
0 (Ω), χ0 ∈ H3(Ω) and u0|∂Ω = 0, divu0 = 0 for x ∈ Ω. Then there exist a time T∗ > 0, a

constant c = c(c0, T∗) and a unique strong solution (ρ, u, p, χ, μ) of the problem (1.1)–(1.3) in Ω × (0, T∗].

Remark. (i) To our knowledge, there are only a few theoretical investigations on Navier–Stokes/Allen–
Cahn system for two-phase flow with different densities. For compressible fluids, the first result addressing
solvability is due to Able and Feireisl [6], in which the authors proved the existence of global weak solutions
in 3D, but not uniqueness. In another paper [16], we proved global well-posedness in 1D with constant
viscosity coefficients. This paper is concerned with incompressible fluids with different densities, and the
viscosity coefficient depends on phase variable χ, which is of interest from the physical point of view.
(ii) Noticing that if the density ρ do not appear in Allen–Cahn equation (1.1)4,5 and the viscous coefficient
is a constant, the system (1.1) reduces to the Ginzburg–Landau approximation model of nonhomogeneous
incompressible nematic liquid crystals. Global existence of weak solutions to this type of model has been
proved in [24,34]. Wen and Ding [39] establish the global existence and uniqueness of solution with
small initial data to original nonhomogeneous incompressible nematic liquid crystals in 2D. The system
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(1.1) becomes nontrivial because of the appearance of the density ρ. Within our knowledge, there are no
results for this type of model even for local existence or global solutions with small initial data in 2D. The
existence of global solutions is closely related to the estimate for ‖∇ρ‖L∞(QT ), which is the main difficulty
we can not handle. But for the results about blow-up criterion, we refer the readers to our another work
[30].

Since the constant δ plays no role in the analysis, we assume henceforth that δ = 1. Throughout this
paper, we assume that η(s) ∈ C1(R) and there exist positive constants η, η and η̃, such that

0 < η ≤ η(s) ≤ η, |η′
(s)| ≤ η̃. (1.4)

In the next section, we prove the local existence of unique strong solution by using the technique of
iteration. Firstly, we introduce an auxiliary problem for nonhomogeneous incompressible Navier–Stokes
equations. The proof of the existence and uniqueness of solution to this auxiliary problem is similar to
that in [39]. If the initial density is more regular, the density is also regular too, see Lemma 2.2. This
is an important character of the density. Based on these results and classical theory, we construct the
approximate solutions and begin to do iterate. At last, in terms of the estimates for the approximate
solutions, we derive the desired local strong solution by taking limits.

2. Proof of our main result

Let T be a fixed time with 0 < T < 1. Denote

VT,K1 =
{

v
∣
∣
∣v(x, 0) = u0(x), v

∣
∣
∂Ω

= 0, ‖v‖V ≤ K1

}
,

ΦT,K2 =
{

ϕ
∣
∣
∣ϕ(x, 0) = χ0(x),

∂ϕ

∂n

∣
∣
∣
∂Ω

= 0, ‖ϕ‖Φ ≤ K2

}

,

where

‖v‖V = ‖vt‖L∞(0,T ;L2) + ‖vt‖L2(0,T ;H1) + ‖v‖L∞(0,T ;H2) + ‖v‖L2(0,T ;W 2,6),

‖ϕ‖Φ = ‖ϕt‖L∞(0,T ;H1) + ‖ϕt‖L2(0,T ;H2) + ‖ϕ‖L∞(0,T ;H3) + ‖ϕ‖L2(0,T ;H4),

and the constants K1,K2 > 1 will be determined later.
Firstly, before proving local existence of strong solutions, we consider the following auxiliary problem

with (v, ϕ) ∈ VT,K1 × ΦT,K2
⎧
⎪⎨

⎪⎩

ρt + (v · ∇)ρ = 0,

ρut + ∇p = div(2η(ϕ)Du) + ρf1 + f2,

divu = 0
(2.1)

subject to the initial and boundary conditions

(ρ, u)
∣
∣
t=0

= (ρ0, u0), x ∈ Ω, u
∣
∣
∂Ω

= 0, t ≥ 0. (2.2)

There exists a unique strong solution to the problem (2.1)–(2.2).

Lemma 2.1. Assume that ρ0 ∈ H1(Ω) ∩ L∞(Ω), ρ0 ≥ 0, u0 ∈ H2(Ω) ∩ H1
0 (Ω), fi ∈ L2(0, T ;H1(Ω)),

fit ∈ L2(QT ) (i = 1, 2), and the following compatible conditions are valid

div(2η(χ0)Du0) − ∇p0(x) + f2(x, 0) = ρ
1/2
0 g(x) and divu0(x) = 0, in Ω,

for (p0, g) ∈ H1(Ω) × L2(Ω). Then for any T > 0, the problem (2.1)–(2.2) admits a unique solution
(ρ, u, p) such that

ρ ∈ L∞(0, T ;H1) ∩ L∞(QT ), ρt ∈ L∞(0, T ;L2),

u ∈ L∞(0, T ;H2 ∩ H1
0 ) ∩ L2(0, T ;W 2,6),
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ut ∈ L2(0, T ;H1
0 ),

√
ρut ∈ L∞(0, T ;L2),

p ∈ L∞(0, T ;H1) ∩ L2(0, T ;W 1,6).

When div(2η(ϕ)Du) is substituted by Δu in (2.1), this result has been obtained by Wen and Ding [39].
The treatment of the coefficient η(ϕ) is similar to the proof of step 3 in this section, so we omit the proof
of this lemma here.

Lemma 2.2. In addition to the conditions in Lemma 2.1, if ρ0 ∈ W 2,6(Ω), 0 < c−1
0 ≤ ρ ≤ c0 for some

constant c0, then we also have

ρ ∈ L∞(0, T ;W 2,6), ρt ∈ L∞(0, T ;W 1,6), 0 < c−1 ≤ ρ ≤ c.

