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Abstract. This paper concerns the reaction–diffusion systems modeling the population dynamics of two predators and one
prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution
for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit
system with type I functional responses and density-dependent death rates for the predators and logistic growth for the
prey. Moreover, the convergence rates are also established.

Mathematics Subject Classification. 35A01, 35B40, 35K57, 92C17.

Keywords. Diffusive predator–prey models, Nonlinear prey-taxis, Global existence and boundedness, Global stability and

convergence rates.

1. Introduction

The dynamical relationship between the predator and prey has been investigated widely in recent years
due to its universal existence and importance in mathematical biology and ecology. In the spatial
predator–prey interaction, in addition to the random diffusion of predator and prey, the predator has the
tendency to move toward the area with higher density of prey population. Kareiva and Odell [11] first
derived a prey-taxis model to describe the predator aggregation in high prey density areas. Since then,
various reaction–diffusion models have been proposed to interpret the prey-taxis phenomenon [1,7,19].
The general prey-taxis model with one predator and one prey reads as follows{

ut − Δu + ∇ · (φ(u,w)∇w) = bug(w) − uh(u),
wt − dΔw = f(w) − ug(w), (1.1)

where u(t, x) denotes the predator density at position x and time t > 0 and w = w(x, t) the prey
population density; the term ∇ · (φ(u,w)∇w) describes the tendency of the predator moving toward the
increasing prey gradient direction and d is the prey diffusion rate. The function ug(w) represents the inter-
specific interaction, functions uh(u) and f(w) account for the intra-specific interactions. The parameter
b > 0 denotes the intrinsic predation rate. This system has been studied by many authors. Lee et al. [13]
studied the pattern formation of (1.1) in a bounded interval with zero Neumann boundary conditions.
When φ(u,w) = χq(u) with positive constant χ, Wu et al. [33] investigated the global existence and
boundedness of solutions, and the existence of a global attractor and the uniform persistence of (1.1) in
a bounded domain with zero Neumann boundary conditions under a smallness assumption on χ. When
φ(u,w) = χu for positive constant χ, Jin and Wang [10] proved the global boundedness of solution and
stabilities of nonnegative spatially homogeneous equilibria of (1.1) in a two-dimensional bounded domain
with zero Neumann boundary conditions. For more related works, we refer the readers to [8,17,22,30].
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Before stating our model, we would like to recall some works on two-predator and one-prey model
without prey-taxis. In [18], the emergence of stationary patterns for a strongly coupled system of partial
differential equations which models the dynamics of a two-predator-one-prey ecosystem is demonstrated.
For the other related works, please refer to [15,16,26]. In this paper, we consider the following two-predator
and one-prey model with nonlinear prey-taxis:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − Δu + ∇ · (uφ1(w)∇w) = b1ug1(w) − uh1(u), x ∈ Ω, t > 0,
vt − Δv + ∇ · (vφ2(w)∇w) = b2vg2(w) − vh2(v), x ∈ Ω, t > 0,
wt − dΔw = f(w) − ug1(w) − vg2(w), x ∈ Ω, t > 0,
∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.2)

In this model, Ω is a bounded domain in R
n with smooth boundary ∂Ω, ∂ν = ∂

∂ν and ν is the unit outward
normal vector of ∂Ω. Functions u and v are population densities of two predators, and w is the population
density of the prey. Here d, b1, b2 are positive constants. It is assumed that the prey-tactic coefficients
φ1(w) and φ2(w) depend only upon w. Functions uh1(u) and vh2(v) describe the population kinetics of
u and v, respectively. Functions g1(w) and g2(w) are the functional responses accounting for the intake
rates of predators u and v as functions of prey density. The function f(w) is the growth function of the
prey. Problem (1.2) had been studied by Wang et al. ([28]) for the following special case:

φ1(s) = χφ2(s), gi(s) = βis, hi(s) = −αi(1 − s), i = 1, 2, f(s) = α3s(1 − s)

with positive constants χ, β1, β2, α1, α2, α3. They discussed the global existence of solutions when n = 2,
and the stationary and time-periodic patterns.

In the present paper, we suppose that φi, hi, gi and f satisfy the following hypotheses:
(A1) Functions φi ∈ C2([0,∞)), φi ≥ 0, i = 1, 2. The well-known examples are

(i) φi(s) = χi, (ii) φi(s) =
χi

s + εi
, (iii) φi(s) =

χi

(s + εi)2
,

with positive constants χi, εi, i = 1, 2.
(A2) Functions gi ∈ C2([0,∞)), gi(0) = 0, gi(s) > 0 in (0,∞), i = 1, 2. The typical examples are

(type I) gi(s) = γis, (type II) gi(s) =
γis

li + s
,

(type III) gi(s) =
γis

κi

lκi
i + sκi

, (Ivlev type) gi(s) = γi(1 − e−lis),

where γi, li, κi are positive constants, i = 1, 2.
(A3) Functions hi ∈ C2([0,∞)) and there exist two constants ai and μi > 0 such that hi(s) ≥ ai and

h′
i(s) ≥ μi in [0,∞), i = 1, 2. It then follows that −hi(s) ≤ |ai| − μis for s ∈ [0,∞), i = 1, 2. The

typical example is hi(s) = ai + μis, in which ai may be positive or negative.
(A4) The function f ∈ C2([0,∞)) satisfying f(0) = 0, and there exist two positive constants q,K such

that f(s) ≤ qs for s ≥ 0, f(K) = 0 and f(s) < 0 for s > K. Some examples are

(logistic) f(s) = qs
(
1 − s

K

)
, (Allee effect) f(s) = q′s

(
1 − s

K

)( s

N
− 1

)

with 0 < N < K and q′ = 4KN
(K−N)2 q.

The initial data u0, v0, w0 are supposed to satisfy

u0, v0, w0 ≥, �≡ 0 and u0, v0, w0 ∈ W 1,θ(Ω) for some θ > max{n, 2}.

Remark 1.1. In the assumption (A3), our assumption μi > 0 is a technique requirement (see Lemma
2.2). Compared with the condition (H1) in [10], we remove the monotonicity assumptions on gi.

Remark 1.2. It is easy to see that, in contrast to the model proposed in [28], system (1.2) is a more
general one.
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Throughout this paper, we denote ‖·‖p = ‖·‖Lp(Ω) for the simplicity. And denote the general constants
by ci.

The first result of this paper shows that the solution of the prey-taxis system (1.2) in two dimensions
exists globally. In [28], the boundedness of solutions is obtained by introducing several entropy-like in-
equalities (see also [10]). However, we apply a different method ([3]) to prove our existence result in two
dimensions. It seems worth pointing out that, in contrast to the existence results in [28], we relax the
regularity assumptions on the initial data.

Theorem 1.1. Let n ≤ 2. Then, (1.2) has a unique nonnegative and bounded global solution (u, v, w), and

u, v, w ∈ C(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)). (1.3)

Remark 1.3. The methods in the proof of Theorem 1.1 (and the following Theorem 1.2) can be applied
to the model discussed by [28].

The following theorem asserts that, in higher dimension (n ≥ 3), the solution of (1.2) exists globally
when the prey-tactic coefficients φ1(w) and φ2(w) are small.

Theorem 1.2. Let n ≥ 3. Define m = max{‖w0‖∞, K}. If

‖φi‖L∞(0,m) ≤ 2d

nm
(
1 + 2

√
(d + 1)2 − d(n − 2)/n

) , i = 1, 2, (1.4)

then (1.2) has a unique nonnegative and bounded global solution (u, v, w), and (1.3) holds.

Remark 1.4. Inspired by the works in [24,32], we expect that if μ1, μ2 are sufficiently large, then system
(1.2) has a unique global-in-time classical solution that is bounded in Ω×(0,∞). We are currently working
on such issue in a separate paper.

The second goal of this paper is to understand the role of prey-taxis in the global stabilities of
nonnegative spatially homogeneous equilibria to a three-species predator–prey model. Since it is hopeless
to construct Lyapunov functionals for the general system, we would like to consider an explicit model.
We consider type I function responses and density-dependent death rates for the predators, and logistic
growth for the prey, reading as

hi(s) = ai + μis, gi(s) = s, i = 1, 2, f(s) = qs(1 − s/K),

where a1, a2, μ1, μ2, q, K are positive constants (the case of a1, a2 < 0 had been studied in [28]). For
simplicity, we suppose that μ1 = μ2 = K = 1. Then, problem (1.2) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − Δu + ∇ · (uφ1(w)∇w) = b1uw − u(a1 + u), x ∈ Ω, t > 0,
vt − Δv + ∇ · (vφ2(w)∇w) = b2vw − v(a2 + v), x ∈ Ω, t > 0,
wt − dΔw = qw(1 − w) − (u + v)w, x ∈ Ω, t > 0,
∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.5)

In this model, the coefficients a1 and b1 represent the death rate and predation rate of the predator u,
respectively (a2 and b2 represent the death rate and predation rate of the predator v, respectively), and
q is the intrinsic birth rate of the prey w. We set from now on

A = (b1 − a1)q + a2b1 − a1b2, B = (b2 − a2)q + a1b2 − a2b1. (1.6)

When A,B > 0, one can find a positive solution (u∗, v∗, w∗) of the linear algebraic system⎧⎨
⎩

b1w∗ − a1 − u∗ = 0,
b2w∗ − a2 − v∗ = 0,
q(1 − w∗) − u∗ − v∗ = 0.
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The direct computation gives

u∗ =
A

q + b1 + b2
, v∗ =

B

q + b1 + b2
, w∗ =

q + a1 + a2

q + b1 + b2
. (1.7)

In this case, we shall show that if the prey-tactic coefficients φ1(w) and φ2(w) are small or the diffusion
coefficient d of the prey is large, then the positive spatially homogeneous equilibrium (u∗, v∗, w∗) is global
stable.

Theorem 1.3. Assume A,B > 0 and set

m = max{‖w0‖L∞(Ω), 1}, Li = ‖φi‖L∞(0,m), i = 1, 2.

Let (u, v, w) be a bounded global classical solution of (1.5). If

dw∗
m2

− L2
1u∗
4b1

− L2
2v∗

4b2
> 0, (1.8)

then there exist constants C1, λ1 > 0 such that

‖u − u∗‖∞ + ‖v − v∗‖∞ + ‖w − w∗‖∞ ≤ C1e
−λ1t, ∀ t > 0. (1.9)

Remark 1.5. It is easy to see that A,B > 0 (u∗, v∗ > 0) implies w∗ < 1, which yields a1 + a2 < b1 + b2.
Therefore, bi ≤ ai, i = 1, 2 implies that A ≤ 0 or B ≤ 0.

In the case of A ≤ 0, B > 0 and a2 < b2. Let

ṽ =
(b2 − a2)q

q + b2
, w̃ =

q + a2

q + b2
. (1.10)

Then (0, ṽ, w̃) is a semi-trivial spatially homogeneous equilibrium. The following theorem shows that
if the prey-tactic coefficient φ2(w) is small or the diffusion coefficient d of the prey is large, then the
semi-trivial spatially homogeneous equilibrium (0, ṽ, w̃) is global stable.

Theorem 1.4. Let m, L2 be as in Theorem 1.3 and A ≤ 0, B > 0, a2 < b2. Let (u, v, w) be a bounded
global classical solution of (1.5). Under the condition

dw̃

m2
− L2

2ṽ

4b2
> 0, (1.11)

we have
(i) If a1 > b1w̃, then there exist constants C2, λ2 > 0 such that

‖u‖∞ + ‖v − ṽ‖∞ + ‖w − w̃‖∞ ≤ C2e
−λ2t, ∀ t > 0. (1.12)

(ii) If a1 = b1w̃, then there exist constants C3, λ3 > 0 such that

‖u‖∞ + ‖v − ṽ‖∞ + ‖w − w̃‖∞ ≤ C3(t + 1)−λ3 , ∀ t > 0. (1.13)

Similarly, when A > 0, B ≤ 0 and a1 < b1, let

û =
(b1 − a1)q

q + b1
, ŵ =

q + a1

q + b1
.

Then (û, 0, ŵ) is a semi-trivial spatially homogeneous equilibrium. The following theorem shows that
if the prey-tactic coefficient φ1(w) is small or the diffusion coefficient d of the prey is large then the
semi-trivial spatially homogeneous equilibrium (û, 0, ŵ) is global stable.

Theorem 1.5. Let m, L1 be as in Theorem 1.3 and A > 0, B ≤ 0, a1 < b1. Let (u, v, w) be a bounded
global classical solution of (1.5). Under the condition

dŵ

m2
− L2

1û

4b1
> 0,

we have
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(i) When a2 > b2ŵ, we can find constants C4, λ4 > 0 such that

‖u − û‖∞ + ‖v‖∞ + ‖w − ŵ‖∞ ≤ C4e
−λ4t, ∀ t > 0.

(ii) When a2 = b2ŵ, we can find constants C5, λ5 > 0 such that

‖u − û‖∞ + ‖v‖∞ + ‖w − ŵ‖∞ ≤ C5(t + 1)−λ5 , ∀ t > 0.

In the case of bi ≤ ai, i = 1, 2, we have the following theorem.

Theorem 1.6. Let bi ≤ ai, i = 1, 2, and (u, v, w) be a bounded global classical solution of (1.5).
(i) When bi < ai, i = 1, 2, we can find constants C6, λ6 > 0 such that

‖u‖∞ + ‖v‖∞ + ‖w − 1‖∞ ≤ C6e
−λ6t, ∀ t > 0. (1.14)

(ii) When bi = ai, i = 1, 2, we can find constants C7, λ7 > 0 such that

‖u‖∞ + ‖v‖∞ + ‖w − 1‖∞ ≤ C7(t + 1)−λ7 , ∀ t > 0. (1.15)

From Theorem 1.3, we see that if the predation of both the two predators is strong, in the sense
of A,B > 0, the coexistence steady state (u∗, v∗, w∗) can be reached if φ1, φ2 is small. Theorems 1.4
and 1.5 show that the prey and the predator with strong predation and weak prey-taxis will reach to
positive constant steady state, while the predator with weak predation will go extinct (with any prey-
taxis). Theorem 1.6 tells us that if the predation of both the predators are weak, in the sense of bi ≤ ai

(i = 1, 2), the prey-only steady state (0, 0, 1) will be attained and both the predators will go extinct.
In order to better understand the model (1.5), it seems worthwhile to mention the following two-species

chemotaxis model⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d1Δu − χ1∇ · (u∇w) + θ1u(1 − u − k1v), x ∈ Ω, t > 0,
vt = d2Δv − χ2∇ · (v∇w) + θ2v(1 − k2u − v), x ∈ Ω, t > 0,
τwt = d3Δw + ξu + ρv − γv, x ∈ Ω, t > 0,
∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = τw0(x), x ∈ Ω,

(1.16)

where τ = 0, 1. The coefficients d1, d2, d3, χ1, χ2, θ1, θ2, ξ, ρ, γ are positive constants and k1, k2 ≥ 0. Here
u = u(x, t) and v = v(x, t) denote the population densities of two species and w = w(x, t) represents the
concentration of the chemoattractant. When τ = 0 and k1, k2 ∈ [0, 1), Tello and Winkler [25] proved that
(1.16) possesses a uniquely determined spatially homogeneous positive equilibrium

(u∗, v∗, w∗) =
(

1 − k1

1 − k1k2
,

1 − k2

1 − k1k2
,

ξ(1 − k1) + ρ(1 − k2)
γ(1 − k1k2)

)
, (1.17)

provided

2(χ1 + χ2) + k1θ2 < θ1 and 2(χ1 + χ2) + k2θ1 < θ2. (1.18)

Black et al. [6] replaced the condition (1.18) by a smallness condition on χi/θi (i = 1, 2). For τ = 0
and k1 > 1 > k2 ≥ 0, Stinner et al. [20] proved that if both χ1/θ1 and χ2/θ2 are sufficiently small then
competitive exclusion occurs for any solution (u, v, w) with v �≡ 0. For τ = 1, in the 2-dimensional case
Bai and Winkler [3] obtained global existence of solution to system (1.3). Moreover, for k1, k2 ∈ (0, 1),
they proved that