Proof. The existence and uniqueness of strong solutions to the hyperbolic equation (2.1)1 is well known.
Moreover, from [13], the solution satisfies the following estimates

0 < c−1 ≤ ρ ≤ c, in QT , (2.3)

sup
0≤t≤T

(‖ρ‖H1 + K−1
1 ‖ρt‖L2

) ≤ c exp{cK1T
1/2}. (2.4)

Differentiating (2.1)1 with respect to x, multiplying by r|∇ρ|r−2∇ρ (1 ≤ r < +∞) and integrating the
result with respect to x over Ω, we get

d
dt

∫

Ω

|∇ρ|rdx = −
∫

Ω

(v · ∇)(|∇ρ|r)dx − r

∫

Ω

|∇ρ|r−2∇ρ · ∇(v · ∇)ρdx

=
∫

Ω

divv|∇ρ|rdx − r

∫

Ω

|∇ρ|r−2∇ρ · ∇(v · ∇)ρdx

≤ (1 + r)‖∇v‖L∞

∫

Ω

|∇ρ|rdx.

From which we have
d
dt

‖∇ρ‖Lr ≤ r + 1
r

‖∇v‖L∞‖∇ρ‖Lr .

Then Gronwall’s inequality implies

‖∇ρ‖Lr ≤ ‖∇ρ0‖Lr exp

⎧
⎨

⎩

r + 1
r

T∫

0

‖∇v‖W 1,6dt

⎫
⎬

⎭
.

Sending r → +∞, recalling ρ0 ∈ W 2,6(Ω) and using Hölder’s inequality yield

sup
0≤t≤T

‖∇ρ‖L∞ ≤ c exp{cK1T
1/2}. (2.5)

Differentiating (2.1)1 with respect to x twice and multiplying the above equation by l|∇2ρ|l−2∇2ρ (2 ≤
l ≤ 6), and integrating the result over Ω, we have

d
dt

∫

Ω

|∇2ρ|ldx = −l

∫

Ω

|∇2ρ|l−2∇2ρ : ∇2(v · ∇)ρdx +
∫

Ω

divv|∇2ρ|ldx

− 2l

∫

Ω

|∇2ρ|l−2∇2ρ : ∇(v · ∇)∇ρdx

≤ c‖∇2v‖L6‖∇ρ‖L∞

⎛

⎝

∫

Ω

|∇2ρ| 6
5 (l−1)dx

⎞

⎠

5/6

+ c‖∇v‖L∞

∫

Ω

|∇2ρ|ldx
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≤ c‖∇2v‖L6‖∇ρ‖L∞

⎛

⎝

∫

Ω

|∇2ρ|ldx

⎞

⎠

(l−1)/l

+ c‖∇v‖L∞

∫

Ω

|∇2ρ|ldx

≤ c‖v‖W 2,6(‖∇ρ‖L∞ + 1)
∫

Ω

|∇2ρ|ldx + c‖v‖W 2,6‖∇ρ‖L∞ ,

where we have used Hölder’s inequality for 2 ≤ l ≤ 6 in the third step. Applying Gronwall’s inequality,
we obtain

∫

Ω

|∇2ρ|ldx ≤ c
(
1 + K1T

1/2exp{cK1T
1/2}

)
exp

{
cK1T

1/2(exp{cK1T
1/2} + 1)

}
. (2.6)

Furthermore, differentiating (2.1)1 with respect to x, we derive that

‖∇ρt‖Ll ≤ c‖∇v‖Ll‖∇ρ‖L∞ + c‖v‖L∞‖∇2ρ‖Ll ≤ c‖v‖H2(‖∇ρ‖L∞ + ‖∇2ρ‖Ll)

≤ cK1

(
1 + K1T

1/2exp{cK1T
1/2}

)
exp

{
cK1T

1/2(exp{cK1T
1/2} + 1)

}
. (2.7)

Then Lemma 2.2 follows from (2.3), (2.4), (2.6) and (2.7). �

Next, we consider the following linearized problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + (v · ∇)ρ = 0,

ρut + ∇p = div(2η(ϕ)Du) − ρ(v · ∇)v − div(∇χ ⊗ ∇χ),
divu = 0,

χt =
1
ρ2

Δχ − (v · ∇)ϕ − 1
ρ
(ϕ3 − ϕ)

(2.8)

with the initial boundary conditions (1.2) and (1.3), where (v, ϕ) ∈ VT,K1 × ΦT,K2 . Recalling Lemma 2.2
and the definition of VT,K1 , ΦT,K2 , we have −(v · ∇)ϕ − 1

ρ (ϕ3 − ϕ) ∈ W 2,1
2 (QT ). It follows from classical

arguments [31] that Eq. (2.8)4 subject to the corresponding initial boundary value conditions admits a
unique solution such that

χ ∈ W 4,2
2 (QT ) ∩ L∞(0, T ;H3), χt ∈ L∞(0, T ;H1).

Moreover, by Lemma 2.1, the problem (2.8)1−3 with the corresponding initial boundary value conditions
has a unique solution (ρ, u, p) and the regularities like that in Lemma 2.1–2.2.

Therefore, we have a solution (ρ1, u1, p1, χ1) of the problem (2.8) with (v, ϕ) replaced by (u0, χ0),
where (u0, χ0) ∈ VT,K1 × ΦT,K2 . Suppose (uk−1, χk−1) ∈ VT,K1 × ΦT,K2 for k ≥ 1, then we can construct
an approximate solution (ρk, uk, pk, χk) satisfying the following problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρk
t + (uk−1 · ∇)ρk = 0,

ρkuk
t + ∇pk = div(2η(χk−1)Duk) − ρk(uk−1 · ∇)uk−1 − div(∇χk ⊗ ∇χk),

divuk = 0,

χk
t =

1
(ρk)2

�χk − (uk−1 · ∇)χk−1 − 1
ρk

(χk−1)3 +
1
ρk

χk−1

(2.9)

supplemented with initial and boundary conditions

(ρk, uk, χk)
∣
∣
t=0

= (ρ0, u0, χ0), x ∈ Ω,
(
uk,

∂χk

∂n

)∣
∣
∣
∂Ω

= (0, 0), t ≥ 0.
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In what follows, we prove Theorem 1.1 by iteration. Throughout this paper, we denote by A � B if
there exists a constant C such that A ≤ CB. Moreover, in step 1-3, we denote by C a constant whose
value may be different from line to line but independent of K1 and K2.
Step 1 It holds that