‖u(·, t) − u∗‖L∞(Ω) + ‖v(·, t) − v∗‖L∞(Ω) + ‖w(·, t) − w∗‖L∞(Ω) ≤ Ce−λt, ∀ t > 0,

for some positive constants C, λ, where u∗, v∗, w∗ is given by (1.17),under the conditions

μ1 >
d2χ

2
1u

∗
4k1γ(1−k1k2)d1d2d3
(k1ξ2+k2ρ2−2k1k2ξρ) − d1k1χ2

2v∗
4θ2k2

, μ2 >
χ2

2v
∗(k1ξ

2 + k2ρ
2 − 2k1k2ξρ)

16d2d3k2γ(1 − k1k2)
.
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When k1 ≥ 1 > k2 > 0, they show that

lim
t→∞

(‖u(·, t)‖L∞(Ω) + ‖v(·, t) − 1‖L∞(Ω) + ‖w(·, t) − ρ/γ‖L∞(Ω)

)
= 0,

under the conditions that there is k′
1 ∈ [1, k1] such that k′

1k2 < 1 and

θ2 >
χ2

2(k
′
1ξ

2 + k2ρ
2 − 2k′

1k2ξρ)
16d2d3k2γ(1 − k′

1k2)
.

Recently, this result is improved by Mizukami [17]. In the 3-dimensional case, Lin and Mu [14] obtained
similar results if θ1 and θ2 are sufficiently large.

The article is organized as follows. Section 2 provides the uniqueness, global existence and boundedness
of the classical solution of (1.2). Section 3 is devoted to prove the global stability results in Theorems
1.3–1.6. The last section is a brief discussion.

Before ending this section, we should mention that if the forms of the two functions g1 and g2 in system
(1.2) are very different from each other, then describing stability properties of spatially homogeneous
equilibria for the general system (1.2) would be a challenging open topic.

2. Existence, uniqueness and boundedness of global solutions

2.1. Existence and uniqueness of local solutions, some preliminaries

We first give a claim concerning the local-in-time existence of the classical solutions to (1.2).

Lemma 2.1. There exists a T̂ ∈ (0,∞] and a unique nonnegative solution (u, v, w) of (1.2) defined in
[0, T̂ ) and satisfies

u, v, w ∈ C(Ω̄ × [0, T̂ )) ∩ C2,1(Ω̄ × (0, T̂ )),

and

u, v > 0, 0 < w ≤ m := max{‖w0‖∞, K} in Ω × (0, T̂ ). (2.1)

Moreover, the “existence time T̂” can be chosen maximal: either T̂ = ∞, or T̂ < ∞ and

lim sup
t→T̂

(‖u(·, t)‖∞ + ‖v(·, t)‖∞) = ∞.

Proof. The local-in-time existence and uniqueness of the classical solutions to problem (1.2) follows from
Amann’s theorem [2, Theorem 7.3 and Corollary 9.3]. The estimates (2.1) can be derived by the maximum
principle. �

Without loss of generality, we may suppose that T̂ > 1 from now on.

Lemma 2.2. The unique solution (u, v, w) of (1.2) satisfies
∫
Ω

udx ≤ m1 := max

⎧⎨
⎩

∫
Ω

u0dx,
(b1k1 + |a1|)|Ω|

μ1

⎫⎬
⎭ , t ∈ (0, T̂ ), (2.2)

∫
Ω

vdx ≤ m2 := max

⎧⎨
⎩

∫
Ω

v0dx,
(b2k2 + |a2|)|Ω|

μ2

⎫⎬
⎭ , t ∈ (0, T̂ ) (2.3)

and
t+1∫
t

∫
Ω

(u2 + v2)dxds ≤ M, t ∈ (0, T̂ − 1), (2.4)
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where ki = ‖gi‖C([0,m]), i = 1, 2, and M = m1
μ1

(b1k1 + |a1| + 1) + m2
μ2

(b2k2 + |a2| + 1).

Proof. From (A2) and Lemma 2.1, we have 0 ≤ g1(w) ≤ k1. By the condition (A3), μ1 > 0. Integrating
the first equation in (1.2) over Ω and using the Cauchy–Schwarz inequality we have

d
dt

∫
Ω

u = b1

∫
Ω

ug1(w)dx −
∫
Ω

uh1(u)dx

≤ (b1k1 + |a1|)
∫
Ω

udx − μ1

∫
Ω

u2dx (2.5)

≤ (b1k1 + |a1|)
∫
Ω

udx − μ1

|Ω|

⎛
⎝∫

Ω

udx

⎞
⎠

2

, t ∈ (0, T̂ ),

where we have used (A3) to derive −h1(u) ≤ |a1| − μ1u. By an ODE comparison principle, we derive
(2.2). Inequality (2.3) can be derived similarly.

Integrating inequality (2.5) over (t, t + 1) and using (2.2) yields that

μ1

t+1∫
t

∫
Ω

u2dxds ≤
∫
Ω

udx + (b1k1 + |a1|)
t+1∫
t

∫
Ω

udxds ≤ m1(b1k1 + |a1| + 1), t ∈ (0, T̂ − 1).

This combined with a similar argument for v yields (2.4). �

Next we provide a lemma containing a general statement on extensibility and regularity of solutions
known to be bounded in L∞((0, T̂ );Lp(Ω)) for some p > n/2.

Lemma 2.3. Let n ≥ 1 and (u, v, w) be the unique solution of (1.2) in Ω×(0, T̂ ). Suppose that there exists
a number p ≥ 1 and p > n/2 for which

sup
t∈(0,T̂ )

(‖u(·, t)‖p + ‖v(·, t)‖p) < ∞. (2.6)

Then T̂ = ∞ and

sup
t>0

(‖u(·, t)‖∞ + ‖v(·, t)‖∞ + ‖w(·, t)‖∞) < ∞. (2.7)

Furthermore, there exists α ∈ (0, 1) and C > 0 such that

‖u, v, w‖
C2+α,1+ α

2 (Ω̄×[1,∞))
≤ C. (2.8)

Proof. Let Φ(u, v, w) = f(w) − ug1(w) − vg2(w). Making use of (2.1) we have

|φi(w)| ≤ ‖φi‖L∞(0,m), |Φ(u, v, w)| ≤ K(u + v + 1)

for all t ∈ (0, T̂ ), where the positive constant K is independent of t. Thanks to [5, Lemma 3.2], it is easy
to deduce that T̂ = ∞ and (2.7) holds. For the details, please refer to [10, Lemma 3.1].

Take advantage of (2.7), inequality (2.8) can be deduced by the standard parabolic regularity theory
([12]). In details, by the same arguments as those in [29, Theorem 2.1] and [27, Theorems 2.1 and 2.2]
we can show the regularity u, v, w ∈ C(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)), similar to the discussions in [27,
Theorem 3.1] and [29, Theorem 2.1] we can get the estimate (2.8). �
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2.2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we first give a lemma.

Lemma 2.4. Let n = 2, (u, v, w) be the unique solution of (1.2). Then there exists C > 0 so that

‖u(·, t)‖2 + ‖v(·, t)‖2 ≤ C, t ∈ (0, T̂ ).

Proof. This proof is inspired by [3, Lemma 2.5]. For convenience, let us denote k0 = ‖f(w) + w‖L∞(0,m).
Without loss of generality we suppose T̂ > 1. We first show that

t+1∫
t

∫
Ω

|Δw(x, s)|2dxds

is bounded with respect to t ∈ (0, T̂ −1). Multiplying the third equation in (1.2) by −Δw, and integrating
the results over Ω and using Young’s inequality, we derive that

1
2

d
dt

∫
Ω

|∇w|2dx + d

∫
Ω

|Δw|2dx +
∫
Ω

|∇w|2dx

= −
∫
Ω

(f(w) + w)Δwdx +
∫
Ω

ug1(w)Δwdx +
∫
Ω

vg2(w)Δwdx

≤ d

2

∫
Ω

|Δw|2dx +
3
2d

∫
Ω

[
(f(w) + w)2 + u2g2

1(w) + v2g2
2(w)

]
dx

≤ d

2

∫
Ω

|Δw|2dx + c1

⎛
⎝1 +

∫
Ω

(u2 + v2)dx

⎞
⎠ , t ∈ (0, T̂ ),

where c1 = 3
2d max

{
k2
0|Ω|, k2

1, k2
2

}
, ki = ‖gi‖C([0,m]), i = 1, 2. Let

y(t) =
∫
Ω

|∇w|2dx, g(t) = 2c1

⎛
⎝1 +

∫
Ω

(u2 + v2)dx

⎞
⎠ , t ∈ (0, T̂ ).

Then y(t) satisfies

y′(t) + 2y(t) + d

∫
Ω

|Δw|2dx ≤ g(t), t ∈ (0, T̂ ). (2.9)

Taking advantage of (2.4) we have
t+1∫
t

g(s)ds ≤ c2 = 2c1(1 + M), t ∈ (0, T̂ − 1).

In view of [3, Lemma 2.3] it can be shown that

y(t) =
∫
Ω

|∇w|2dx ≤ c3 = max

⎧⎨
⎩

∫
Ω

|∇w0|2dx + c2,
5
2
c2

⎫⎬
⎭ , t ∈ (0, T̂ ).

Notice y(t) ≥ 0. Integrating (2.9) over (t, t + 1) we have

d

t+1∫
t

∫
Ω

|Δw|2dxds ≤ y(t) +

t+1∫
t

g(s)ds ≤ c3 + c2 := c4, t ∈ (0, T̂ − 1). (2.10)
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Now we study the L2 estimates for u and v. By the first equation in (1.2) and (A3) we have

1
2

d
dt

∫
Ω

u2dx +
∫
Ω

|∇u|2dx =
∫
Ω

uφ1(w)∇u · ∇wdx +
∫
Ω

u2(b1g1(w) − h1(u))dx

≤
∫
Ω

uφ1(w)∇u · ∇wdx + (b1k1 + |a1|)
∫
Ω

u2dx (2.11)

for all t ∈ (0, T̂ ). It follows by the Hölder’s inequality that, for some c5 > 0,∫
Ω

uφ1(w)∇u · ∇wdx =
1
2

∫
Ω

φ1(w)∇(u2) · ∇wdx

= −1
2

∫
Ω

u2φ′
1(w)|∇w|2dx − 1

2

∫
Ω

u2φ1(w)Δwdx

≤ 1
2
‖φ′

1‖L∞(0,m)‖u‖2
4‖|∇w|2‖2 +

k1

2
‖u‖2

4 ‖Δw‖2

≤ c5‖u‖2
4

(‖∇w‖2
4 + ‖Δw‖2

)
, t ∈ (0, T̂ ). (2.12)

Thanks to the G–N (Gagliardo–Nirenberg) inequality ([23]) and (2.2) we can find c6 > 0 such that

‖u‖2
4 ≤ c6‖∇u‖2‖u‖2 + c6‖u‖2

1 ≤ c6‖∇u‖2‖u‖2 + c6m
2
1, t ∈ (0, T̂ ). (2.13)

Again, using the G–N inequality and (2.1) we have

‖∇w‖2
4 ≤ c7‖Δw‖2‖w‖∞ + c7‖w‖2

∞ ≤ c7(m‖Δw‖2 + m2), t ∈ (0, T̂ ), (2.14)

for some c7 > 0.
Substituting (2.13) and (2.14) into (2.12) and applying the Young inequality, we get∫

Ω

uφ1(w)∇u · ∇wdx ≤ c8(‖∇u‖2‖u‖2 + 1)(‖Δw‖2 + 1)

≤ ‖∇u‖2
2 + c9

(‖u‖2
2‖Δw‖2

2 + ‖u‖2
2 + ‖Δw‖2

2 + 1
)
,

where c8, c9 > 0. Inserting this into (2.11) yields that there exists c10 > 0 fulfilling

z′(t) =
d
dt

∫
Ω

u2dx ≤ c10

⎛
⎝∫

Ω

u2dx + 1

⎞
⎠

⎛
⎝∫

Ω

|Δw|2dx + 1

⎞
⎠

:= c10z(t)h(t), t ∈ (0, T̂ ), (2.15)

where

z(t) =
∫
Ω

u2dx + 1, h(t) =
∫
Ω

|Δw|2dx + 1.

Clearly, z(t) is bounded in [0, 1]. Fix t ∈ (1, T̂ ). By (2.4), there exists t0 ∈ [t − 1, t] such that

z(t0) =
∫
Ω

u2(x, t0)dx + 1 ≤ M + 1.

In view of (2.10) we have
t∫

t0

h(s)ds =

t∫
t0

⎛
⎝∫

Ω

|Δw|2dx + 1

⎞
⎠ ds ≤

t∫
t−1

⎛
⎝∫

Ω

|Δw|2dx + 1

⎞
⎠ ds ≤ 1 + c4/d.
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Now an integration of (2.15) over (t0, t) shows that

z(t) ≤ z(t0)e
c10

t∫
t0

h(s)ds

≤ (M + 1)ec10(1+c4/d), 1 < t < T̂ .

Thus ‖u(·, t)‖2 ≤ C in (0, T̂ ). Similarly, ‖v(·, t)‖2 ≤ C in (0, T̂ ). �

Proof of Theorem 1.1. Using (2.2), (2.3) and Lemma 2.3 with p = 1 when n = 1; using Lemma 2.3 with
p = 2 and Lemma 2.4 when n = 2, the conclusion of Theorem 1.1 is obtained immediately. The proof is
complete. �

2.3. Proof of Theorem 1.2

Theorem 1.2 can be derived by Lemma 2.3 and the following lemma.

Lemma 2.5. Under the conditions of Theorem 1.2, there exist k > n/2, C > 0 so that

‖u(·, t)‖k + ‖v(·, t)‖k ≤ C, t ∈ (0, T̂ ).

Proof. This proof is inspired by [21,31,33]. From (1.4), there exists k > n/2 such that

‖φi‖L∞(0,m) ≤ d

km

(
1 + 2

√
(d + 1)2 − d(k−1)

k

) , i = 1, 2, (2.16)

Let us define L1 = ‖φ1‖C([0,m]), k1 = ‖g1‖C([0,m]) and a weight function

ρ(w) = eβw2
, 0 ≤ w ≤ m,

where β > 0 will be chosen later, m = max{‖w0‖∞,K} and K is given by the condition (A4). Then
1 ≤ ρ(w) ≤ eβm2

:= r for 0 ≤ w ≤ m. The direct calculation yields

1
k

d
dt

∫
Ω

ukρ(w)dx =
∫
Ω

uk−1ρ(w)utdx +
1
k

∫
Ω

ukρ′(w)wtdx

=
∫
Ω

uk−1ρ(w)[Δu − ∇ · (uφ1(w)∇w) + b1ug1(w) − uh1(u)]dx

+
1
k

∫
Ω

ukρ′(w)[dΔw + f(w) − ug1(w) − vg2(w)]dx

≤ −(k − 1)
∫
Ω

uk−2ρ(w)|∇u|2dx −
∫
Ω

uk−1ρ′(w)∇u · ∇wdx

+(k − 1)
∫
Ω

uk−1φ1(w)ρ(w)∇u · ∇wdx +
∫
Ω

ukφ1(w)ρ′(w)|∇w|2dx

+(b1k1 + |a1|)
∫
Ω

ukρ(w)dx − d

k

∫
Ω

ukρ′′(w)|∇w|2dx

−d

∫
Ω

uk−1ρ′(w)∇u · ∇wdx +
2qβ

k

∫
Ω

ukρ(w)w2dx,
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which implies that