0 < C−1 ≤ ρk ≤ C, (2.10)

‖ρk‖L∞(0,T ;W 2,6) ≤ C, (2.11)

‖ρk
t ‖L∞(0,T ;W 1,6) ≤ CK1. (2.12)

Taking 0 < T < T1 :=
1

K2
1

, then the estimates (2.10)–(2.12) are the direct deductions of (2.3), (2.4), (2.6)

and (2.7).
Step 2 We will prove

‖χk‖Φ = ‖χk
t ‖L∞(0,T ;H1) + ‖χk

t ‖L2(0,T ;H2) + ‖χk‖L∞(0,T ;H3) + ‖χk‖L2(0,T ;H4) ≤ K2. (2.13)

We rewrite Eq. (2.9)4 as follows:

(ρk)2χk
t − Δχk = −(ρk)2(uk−1 · ∇)χk−1 − ρk(χk−1)3 + ρkχk−1. (2.14)

Differentiating (2.14) with respect to t, multiplying the result by χk
t , then integrating over Ω yield

1
2

d
dt

∫

Ω

|ρkχk
t |2dx +

∫

Ω

|∇χk
t |2dx

= −
∫

Ω

ρkρk
t |χk

t |2dx −
∫

Ω

2ρkρk
t (uk−1 · ∇)χk−1χk

t dx −
∫

Ω

(ρk)2(uk−1
t · ∇)χk−1χk

t dx

−
∫

Ω

(ρk)2(uk−1 · ∇)χk−1
t χk

t dx −
∫

Ω

ρk
t (χk−1)3χk

t dx −
∫

Ω

3ρk(χk−1)2χk−1
t χk

t dx

+
∫

Ω

ρk
t χk−1χk

t dx +
∫

Ω

ρkχk−1
t χk

t dx

� ‖ρk
t ‖L∞‖ρkχk

t ‖2
L2 + ‖ρk

t ‖L∞‖uk−1‖L6‖∇χk−1‖L3‖ρkχk
t ‖L2 + ‖uk−1

t ‖L2‖∇χk−1‖L∞‖ρkχk
t ‖L2

+ ‖uk−1‖L∞‖∇χk−1
t ‖L2‖ρkχk

t ‖L2 + ‖ρk
t ‖L∞‖χk−1‖3

L6‖ρkχk
t ‖L2

+ ‖χk−1‖2
L∞‖χk−1

t ‖L2‖ρkχk
t ‖L2 + ‖ρk

t ‖L∞‖χk−1
t ‖L2‖ρkχk

t ‖L2 + ‖χk−1
t ‖L2‖ρkχk

t ‖L2

� (‖ρk
t ‖W 1,6 + 1)

∫

Ω

|ρkχk
t |2dx + ‖ρk

t ‖2
W 1,6‖uk−1‖2

H1‖∇χk−1‖2
H1 + ‖uk−1

t ‖2
L2‖∇χk−1‖2

H2

+ ‖uk−1‖2
H2‖∇χk−1

t ‖2
L2 + ‖ρk

t ‖2
W 1,6‖χk−1‖6

H1 + ‖χk−1‖4
H2‖χk−1

t ‖2
L2

+ ‖ρk
t ‖2

W 1,6‖χk−1
t ‖2

L2 + ‖χk−1
t ‖2

L2

� (K1 + 1)
∫

Ω

|ρkχk
t |2dx + K4

1K2
2 + K2

1K2
2 + K2

1K6
2 + K6

2 + K2
2 .

Taking T2 := min
{

T1,
1

K4
1K2

2 + K2
1K6

2

}

and using Gronwall’s inequality, for any 0 < T < T2, we have

sup
0≤t≤T

∫

Ω

|ρkχk
t |2dx +

T∫

0

∫

Ω

|∇χk
t |2dxdt ≤ C. (2.15)
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Differentiating (2.9)4 with respect to t, multiplying by Δχk
t and differentiating the result over Ω, we get

1
2

d
dt

∫

Ω

|∇χk
t |2dx +

∫

Ω

1
(ρk)2

|Δχk
t |2dx

=
∫

Ω

2ρk
t

(ρk)3
�χkΔχk

t dx +
∫

Ω

(uk−1
t · ∇)χk−1Δχk

t dx +
∫

Ω

(uk−1 · ∇)χk−1
t Δχk

t dx

−
∫

Ω

ρk
t

(ρk)2
(χk−1)3Δχk

t dx +
∫

Ω

3
ρk

(χk−1)2χk−1
t Δχk

t dx

+
∫

Ω

ρk
t

(ρk)2
χk−1Δχk

t dx −
∫

Ω

1
ρk

χk−1
t Δχk

t dx

� ‖ρk
t ‖L∞‖Δχk‖L2‖Δχk

t ‖L2 + ‖uk−1
t ‖L2‖∇χk−1‖L∞‖Δχk

t ‖L2

+ ‖uk−1‖L∞‖∇χk−1
t ‖L2‖Δχk

t ‖L2 + ‖ρk
t ‖L∞‖χk−1‖3

L6‖Δχk
t ‖L2

+ ‖χk−1‖2
L∞‖χk−1

t ‖L2‖Δχk
t ‖L2 + ‖ρk

t ‖L∞‖χk−1‖L2‖Δχk
t ‖L2 + ‖χk−1

t ‖L2‖Δχk
t ‖L2

� 1
2

∫

Ω

1
(ρk)2

|Δχk
t |2dx + ‖ρk

t ‖2
W 1,6‖Δχk‖2

L2 + ‖uk−1
t ‖2

L2‖∇χk−1‖2
H2 + ‖uk−1‖2

H2‖∇χk−1
t ‖2

L2

+ ‖ρk
t ‖2

W 1,6‖χk−1‖6
H1 + ‖χk−1‖4

H2‖χk−1
t ‖2

L2 + ‖ρk
t ‖2

W 1,6‖χk−1‖2
L2 + ‖χk−1

t ‖2
L2 .