1
k

d
dt

∫
Ω

ukρ(w)dx + (k − 1)
∫
Ω

uk−2ρ(w)|∇u|2dx +
d

k

∫
Ω

ukρ′′(w)|∇w|2dx

≤ −(d + 1)
∫
Ω

uk−1ρ′(w)∇u · ∇wdx + L1(k − 1)
∫
Ω

uk−1ρ(w)|∇u · ∇w|dx

+L1

∫
Ω

ukρ′(w)|∇w|2dx + c1

∫
Ω

ukρ(w)dx, (2.17)

where c1 = b1k1 + |a1| + 2qβm2/k. It is easy to check that

d

k

∫
Ω

ukρ′′(w)|∇w|2dx =
2dβ

k

∫
Ω

(
1 + 2βw2

)
ρ(w)uk|∇w|2dx. (2.18)

Take advantage of Young’s inequality, we have∣∣∣∣∣∣
∫
Ω

uk−1ρ′(w)∇u · ∇wdx

∣∣∣∣∣∣ ≤ k − 1
4(d + 1)

∫
Ω

uk−2ρ(w)|∇u|2dx +
d + 1
k − 1

∫
Ω

uk (ρ′(w))2

ρ(w)
|∇w|2dx, (2.19)

L1

∫
Ω

uk−1ρ(w)|∇u · ∇w|dx ≤ 1
4

∫
Ω

uk−2ρ(w)|∇u|2dx + L2
1

∫
Ω

ukρ(w)|∇w|2dx. (2.20)

Plugging (2.18)–(2.20) into (2.17), we get

1
k

d
dt

∫
Ω

ukρ(w)dx +
k − 1

2

∫
Ω

uk−2ρ(w)|∇u|2dx +
2dβ

k

∫
Ω

(
1 + 2βw2

)
ρ(w)uk|∇w|2dx

≤ (d + 1)2

k − 1

∫
Ω

(ρ′(w))2

ρ(w)
uk|∇w|2dx + L2

1(k − 1)
∫
Ω

ρ(w)uk|∇w|2dx

+L1

∫
Ω

ρ′(w)uk|∇w|2dx + c1

∫
Ω

ukρ(w)dx

=
∫
Ω

(
(d + 1)2

k − 1
(ρ′(w))2

ρ(w)
+ L2

1(k − 1)ρ(w) + L1ρ
′(w)

)
uk|∇w|2dx + c1

∫
Ω

ukρ(w)dx

=
∫
Ω

(
4(d + 1)2β2

k − 1
w2 + L2

1(k − 1) + 2L1βw

)
ρ(w)uk|∇w|2dx + c1

∫
Ω

ukρ(w)dx. (2.21)

Next we shall show that there exists β > 0 so as to

4(d + 1)2β2

k − 1
w2 + L2

1(k − 1) + 2L1βw ≤ 2dβ

k

(
1 + 2βw2

)
,

i.e.,

4w2

(
(d + 1)2

k − 1
− d

k

)
β2 + 2

(
L1w − d

k

)
β + L2

1(k − 1) ≤ 0. (2.22)

It is sufficient to prove that there exists β > 0 such that

J(β) := 4m2

(
(d + 1)2

k − 1
− d

k

)
β2 + 2

(
L1m − d

k

)
β + L2

1(k − 1) ≤ 0.
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To this purpose, let us investigate the coefficients of J(β). Set

j1 = 4m2

(
(d + 1)2

k − 1
− d

k

)
, j2 = 2

(
L1m − d

k

)
, j3 = (k − 1)L2

1.

Thanks to (2.16), we have j2 < 0. Besides,

j2
2 − 4j1j3 = 4 (L1m − d/k)2 − 16m2L2

1

[
(d + 1)2 − d(k − 1)/k

]
= 4m2

[
1 − 4(d + 1)2 + 4d(k − 1)/k

]
L2

1 − (8dm/k)L1 + 4d2/k2

= 4m2(1 − γ2)L2
1 − (8dm/k)L1 + 4d2/k2

:= aL2
1 + bL1 + c,

where γ = 2
√

(d + 1)2 − d(k − 1)/k. It is easy to see that 1 − γ2 < 0, i.e., a < 0, and

b2 − 4ac = 64d2m2/k2 − 64d2m2(1 − γ2)/k2 = (8dmγ/k)2 > 0.

Therefore, the quadratic polynomial aL2
1+bL1+c has two roots − d

mk(γ−1) and d
mk(γ+1) . Hence, j2

2−4j1j3 ≥
0 if and only if

− d

mk(γ − 1)
≤ L1 ≤ d

mk(γ + 1)
.

Due to (2.16), j2
2 − 4j1j3 ≥ 0 holds. Recalling j2 < 0, we can find a constant β > 0 so that J(β) ≤ 0.

Thereby, inequality (2.22) holds.
It follows from (2.21) and (2.22) that

1
k

d
dt

∫
Ω

ukρ(w)dx +
k − 1

2

∫
Ω

uk−2ρ(w)|∇u|2dx ≤ c1

∫
Ω

ukρ(w)dx. (2.23)

Taking advantage of the G–N inequality and Poincaré inequality ([9]) firstly, and using (2.2) secondly,
we have

∫
Ω

ukρ(w)dx ≤ r

∫
Ω

uk = r‖uk/2‖2
2

≤ rc2‖uk/2‖2s
W 1,2(Ω)‖uk/2‖2(1−s)

2/k

≤ rc3

(
‖∇uk/2‖2 + ‖uk/2‖2/k

)2s

‖uk/2‖2(1−s)
2/k

= rc3

(
‖∇uk/2‖2 + ‖u‖k/2

1

)2s

‖u‖k(1−s)
1

≤ rc3

(
‖∇uk/2‖2 + m

k/2
1

)2s

m
k(1−s)
1

≤ c4

(
‖∇uk/2‖2

2 + 1
)s

(2.24)

with some constants c2, c3, c4 > 0 and

s =
k/2 − 1/2

k/2 + 1/n − 1/2
∈ (0, 1).
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As ρ(w) ≥ 1, by use of (2.24) we have∫
Ω

uk−2ρ(w)|∇u|2dx ≥
∫
Ω

uk−2|∇u|2dx =
4
k2

∫
Ω

|∇uk/2|2dx

≥ 4

k2c
1/s
4

⎛
⎝∫

Ω

ukρ(w)dx

⎞
⎠

1/s

− 4
k2

. (2.25)

Inserting (2.25) into (2.23) we have

1
k

d
dt

∫
Ω

ukρ(w)dx ≤ −2(k − 1)

k2c
1/s
4

⎛
⎝∫

Ω

ukρ(w)dx

⎞
⎠

1/s

+ c1

∫
Ω

ukρ(w)dx +
2(k − 1)

k2

for all t ∈ (0, T̂ ). Recall that s ∈ (0, 1) and ρ(w) ≥ 1. By an ODE comparison principle, there exists
c5 > 0 such that

‖u(·, t)‖k ≤
⎛
⎝∫

Ω

ukρ(w)dx

⎞
⎠

1/k

≤ c5, t ∈ (0, T̂ ).

This completes the proof. �

3. Global stability

We shall use the ideas in [3] to prove Theorems 1.3–1.6. Let us first recall a basic result.

Lemma 3.1. (Barbălat’s Lemma [4]) Suppose that h : [1,∞) → R is uniformly continuous and that

lim
t→∞

t∫
1

h(s)ds exists. Then lim
t→∞ h(t) = 0 holds.

Next we give a lemma which will play the important roles in our later discussions.

Lemma 3.2. Let (u, v, w) be one solution of⎧⎨
⎩

(b1w − a1 − u)u = 0,
(b2w − a2 − v)v = 0,
[q(1 − w) − u − v]w = 0,

(3.1)

and (u, v, w) be a bounded global classical solution of (1.5). Suppose that there exist two decreasing func-
tions G1(t) and G2(t) defined in [t0,∞) for some t0 > 0 such that

‖u − u‖2
2 + ‖v − v‖2

2 + ‖w − w‖2
2 ≤ G1(t), t > t0, (3.2)⎛

⎝
t∫

t−1

∫
Ω

|∇w|2dxds

⎞
⎠

1
2n+2

≤ G2(t), t > t0 + 1.