It follows that
d
dt

∫

Ω

|∇χk
t |2dx +

∫

Ω

1
(ρk)2

|Δχk
t |2dx � K2

1‖Δχk‖2
L2 + K2

1K6
2 + K6

2 + K2
1K2

2 + K2
2 . (2.16)

From Eq. (2.14) and the estimate (2.15), we see that

‖Δχk‖2
L2 � ‖χk

t ‖2
L2 + ‖uk−1‖2

L6‖∇χk−1‖2
L3 + ‖χk−1‖6

L6 + ‖χk−1‖2
L2

� ‖χk
t ‖2

L2 + ‖uk−1‖2
H1‖∇χk−1‖2

H1 + ‖χk−1‖6
H1 + ‖χk−1‖2

L2

� 1 + K2
1K2

2 + K6
2 + K2

2 . (2.17)

Substituting (2.17) into (2.16) and integrating the result over (0, T ), for any 0 < T < T2, we obtain

‖χk
t ‖L∞(0,T ;H1) ≤ C. (2.18)

By (2.15)–(2.18) and the elliptic estimates for Neumann boundary value problem

‖∇2χk
t ‖L2 � ‖Δχk

t ‖L2 + ‖∇χk
t ‖L2 ,

for any 0 < T < T2, we get

‖χk
t ‖L2(0,T ;H2) ≤ C. (2.19)

On the other hand, for any 0 < T < T2, using the elliptic estimates for Eq. (2.14) gives

‖χk‖2
H3 � ‖(ρk)2χk

t ‖2
H1 + ‖(ρk)2(uk−1 · ∇)χk−1‖2

H1 + ‖ρk(χk−1)3‖2
H1 + ‖ρkχk−1‖2

H1 + ‖χ0‖2
H3

:=
4∑

i=1

Ii + ‖χ0‖2
H3 .

In what follows, we deal with the terms on the right hand side one by one. By (2.18), we get

I1 � ‖(ρk)2χk
t ‖2

L2 + ‖∇ (
(ρk)2χk

t

) ‖2
L2 � ‖χk

t ‖2
L2 + ‖∇χk

t ‖2
L2 + ‖∇ρk‖2

L∞‖χk
t ‖2

L2 ≤ C.
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For I2, we have

I2 �
∫

Ω

|uk−1|2|∇χk−1|2dx +
∫

Ω

|∇uk−1|2|∇χk−1|2dx +
∫

Ω

|uk−1|2|∇2χk−1|2dx

+ ‖∇ρk‖2
L∞

∫

Ω

|uk−1|2|∇χk−1|2dx :=
4∑

i=1

Ji,

where

J1 + J4 �
∫

Ω

|uk−1|2|∇χk−1|2dx �
∫

Ω

|uk−1 − u0|2|∇χk−1|2dx +
∫

Ω

|∇χk−1|2dx

� ‖∇χk−1‖2
L∞

∫

Ω

∣
∣
∣
∣
∣
∣

t∫

0

uk−1
t (x, s)ds

∣
∣
∣
∣
∣
∣

2

dx +
∫

Ω

|∇(χk−1 − χ0)|2dx + 1

� K2
2T

T∫

0

∫

Ω

|uk−1
t |2dxdt + K−2

2

∫

Ω

|∇2(χk−1 − χ0)|2dx

+ K2
2

∫

Ω

|χk−1 − χ0|2dx + 1

� K2
1K2

2T 2 + K2
2

∫

Ω

∣
∣
∣
∣
∣
∣

t∫

0

χk−1
t (x, s)ds

∣
∣
∣
∣
∣
∣

2

dx + 1

� K2
1K2

2T 2 + K2
2T

T∫

0

∫

Ω

|χk−1
t |2dxdt + 1 � K2

1K2
2T 2 + K2

2T 2 + 1,

J2 =
∫

Ω

|∇uk−1|2|∇χk−1|2dx

� K2
2

∫

Ω

|∇(uk−1 − u0)|2dx +
∫

Ω

|∇(χk−1 − χ0)|2dx + 1

� K−2
1

∫

Ω

|∇2(uk−1 − u0)|2dx + K2
1K2

2

∫

Ω

|uk−1 − u0|2dx + K4
2T 2 + 1

� K2
1K2

2T

T∫

0

∫

Ω

|uk−1
t |2dxdt + K4

2T 2 + 1 � K4
1K2

2T 2 + K4
2T 2 + 1,

and

J3 =
∫

Ω

|uk−1|2|∇2χk−1|2dx

�
∫

Ω

|uk−1 − u0|2|∇2χk−1|2dx +
∫

Ω

|∇2(χk−1 − χ0)|2dx + 1
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� ‖uk−1 − u0‖2
L6‖∇2χk−1‖2

L3 + K−2
2

∫

Ω

|∇3(χk−1 − χ0)|2dx

+ K4
2

∫

Ω

|χk−1 − χ0|2dx + 1

� K2
2

∫

Ω

|∇(uk−1 − u0)|2dx + K6
2T 2 + 1 � K4

1K2
2T 2 + K6

2T 2 + 1.

Similarly, we deduce that

I3 = ‖ρk(χk−1)3‖2
H1 � ‖ρk(χk−1)3‖2

L2 + ‖3ρk(χk−1)2∇χk−1‖2
L2 + ‖∇ρk(χk−1)3‖2

L2

� ‖χk−1‖6
L6 + ‖χk−1‖4

L6‖∇χk−1‖2
L6 + ‖∇ρk‖2

L∞‖χk−1‖6
L6

� ‖χk−1‖6
H1 + ‖χk−1‖4

H1‖∇2χk−1‖2
L2

� (K2
2T 2 + K4

2T 2 + 1)3 + K4
2T 2 + K6

2T 2 + K8
2T 2 + K12

2 T 2 + 1,

where we have used

‖∇χk−1‖4
L2‖∇2χk−1‖2

L2

� ‖∇(χk−1 − χ0)‖2
L2‖∇χk−1‖2

L2‖∇2χk−1‖2
L2

+ ‖∇(χk−1 − χ0)‖2
L2‖∇2χk−1‖2

L2 + ‖∇2χk−1‖2
L2

� K4
2‖∇(χk−1 − χ0)‖2

L2 + K2
2‖∇(χk−1 − χ0)‖2

L2 + ‖∇2(χk−1 − χ0)‖2
L2 + 1

� K−2
2 ‖∇2(χk−1 − χ0)‖2

L2 + K−2
2 ‖∇3(χk−1 − χ0)‖2

L2

+ (K10
2 + K6

2 + K4
2 )‖χk−1 − χ0‖2

L2 + 1

� (K10
2 + K6

2 + K4
2 )T

T∫

0

∫

Ω

|χk−1
t |2dxdt + 1

� (K10
2 + K6

2 + K4
2 )K2

2T 2 + 1.

At last,

I4 = ‖ρkχk−1‖2
H1 � ‖χk−1‖2

L2 + ‖∇χk−1‖2
L2 + ‖∇ρk‖2

L∞‖χk−1‖2
L2

� ‖χk−1‖2
H1 � K2

2T 2 + K4
2T 2 + 1.

Putting all the above estimates together, for any 0 < T < T2, we obtain

‖χk‖L∞(0,T ;H3) ≤ C. (2.20)

From Eq. (2.14), we can also derive that

‖∇4χ‖2
L2 � ‖∇2

(
(ρk)2χk

t

) ‖2
L2 + ‖∇2

(
(ρk)2(uk−1 · ∇)χk−1

) ‖2
L2

+ ‖∇2
(
ρk(χk−1)3

) ‖2
L2 + ‖∇2

(
ρkχk−1

) ‖2
L2 + 1

� ‖χk
t ‖2

H2 + K2
1K2

2 + K6
2 + K2

2 + 1.

From which and (2.19), for any 0 < T < T2, we get

‖χk‖L2(0,T ;H4) ≤ C. (2.21)

Then (2.13) follows from (2.18), (2.19), (2.20) and (2.21) by choosing K2 ≥ C.
Step 3 We prove that

‖uk‖V = ‖uk
t ‖L∞(0,T ;L2) + ‖uk

t ‖L2(0,T ;H1) + ‖uk‖L∞(0,T ;H2) + ‖uk‖L2(0,T ;W 2,6) ≤ K1, (2.22)
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‖pk‖L∞(0,T ;H1) + ‖pk‖L2(0,T ;W 1,6) ≤ C. (2.23)

Differentiating (2.9)2 with respect to t, multiplying the result by uk
t , and integrating over Ω, we get

1
2

d
dt

∫

Ω

ρk|uk
t |2dx +

∫

Ω

2η(χk−1)|Duk
t |2dx

= −1
2

∫

Ω

ρk
t |uk

t |2dx −
∫

Ω

2η
′
(χk−1)χk−1

t Duk : Duk
t dx −

∫

Ω

ρk
t (uk−1 · ∇)uk−1 · uk

t dx

−
∫

Ω

ρk(uk−1
t · ∇)uk−1 · uk

t dx −
∫

Ω

ρk(uk−1 · ∇)uk−1
t · uk

t dx

−
∫

Ω

div(∇χk
t ⊗ ∇χk) · uk

t dx −
∫

Ω

div(∇χk ⊗ ∇χk
t ) · uk

t dx

� ‖ρk
t ‖L∞‖uk

t ‖2
L2 + ‖χk−1

t ‖L6‖Duk‖L3‖Duk
t ‖L2 + ‖ρk

t ‖L∞‖uk−1‖L∞‖∇uk−1‖L2‖uk
t ‖L2

+ ‖uk−1
t ‖L6‖∇uk−1‖L3‖uk

t ‖L2 + ‖uk−1‖L∞‖∇uk−1
t ‖L2‖uk

t ‖L2

+ ‖∇2χk
t ‖L2‖∇χk‖L∞‖uk

t ‖L2 + ‖∇χk
t ‖L6‖∇2χk‖L3‖uk

t ‖L2

� (‖ρk
t ‖W 1,6 + K4

1 + K4
2 )

∫

Ω

ρk|uk
t |2dx + η

∫

Ω

|Duk
t |2dx + ‖χk−1

t ‖2
H1‖uk‖2

H2

+ ‖ρk
t ‖2

W 1,6‖uk−1‖2
H2‖∇uk−1‖2

L2 + K−4
1 ‖uk−1

t ‖2
H1‖uk−1‖2

H2 + K−4
2 ‖∇2χk

t ‖2
L2‖∇χk‖2

H2 .

By using (1.4), it follows that

d
dt

∫

Ω

ρk|uk
t |2dx +

∫

Ω

|Duk
t |2dx

� (K4
1 + K4

2 + 1)
∫

Ω

ρk|uk
t |2dx + K2

2‖uk‖2
H2 + K6

1 + K−2
1 ‖uk−1

t ‖2
H1 + K−2

2 ‖χk
t ‖2

H2 . (2.24)

It remains for us to deal with the term ‖uk‖2
H2 . We rewrite Eq. (2.9)2 as

−div(2η(χk−1)Duk) + ∇p = −ρkuk
t − ρk(uk−1 · ∇)uk−1 − div(∇χk ⊗ ∇χk).

It follows from (1.4) and the estimates for the stationary Stokes equation [19] that

‖uk‖2
H2 + ‖pk‖2

H1 � ‖ρkuk
t ‖2

L2 + ‖ρk(uk−1 · ∇)uk−1‖2
L2 + ‖div(∇χk ⊗ ∇χk)‖2

L2 ,

where

‖ρk(uk−1 · ∇)uk−1‖2
L2 �

∫

Ω

|uk−1 − u0|2|∇uk−1|2dx +
∫

Ω

|∇(uk−1 − u0)|2dx + 1

�
∫

Ω

∣
∣
∣
∣
∣
∣

t∫

0

uk−1
t (x, s)ds

∣
∣
∣
∣
∣
∣

2

|∇uk−1|2dx + K−2
1

∫

Ω

|∇2(uk−1 − u0)|2dx

+ K2
1

∫

Ω

|uk−1 − u0|2dx + 1

� T

t∫

0

∫

Ω

|uk−1
t (x, s)|2|∇uk−1(x, t)|2dxds + K2

1T

T∫

0

∫

Ω

|uk−1
t |2dxdt + 1
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� T

T∫

0

‖uk−1
t (·, s)‖2

L6‖∇uk−1‖2
L3ds + K4

1T 2 + 1

� T‖∇uk−1‖2
H1

T∫

0

‖uk−1
t (·, s)‖2

H1ds + K4
1T 2 + 1 � K4

1T + K4
1T 2 + 1.