Then, there exists a constant C > 0 so as to

‖u − u‖∞ + ‖v − v‖∞ + ‖w − w‖∞ ≤ C[G
1
2n
1 (t − 1) + G2(t)], t > t0 + 2. (3.3)
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Proof. Note that (u, v, w) exists globally and is bounded. It follows from (3.2) and the Hölder inequality:

‖ϕ‖2n ≤ ‖ϕ‖
n−1

n∞ ‖ϕ‖ 1
n
2 that there exists a positive constant Ĉ such that

‖u − u‖2n + ‖v − v‖2n + ‖w − w‖2n ≤ ĈG
1
2n
1 (t), t > t0.

Evidently, Ĝ1(t) := ĈG
1
2n
1 (t) is a decreasing function in [t0,∞) for t0 > 0. By use of [3, Lemma 3.6] we

can get the estimate (3.3). �

3.1. Global stability of (u∗, v∗, w∗): proof of Theorem 1.3

In this subsection, we always assume that A, B > 0, (u, v, w) is a bounded global solution of (1.5) and
(1.8) holds. The constants A, B are given by (1.6), and (u∗, v∗, w∗) is given by (1.7).

Lemma 3.3. There is ε > 0 such that functions E1(t), F1(t) defined by

E1(t) =
∫
Ω

[
1
b1

(
u − u∗ − u∗ ln

u

u∗

)
+

1
b2

(
v − v∗ − v∗ ln

v

v∗

)
+ w − w∗ − w∗ ln

w

w∗

]
dx,

F1(t) =
∫
Ω

[
(u − u∗)2 + (v − v∗)2 + (w − w∗)2 + |∇w|2]dx

satisfies

E′
1(t) ≤ −εF1(t), t > 0. (3.4)

Proof. For the convenience, we set

A1(t) =
1
b1

∫
Ω

(
u − u∗ − u∗ ln

u

u∗

)
dx,

B1(t) =
1
b2

∫
Ω

(
v − v∗ − v∗ ln

v

v∗

)
dx,

D1(t) =
∫
Ω

(
w − w∗ − w∗ ln

w

w∗

)
dx.

Evidently, A1(t), B1(t),D1(t) ≥ 0. The straightforward calculation gives

A′
1(t) =

∫
Ω

(
−u∗

b1

|∇u|2
u2

+
u∗
b1

φ1(w)
∇u

u
· ∇w − 1

b1
(u − u∗)2 + (u − u∗)(w − w∗)

)
dx,

B′
1(t) =

∫
Ω

(
−v∗

b2

|∇v|2
v2

+
v∗
b2

φ2(w)
∇v

v
· ∇w − 1

b2
(v − v∗)2 + (v − v∗)(w − w∗)

)
dx,

D′
1(t) =

∫
Ω

(
−dw∗

|∇w|2
w2

− q(w − w∗)2 − (u − u∗)(w − w∗) − (v − v∗)(w − w∗)
)

dx.

Thus, we have

E′
1(t) = I1(t) + I2(t),
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where

I1(t) =
∫
Ω

[
u∗
b1

(
φ1(w)

∇u

u
· ∇w − |∇u|2

u2

)
+

v∗
b2

(
φ2(w)

∇v

v
· ∇w − |∇v|2

v2

)
− dw∗

|∇w|2
w2

]
dx,

I2(t) = −
∫
Ω

(
1
b1

(u − u∗)2 +
1
b2

(v − v∗)2 + q(w − w∗)2
)

dx.

Set ε1 = min{1/b1, 1/b2, q}. Then, it is clear that

I2(t) ≤ −ε1

∫
Ω

[
(u − u∗)2 + (v − v∗)2 + (w − w∗)2

]
dx.

We claim that there exists ε2 > 0 such that

I1(t) ≤ −ε2

∫
Ω

|∇w|2dx. (3.5)

Once this is done, by choosing ε = min{ε1, ε2} we then get (3.4).
Now we prove (3.5). Firstly, as w ≤ m (cf. (2.1)), we have

I1(t) ≤
∫
Ω

[
u∗
b1

(
φ1(w)

∇u

u
· ∇w − |∇u|2

u2

)
+

v∗
b2

(
φ2(w)

∇v

v
· ∇w − |∇v|2

v2

)
− dw∗

m2
|∇w|2

]
dx.

As above, we let Li = ‖φi‖L∞(0,m), i = 1, 2. An application of the Young inequality yields∫
Ω

φ1(w)
∇u

u
· ∇wdx ≤ L1

∫
Ω

|∇u · ∇w|
u

dx ≤
∫
Ω

|∇u|2
u2

dx +
L2

1

4

∫
Ω

|∇w|2dx,

∫
Ω

φ2(w)
∇v

v
· ∇wdx ≤ L2

∫
Ω

|∇v · ∇w|
v

dx ≤
∫
Ω

|∇v|2
v2

dx +
L2

2

4

∫
Ω

|∇w|2dx.

Consequently,

I1(t) ≤ −
(

dw∗
m2

− L2
1u∗
4b1

− L2
2v∗

4b2

) ∫
Ω

|∇w|2dx := −ε2

∫
Ω

|∇w|2dx.

The assumption (1.8) implies ε2 > 0, and so (3.5) holds. �

Lemma 3.4. The following asymptotic behavior holds:

‖u − u∗‖∞ + ‖v − v∗‖∞ + ‖w − w∗‖∞ → 0 as t → ∞. (3.6)

Proof. Let

f1(t) =
∫
Ω

[
(u − u∗)2 + (v − v∗)2 + (w − w∗)2

]
dx.

Clearly, 0 ≤ f1(t) ≤ F1(t). Hence, by (3.4), E′
1(t) ≤ −εF1(t) ≤ −εf1(t). Since E1(t) ≥ 0, we have

∞∫
1

f1(t)dt ≤ 1
εE1(1) < ∞. It follows from the regularity of u, v, w that f1(t) is uniformly continuous in

[1,∞). An application of Lemma 3.1 yields∫
Ω

[
(u − u∗)2 + (v − v∗)2 + (w − w∗)2

]
dx = f1(t) → 0 as t → ∞. (3.7)
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Note that (u, v, w) is a bounded global solution of (1.5). By the standard parabolic regularity theory,
we can get the estimate (2.8), which implies that, in the space W 1,∞(Ω), u(·, t), v(·, t) and w(·, t) are
bounded for t > 1. Apply the G–N inequality

‖ψ‖∞ ≤ c‖ψ‖
n

n+2

W 1,∞(Ω)‖ψ‖
2

n+2
2 , ∀ ψ ∈ W 1,∞(Ω)

to u − u∗, v − v∗ and w − w∗, respectively, the limit (3.6) is deduced by (3.7). �

Proof of Theorem 1.3. For the given positive constant y∗, we define h(y) = y − y∗ ln y for y > 0. By
L’Hôpital’s rule, one can easily check that

lim
y→y∗

h(y) − h(y∗)
(y − y∗)2

= lim
y→y∗

h′(y)
2(y − y∗)

=
1

2y∗
.

Remember the limit (3.6), it follows that there is t0 > 0 such that

1
4u∗

∫
Ω

(u − u∗)2dx ≤
∫
Ω

(
u − u∗ − u∗ ln

u

u∗

)
dx ≤ 1

u∗

∫
Ω

(u − u∗)2dx, (3.8)

1
4u∗

∫
Ω

(v − v∗)2dx ≤
∫
Ω

(
v − v∗ − v∗ ln

v

v∗

)
dx ≤ 1

v∗

∫
Ω

(v − v∗)2dx, (3.9)

1
4w∗

∫
Ω

(w − w∗)2dx ≤
∫
Ω

(
w − w∗ − w∗ ln

w

w∗

)
dx ≤ 1

w∗

∫
Ω

(w − w∗)2dx (3.10)

for all t > t0. Recall the definitions of E1(t) and F1(t), it follows from the right inequalities in (3.8)–(3.10)
that E1(t) ≤ c1F1(t) for all t > t0 and some c1 > 0. Inserting this into (3.4) we get E′

1(t) ≤ −εF1(t) ≤
− ε

c1
E1(t) for t > t0. Thus, E1(t) ≤ c2e

−σt for t > t0 and some c2, σ > 0. In view of the left inequalities
in (3.8)–(3.10), there exist c3, c4 > 0 such that∫

Ω

(u − u∗)2 +
∫
Ω

(v − v∗)2 +
∫
Ω

(w − w∗)2 ≤ c3E1(t) ≤ c4e
−σt, t > t0.