From (2.13), we can deduce that

‖div(∇χk ⊗ ∇χk)‖2
L2 �

∫

Ω

|∇(χk − χ0)|2|∇2χk|2dx +
∫

Ω

|∇2(χk − χ0)|2dx + 1

� K12T 2 + K6
2T 2 + 1.

Therefore, for any 0 < T < T2, we obtain

‖uk‖2
L∞(0,T ;H2) + ‖pk‖2

L∞(0,T ;H1) � ‖
√

ρkuk
t ‖2

L2 + 1. (2.25)

Substituting (2.25) into (2.24) gives

d
dt

∫

Ω

ρk|uk
t |2dx +

∫

Ω

|Duk
t |2dx

� (K4
1 + K4

2 + 1)
∫

Ω

ρk|uk
t |2dx + K2

2 + K6
1 + K−2

1 ‖uk−1
t ‖2

H1 + K−2
2 ‖χk

t ‖2
H2 .

Taking T3 := min
{

T2,
1

K6
1

}

, applying Gronwall’s inequality and recalling Eq. (2.9)2, for any 0 < T < T3,

we get

sup
0≤t≤T

∫

Ω

ρk|uk
t |2dx +

T∫

0

∫

Ω

|Duk
t |2dxdt ≤ C.

The well-known Korn’s inequality [12,15] implies that, for bounded connected open domain Ω ⊂ R
d

(N = 2, 3), there exists a (generic) positive constant CΩ such that

‖∇v‖L2(Ω) ≤ CΩ(‖Dv‖L2(Ω) + ‖v‖L2(Ω)), ∀ v ∈ (
H1(Ω)

)N
. (2.26)

Hence, for any 0 < T < T3, we have

‖uk
t ‖L∞(0,T ;L2) + ‖uk

t ‖L2(0,T ;H1) ≤ C. (2.27)

Moreover, the estimates for the stationary Stokes equation [19] also implies that

‖uk‖W 2,6 + ‖pk‖W 1,6 � ‖ρkuk
t ‖L6 + ‖ρk(uk−1 · ∇)uk−1‖L6 + ‖div(∇χk ⊗ ∇χk)‖L6

� ‖uk
t ‖L6 + ‖uk−1‖L∞‖∇uk−1‖L6 + ‖∇χk‖L∞‖∇2χk‖L6

� ‖uk
t ‖H1 + ‖uk−1‖2

H2 + ‖χk‖2
H3 � ‖uk

t ‖H1 + K2
1 + 1.

Then for any 0 < T < T3, it holds that

‖uk‖L2(0,T ;W 2,6) + ‖pk‖L2(0,T ;W 1,6) ≤ C. (2.28)

Here, we have normalized p as
∫

Ω

p(x, t)dx = 0. Choosing K1 ≥ C, then (2.22) and (2.23) follows from

(2.25), (2.27) and (2.28).
Step 4 Taking limits.
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Here, we denote by C̃ a constant whose value may be different from line to line depending on K1,
K2 and other known constants. Denote ρk+1 = ρk+1 − ρk, uk+1 = uk+1 − uk, pk+1 = pk+1 − pk,
χk+1 = χk+1 − χk. Then from (2.9), we have the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρk+1
t + (uk · ∇)ρk+1 = −(uk · ∇)ρk,

ρk+1uk+1
t + ∇pk+1 = div(2η(χk)Duk+1) + div(2η

′
(θχk)χkDuk) − ρk+1uk

t − ρk+1(uk · ∇)uk

−ρk(uk · ∇)uk − ρk(uk−1 · ∇)uk − div(∇χk+1 ⊗ ∇χk+1) − div(∇χk ⊗ ∇χk+1),
div uk+1 = 0,

χk+1
t =

1
(ρk+1)2

Δχk+1 − ρk+1 ρk+1 + ρk

(ρk+1ρk)2
Δχk − (uk · ∇)χk − (uk−1 · ∇)χk

+ρk+1 (χk−1)3 − χk−1

ρk+1ρk
− (χk)2 + χkχk−1 + (χk−1)2 − 1

ρk+1
χk,

(2.29)

where 0 < θ < 1 is a constant. The above system is supplemented with the initial boundary conditions
(
ρk+1, uk+1, χk+1

) ∣
∣
∣
t=0

= (0, 0, 0), x ∈ Ω,
(

uk+1,
∂χk+1

∂n

) ∣
∣
∣
∂Ω

= (0, 0), t ≥ 0.

Multiplying (2.29)1 by ρk+1 and integrating the result over Ω yield

d
dt

∫

Ω

|ρk+1|2dx = −2
∫

Ω

(uk · ∇)ρkρk+1dx � ‖uk‖L2‖∇ρk‖L∞‖ρk+1‖L2

� ‖uk‖L2‖∇ρk‖W 1,6‖ρk+1‖L2 � ‖
√

ρk uk‖2
L2 + ‖ρk+1‖2

L2 . (2.30)