Besides, there is c5 > 0 such that

t∫
t−1

∫
Ω

|∇w|2 ≤
t∫

t−1

F1(s)ds ≤ −1
ε

t∫
t−1

E′
1(s)ds

≤ 1
ε
E1(t − 1) ≤ c5e

−σt, t > t0 + 1.

By Lemma 3.2, we can find C ′
1, λ1 > 0 such that

‖u − u∗‖∞ + ‖v − v∗‖∞ + ‖w − w∗‖∞ ≤ C ′
1e

−λ1t, t > t0 + 2.

Thus (1.9) holds, and the proof is complete. �

3.2. Global stability of (0, ṽ, w̃): Proof of Theorem 1.4

Throughout this subsection, we always assume that A ≤ 0, B > 0, a2 < b2, and (u, v, w) is a bounded
global classical solution of (1.5) and (1.11) holds. Constants ṽ, w̃ are given by (1.10).
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Lemma 3.5. Assume a1 ≥ b1w̃. Then there is ε > 0 such that functions E2(t), F2(t) defined by

E2(t) =
∫
Ω

[
1
b1

u +
1
b2

(
v − ṽ − ṽ ln

v

ṽ

)
+ w − w̃ − w̃ ln

w

w̃

]
dx,

F2(t) =
∫
Ω

[
u2 + (v − ṽ)2 + (w − w̃)2 + |∇w|2]dx

satisfies

E′
2(t) ≤ −εF2(t) −

(
a1

b1
− w̃

) ∫
Ω

udx, t > 0. (3.11)

Proof. Similar to the proof of Lemma 3.3, by a series of calculations we can get

E′
2(t) ≤ I3(t) + I4(t) −

(
a1

b1
− w̃

)∫
Ω

udx,

where

I3(t) =
∫
Ω

(
ṽ

b2
φ2(w)

∇v

v
· ∇w − ṽ

b2

|∇v|2
v2

− dw̃
|∇w|2

w2

)
dx,

I4(t) = −
∫
Ω

(
1
b1

u2 +
1
b2

(v − ṽ)2 + q(w − w̃)2
)

dx.

Let ε1 = min{1/b1, 1/b2, q}. Then

I4(t) ≤ −ε1

∫
Ω

[
u2 + (v − ṽ)2 + (w − w̃)2

]
dx. (3.12)

In treating I3(t), we apply Young’s inequality and (2.1) to derive that

I3(t) ≤
∫
Ω

(
− ṽ

b2

|∇v|2
v2

+
L2ṽ

b2

|∇v · ∇w|
v

− dw̃

m2
|∇w|2

)
dx

≤ −
(

dw̃

m2
− L2

2ṽ

4b2

)∫
Ω

|∇w|2dx

:= −ε2

∫
Ω

|∇w|2dx,

where m = max{‖w0‖∞, 1} and L2 = ‖φ2‖L∞(0,m). By (1.11), ε2 > 0. This combines with (3.12) gives
(3.11). �

Proof of Theorem 1.4 (i). Suppose that a1 > b1w̃. Remember that (u, v, w) is a global bounded solution
of (1.5). By the same argument as in Lemma 3.4 we can get

‖u‖∞ + ‖v − ṽ‖∞ + ‖w − w̃‖∞ → 0 as t → 0. (3.13)
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Using the fact lim
y→0

y
y2+y = 1, we assert that there exists t0 > 0 such that

1
2

∫
Ω

u2dx +
1
2

∫
Ω

udx ≤
∫
Ω

udx ≤ 2
∫
Ω

u2dx + 2
∫
Ω

udx, t > t1, (3.14)

1
4ṽ

∫
Ω

(v − ṽ)2dx ≤
∫
Ω

(
v − ṽ − ṽ ln

v

ṽ

)
dx ≤ 1

ṽ

∫
Ω

(v − ṽ)2dx, t > t0, (3.15)

1
4w̃

∫
Ω

(w − w̃)2dx ≤
∫
Ω

(
w − w̃ − w̃ ln

w

w̃

)
dx ≤ 1

w̃

∫
Ω

(w − w̃)2dx, t > t0. (3.16)

In view of the definitions of E2(t), F2(t) and the right inequalities in (3.14)–(3.16), we get

E2(t) ≤ c1

⎛
⎝F2(t) +

∫
Ω

udx

⎞
⎠ , t > t0,

where c1 = max
{
2/b1, 1/(b2ṽ), 1/w̃

}
. It follows that

− F2(t) ≤ −E2(t)
c1

+
∫
Ω

udx, t > t0. (3.17)

Note that a1 > b1w̃, without loss of generality we can choose ε < a1/b1 − w̃ in inequality (3.11). Plugging
(3.17) into (3.11) we get

E′
2(t) ≤ −εF2(t) −

(
a1

b1
− w̃

)∫
Ω

udx

≤ − ε

c1
E2(t) −

(
a1

b1
− w̃ − ε

) ∫
Ω

udx

≤ − ε

c1
E2(t), t > t0.

This implies that there exist c2, σ > 0 such that E2(t) ≤ c2e
−σt for t > t0. Hence, by the left inequalities

in (3.14)–(3.16) we have∫
Ω

[
u2 + (v − ṽ)2 + (w − w̃)2

]
dx ≤ c3E2(t) ≤ c4e

−σt, t > t0

with some c3, c4 > 0. Moreover,

t∫
t−1

∫
Ω

|∇w|2dxds ≤
t∫

t−1

F2(s)ds ≤ −1
ε

t∫
t−1

d

ds
E2(s)ds

≤ 1
ε
E2(t − 1) ≤ c5e

−σt, t > t0 + 1

with some c5 > 0. In light of Lemma 3.2, there exists C ′
2, λ2 > 0 such that

‖u‖∞ + ‖v − ṽ‖∞ + ‖w − w̃‖∞ ≤ C ′
2e

−λ2t, t > t0 + 2.

This implies (1.12). Theorem 1.4 (i) is proved. �
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Proof of Theorem 1.4 (ii). Suppose a1 = b1w̃. In this case, we have (a1 −b1w̃)
∫
Ω

udx = 0. And so, (3.13)–

(3.16) hold. Let E2(t), F2(t) be given by Lemma 3.5, and t0 > 0 be as in the proof of Theorem 1.4 (i).
Using (3.15) and (3.16) firstly, and the boundedness of (u, v, w) secondly, we can find c6 > 0 such that

E2(t) ≤ 1
b1

∫
Ω

udx +
1

b2ṽ

∫
Ω

(v − ṽ)2dx +
1
w̃

∫
Ω

(w − w̃)2dx

≤ c6

⎛
⎝∫

Ω

u2dx

⎞
⎠

1/2

+ c6

⎛
⎝∫

Ω

(v − ṽ)2dx

⎞
⎠

1/2

+ c6

⎛
⎝∫

Ω

(w − w̃)2dx

⎞
⎠

1/2

≤
√

3c6

⎛
⎝∫

Ω

[
u2 + (v − ṽ)2 + (w − w̃)2

]
dx

⎞
⎠

1/2

= c6

√
3F2(t), t > t0.

This combined with (3.11) enable us to find c7 > 0 fulfilling E′
2(t) ≤ −c7E2(t)2 for t > t0. Therefore,

E2(t) ≤ c8
t+1 for t > t0 and some c8 > 0. Hence, we obtain by the left inequalities in (3.14)–(3.16) that

there exists c9 > 0 such that∫
Ω

[
u2 + (v − ṽ)2 + (w − w̃)2

]
dx ≤ c9E2(t) ≤ c8c9

t + 1
, t > t0.