Multiplying (2.29)2 by uk+1 and integrating over Ω, we get

1
2

d
dt

∫

Ω

ρk+1|uk+1|2dx +
∫

Ω

2η(χk)|Duk+1|2dx

=
1
2

∫

Ω

ρk+1
t |uk+1|2dx − 2

∫

Ω

η
′
(θχk)χkDuk : Duk+1dx −

∫

Ω

ρk+1uk
t · uk+1dx

−
∫

Ω

ρk+1(uk · ∇)uk · uk+1dx −
∫

Ω

ρk(uk · ∇)uk · uk+1dx −
∫

Ω

ρk(uk−1 · ∇)uk · uk+1dx

+
∫

Ω

(∇χk+1 ⊗ ∇χk+1) : ∇uk+1dx +
∫

Ω

(∇χk ⊗ ∇χk+1) : ∇uk+1dx

� ‖ρk+1
t ‖L∞‖uk+1‖2

L2 + ‖χk‖L3‖Duk‖L6‖Duk+1‖L2 + ‖ρk+1‖L2‖uk
t ‖L3‖uk+1‖L6

+ ‖ρk+1‖L2‖uk‖L∞‖∇uk‖L3‖uk+1‖L6 + ‖uk‖L6‖∇uk‖L3‖uk+1‖L2

+ ‖uk−1‖L∞‖∇uk‖L2‖uk+1‖L2 + ‖∇χk+1‖L2‖∇χk+1‖L∞‖∇uk+1‖L2

+ ‖∇χk‖L∞‖∇χk+1‖L2‖∇uk+1‖L2 .

Together with Sobolev embedding theorem and Korn’s inequality (2.26), we have

1
2

d
dt

∫

Ω

ρk+1|uk+1|2dx +
∫

Ω

2η(χk)|Duk+1|2dx

� ‖ρk+1
t ‖W 1,6‖uk+1‖2

L2 +
(‖χk‖L2 + ‖∇χk‖L2

) ‖uk‖H2‖Duk+1‖L2

+
(‖ρk+1‖L2‖uk

t ‖H1 + ‖ρk+1‖L2‖uk‖H2‖∇uk‖H1

) (‖Duk+1‖L2 + ‖uk+1‖L2

)
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+
(‖∇uk‖H1‖uk+1‖L2 + ‖uk−1‖H2‖uk+1‖L2

) (‖Duk‖L2 + ‖uk‖L2

)

+
(‖∇χk+1‖L2‖∇χk+1‖H2 + ‖∇χk‖H2‖∇χk+1‖L2

) (‖Duk+1‖L2 + ‖uk+1‖L2

)

� ‖uk+1‖2
L2 +

(‖χk‖L2 + ‖∇χk‖L2

) ‖Duk+1‖L2 +
(‖Duk‖L2 + ‖uk‖L2

) ‖uk+1‖L2

+
(
‖ρk+1‖L2

(‖uk
t ‖H1 + 1

)
+ ‖∇χk+1‖L2

) (‖Duk+1‖L2 + ‖uk+1‖L2

)
.

By using Cauchy inequality and (1.4), it follows that

d
dt

∫

Ω

ρk+1|uk+1|2dx +
∫

Ω

|Duk+1|2dx

� ‖
√

ρk+1uk+1‖2
L2 + (‖uk

t ‖2
H1 + 1)‖ρk+1‖2

L2 + ‖∇χk+1‖2
L2

+ ‖ρkχk‖2
L2 + ‖∇χk‖2

L2 + ‖
√

ρkuk‖2
L2 + ε‖Duk‖2

L2 . (2.31)

Multiplying (2.29)4 by Δχk+1 and integrating over Ω, we get

1
2

d
dt

∫

Ω

|∇χk+1|2dx +
∫

Ω

1
(ρk+1)2

|Δχk+1|2dx

� ‖ρk+1‖L2‖Δχk‖L∞‖Δχk+1‖L2 + ‖ρk+1‖L2

(‖χk−1‖3
L∞ + ‖χk−1‖L∞

) ‖Δχk+1‖L2

+ ‖uk‖L2‖∇χk‖L∞‖Δχk+1‖L2 + ‖uk−1‖L∞‖∇χk‖L2‖Δχk+1‖L2

+
(‖χk‖2

L∞ + ‖χk‖L∞‖χk−1‖L∞ + ‖χk−1‖2
L∞ + 1

) ‖χk‖L2‖Δχk+1‖L2

� 1
2

∫

Ω

1
(ρk+1)2

|Δχk+1|2dx + ‖ρk+1‖2
L2‖Δχk‖2

H2 + ‖ρk+1‖2
L2

(‖χk−1‖6
H2 + ‖χk−1‖2

H2

)

+ ‖uk‖2
L2‖∇χk‖2

H2 + ‖uk−1‖2
H2‖∇χk‖2

L2

+
(‖χk‖4

H2 + ‖χk‖2
H2‖χk−1‖2

H2 + ‖χk−1‖4
H2 + 1

) ‖χk‖2
L2 .

From which we have
d
dt

∫

Ω

|∇χk+1|2dx +
∫

Ω

1
(ρk+1)2

|Δχk+1|2dx

�
(‖χk‖2

H4 + 1
) ‖ρk+1‖2

L2 + ‖
√

ρk uk‖2
L2 + ‖∇χk‖2

L2 + ‖ρkχk‖2
L2 . (2.32)

Multiplying (2.29)4 by (ρk+1)2χk+1 and integrating over Ω, we can deduce that

d
dt

∫

Ω

|ρk+1χk+1|2dx +
∫

Ω

|∇χk+1|2dx

� ‖ρk+1χk+1‖2
L2 +

(‖χk‖2
H4 + 1

) ‖ρk+1‖2
L2 + ‖

√
ρk uk‖2

L2 + ‖∇χk‖2
L2 + ‖ρkχk‖2

L2 . (2.33)

Putting (2.30)–(2.33) together gives

d
dt

(
‖ρk+1‖2

L2 + ‖
√

ρk+1uk+1‖2
L2 + ‖∇χk+1‖2

L2 + ‖ρk+1χk+1‖2
L2

)

+ ‖Duk+1‖2
L2 +

∥
∥(ρk+1)−1Δχk+1

∥
∥2

L2

�
(‖uk

t ‖2
H1 + ‖χk‖2

H4 + 1
) (

‖ρk+1‖2
L2 + ‖

√
ρk+1uk+1‖2

L2 + ‖∇χk+1‖2
L2 + ‖ρk+1χk+1‖2

L2

)

+
(
‖
√

ρkuk‖2
L2 + ‖∇χk‖2

L2 + ‖ρkχk‖2
L2

)
+ ε‖Duk‖2

L2 .
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Set

Ak(t) = ‖ρk(·, t)‖2
L2 + ‖

√
ρk uk(·, t)‖2

L2 + ‖∇χk(·, t)‖2
L2 + ‖ρkχk(·, t)‖2

L2 ,

Bk(t) = ‖Duk(·, t)‖2
L2 +

∥
∥(ρk)−1Δχk(·, t)∥∥2

L2

ck(t) = ‖uk
t (·, t)‖2

H1 + ‖χk(·, t)‖2
H4 + ‖χk

t (·, t)‖2
H2 .

Then we have
d
dt

Ak+1(t) + Bk+1(t) ≤ C̃
(
ck(t) + 1

)
Ak+1(t) + C̃Ak(t) + εBk(t),

where
T∫

0

ck(t)dt ≤ C̃. By using Gronwall’s inequality, we get

sup
0≤t≤T

Ak+1(t) ≤
⎛

⎝C̃

T∫

0

Ak(t)dt + ε

T∫

0

Bk(t)dt

⎞

⎠ exp
{

C̃(1 + T )
}

.

Hence

sup
0≤t≤T

Ak+1(t) +

T∫

0

Bk+1(t)dt

≤
⎛

⎝C̃ T sup
0≤t≤T

Ak(t) + ε

T∫

0

Bk(t)dt

⎞

⎠
(
C̃(1 + T ) exp{C̃(1 + T )} + 1

)
.

Choosing T4 :=
{

T3,
1

4C̃(2C̃ exp{2C̃} + 1)

}

, ε =
1

4(2C̃ exp{2C̃} + 1)
and recalling 0 < T < 1, then for

any 0 < T < T4 and k ≥ 1, we have

sup
0≤t≤T

Ak+1(t) +

T∫

0

Bk+1(t)dt ≤ 1
4

⎛

⎝ sup
0≤t≤T

Ak(t) +

T∫

0

Bk(t)dt

⎞

⎠ .

By iteration, we derive that

sup
0≤t≤T

Ak+1(t) +

T∫

0

Bk+1(t)dt ≤ 1
4k−1

⎛

⎝ sup
0≤t≤T

A2(t) +

T∫

0

B2(t)dt

⎞

⎠ .

Together with Korn’s inequality, we have
∥
∥ρk+1

∥
∥

L∞(0,T ;L2)
+

∥
∥uk+1

∥
∥

L∞(0,T ;L2)
+

∥
∥χk+1

∥
∥

L∞(0,T ;H1)

+
∥
∥uk+1

∥
∥

L2(0,T ;H1)
+

∥
∥χk+1

∥
∥

L2(0,T ;H2)
≤ 1

2k−1
C̃.

Hence, we get
∞∑

k=2

∥
∥ρk

∥
∥

L∞(0,T ;L2)
< ∞,

∞∑

k=2

(∥
∥uk+1

∥
∥

L∞(0,T ;L2)
+

∥
∥uk+1

∥
∥

L2(0,T ;H1)

)
< ∞,

∞∑

k=2

(∥
∥χk+1

∥
∥

L∞(0,T ;H1)
+

∥
∥χk+1

∥
∥

L2(0,T ;H2)

)
< ∞.
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Therefore, as k → ∞, we have

ρk → ρ1 +
∞∑

k=2

ρk, in L∞(0, T ;L2),

uk → u1 +
∞∑

k=2

uk, in L∞(0, T ;L2) ∩ L2(0, T ;H1), (2.34)

χk → χ1 +
∞∑

k=2

χk, in L∞(0, T ;H1) ∩ L2(0, T ;H2). (2.35)

By (2.10)–(2.13), (2.22), (2.23), after taking possible subsequences (denoted by itself for convenience),
sending k → ∞, we have

ρk → ρ, strongly in C(0, T ;H1),

(∇ρk, ρk
t ) ⇀ (∇ρ, ρt), weak∗ in L∞(0, T ;L2),

(∇2ρk, ∇ρk
t ) ⇀ (∇2ρ, ∇ρt), weak∗ in L∞(0, T ;L6),

uk → u, strongly in C(0, T ;H1),

(∇uk, ∇2uk, uk
t ) ⇀ (∇u, ∇2u, ut), weak∗ in L∞(0, T ;L2),

∇2uk ⇀ ∇2u, weakly in L2(0, T ;L6),

∇uk
t ⇀ ∇ut, weakly in L2(0, T ;L2),

(pk, ∇pk) ⇀ (p, ∇p), weak∗ in L∞(0, T ;L2),

∇pk ⇀ ∇p, weakly in L2(0, T ;L6),

χk → χ, strongly in C(0, T ;H2),

(∇χk, ∇2χk, ∇3χk, χk
t , ∇χk

t ) ⇀ (∇χ, ∇2χ, ∇3χ, χt, ∇χt), weak∗ in L∞(0, T ;L2),

(∇4χk, ∇2χt) ⇀ (∇4χ, ∇2χt), weakly in L2(0, T ;L2).

By lower semi-continuity, we derive

‖ρ‖L∞(0,T ;W 2,6) + ‖ρt‖L∞(0,T ;W 1,6) + ‖u‖V + ‖p‖L∞(0,T ;H1) + ‖p‖L2(0,T ;W 1,6) + ‖χ‖Φ ≤ C̃.

By the uniqueness of the limits, we get ρ = ρ1 +
∑∞

k=2 ρk, u = u1 +
∑∞

k=2 uk, χ = χ1 +
∑∞

k=2 χk. On the
other hand, (2.34) and (2.35) also imply

uk−1 → u, in L∞(0, T ;L2) ∩ L2(0, T ;H1),

χk−1 → χ, in L∞(0, T ;H1) ∩ L2(0, T ;H2),

as k → ∞.
Taking limits in (2.9), we see that (ρ, u, p, χ) is accurately a solution of the problem (1.1) with the

regularities like in Theorem 1.1. The uniqueness of the solution can be obtained by the standard energy
method similar to step 4. Therefore, the proof of Theorem 1.1 is complete. �
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