On the other hand, it follows from (3.11) that

t∫
t−1

∫
Ω

|∇w|2 ≤
t∫

t−1

F2(t) ≤ −1
ε

t∫
t−1

d
ds

E2(s)

≤ 1
ε
E2(t − 1) ≤ c10

ε(t + 1)
t > t0 + 1

with some c10 > 0. Recall that (u, v, w) is a global bounded solution of (1.5). In view of Lemma 3.2, there
exists C ′

3, λ3 > 0 such that

‖u‖∞ + ‖v − ṽ‖∞ + ‖w − w̃‖∞ ≤ C ′
3(t + 1)−λ3 , t > t0 + 2.

This implies (1.13) and the proof of Theorem 1.4 (ii) is complete. �

3.3. Global stability of the prey-only steady state: proof of Theorem 1.6

Lemma 3.6. Let bi ≤ ai, i = 1, 2, and (u, v, w) be a bounded global classical solution of (1.5). Then there
is 0 < ε < min

{
(a1 − b1)/b1, (a2 − b2)/b2

}
such that the nonnegative functions E3(t) and F3(t) defined

by

E3(t) =
∫
Ω

(
1
b1

u +
1
b2

v + w − 1 − ln w

)
dx,

F3(t) =
∫
Ω

(
u2 + v2 + (w − 1)2 + |∇w|2)dx
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satisfies

E′
3(t) ≤ −εF3(t) −

∫
Ω

(
a1 − b1

b1
u +

a2 − b2

b2
v

)
dx, t > 0. (3.18)

Proof. Similar to the proof of Lemma 3.3, by a series of carefully calculations we have

E′
3(t) = −

∫
Ω

(
d
|∇w|2

w2
+

u2

b1
+

v2

b2
+ q(w − 1)2

)
dx −

∫
Ω

(
a1 − b1

b1
u +

a2 − b2

b2
v

)
dx.

Remember 0 < w ≤ m. Take 0 < ε < min
i=1,2

{(ai − bi)/bi, 1/bi, q, d/m2}, then (3.18) is followed. �

Proof of Theorem 1.6 (i). Assume that bi < ai, i = 1, 2, and (u, v, w) is a bounded global classical
solution of (1.5). Similar to the proof of Lemma 3.4, we have ‖u‖∞ + ‖v‖∞ + ‖w − 1‖∞ → 0 as t → 0.
The same as the proof of Theorem 1.4 (i), there exists t0 > 0 such that

1
2

∫
Ω

u2dx +
1
2

∫
Ω

udx ≤
∫
Ω

udx ≤ 2
∫
Ω

u2dx + 2
∫
Ω

udx, t > t0, (3.19)

1
2

∫
Ω

v2dx +
1
2

∫
Ω

vdx ≤
∫
Ω

vdx ≤ 2
∫
Ω

v2dx + 2
∫
Ω

vdx, t > t0, (3.20)

1
4

∫
Ω

(w − 1)2dx ≤
∫
Ω

(w − 1 − ln w) dx ≤
∫
Ω

(w − 1)2dx, t > t0. (3.21)

In view of the definitions of E3(t), F3(t) and the right inequalities in (3.19)–(3.21), we get

E3(t) ≤ c1

⎛
⎝F3(t) +

∫
Ω

(u + v)dx

⎞
⎠ , t > t0,

where c1 = 2max
{
1/b1, 1/b2, 1

}
. It follows that

− F3(t) ≤ −E3(t)
c1

+
∫
Ω

(u + v)dx, t > t0. (3.22)

Note that 0 < ε < min
{
(a1 − b1)/b1, (a2 − b2)/b2

}
. Plugging (3.22) into (3.18) we get

E′
3(t) ≤ −εF3(t) − a1 − b1

b1

∫
Ω

udx − a2 − b2

b2

∫
Ω

vdx

≤ − ε

c1
E3(t) −

(
a1 − b1

b1
− ε

) ∫
Ω

udx −
(

a2 − b2

b2
− ε

) ∫
Ω

vdx

≤ − ε

c1
E3(t), t > t0.

This implies that there exist c2, σ > 0 such that E3(t) ≤ c2e
−σt for t > t0. By the left inequalities in

(3.19)–(3.21) we have∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2dx ≤ c3E3(t) ≤ c4e
−σt, t > t0
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for some c3, c4 > 0. Moreover,

t∫
t−1

∫
Ω

|∇w|2dxds ≤
t∫

t−1

F3(s)ds ≤ −1
ε

t∫
t−1

d

ds
E3(s)ds

≤ 1
ε
E3(t − 1) ≤ c5e

−σt, t > t0 + 1

for some c5 > 0. Note that (u, v, w) is a global bounded solution of (1.5). In light of Lemma 3.2, there
exist C ′

6, λ6 > 0 such that

‖u‖∞ + ‖v‖∞ + ‖w − 1‖∞ ≤ C ′
6e

−λ6t, t > t0 + 2,

which implies (1.14). The proof of Theorem 1.6 (i) is complete. �

Proof of Theorem 1.6 (ii). Assume that bi = ai, i = 1, 2, and (u, v, w) is a bounded global classical
solution of (1.5). Let t0 > 0 be as in the proof of Theorem 1.6 (i). Using (3.21), the Cauchy–Schwarz
inequality and boundedness of (u, v, w) we can find c6 > 0 such that

E3(t) ≤ 1
b1

∫
Ω

udx +
1
b2

∫
Ω

vdx +
∫
Ω

(w − 1)2dx

≤ c6

⎛
⎝∫

Ω

u2dx

⎞
⎠

1/2

+ c6

⎛
⎝∫

Ω

v2dx

⎞
⎠

1/2

+ c6

⎛
⎝∫

Ω

(w − 1)2dx

⎞
⎠

1/2

≤
√

3c6

⎛
⎝∫

Ω

[
u2 + v2 + (w − 1)2

]
dx

⎞
⎠

1/2

= c6

√
3F3(t), t > t0.

This combined with (3.18) enable us to find c7 > 0 such that E′
3(t) ≤ −c7E

2
3(t) for t > t0. Thus,

E3(t) ≤ c8
t+1 for t > t0 and some c8 > 0. In view of the left inequalities in (3.19)–(3.21), we can find

c9 > 0 such that ∫
Ω

[
u2 + v2 + (w − 1)2

]
dx ≤ c9E3(t) ≤ c8c9

t + 1
, t > t0.

On the other hand, it follows from (3.18) that, for some c10 > 0,

t∫
t−1

∫
Ω

|∇w|2dxds ≤
t∫

t−1

F3(s)ds ≤ −1
ε

t∫
t−1

d

ds
E3(s)ds

≤ 1
ε
E3(t − 1) ≤ c10

ε(t + 1)
, t > t0 + 1.

Recall that (u, v, w) is a global bounded solution of (1.5). In view of Lemma 3.2, there exists C ′
7 > 0 and

λ7 > 0 such that

‖u‖∞ + ‖v‖∞ + ‖w − 1‖∞ ≤ C ′
7(t + 1)−λ7 , t > t0 + 2.

This implies (1.15) and the proof is finished. �
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4. Discussion

In this paper, we investigated the reaction–diffusion systems modeling the population dynamics of two
predators and one prey with nonlinear prey-taxis. The following realistic conclusions are obtained.

(i) When the dimension n ≤ 2 or the prey-tactic coefficients φ1(w) and φ2(w) are small, problem (1.2)
has a unique nonnegative and bounded global classical solution.

(ii) The global stabilities of the positive and semi-trivial spatially homogeneous equilibria and the con-
vergence rates are established.

The coefficients a1 and b1 represent the death rate and predation rate of the predator u, respectively
(a2 and b2 represent the death rate and predation rate of the predator v, respectively), and q is the
intrinsic birth rate of the prey w. The quantity a1b2 − a2b1 can be regarded as the difference of roles
(death rates and predation rates) of the two predators u and v on the systems.

The quantities

(b1 − a1)q + a2b1 − a1b2 > 0, (b2 − a2)q + a1b2 − a2b1 > 0

mean that the predator’s predation rates should be larger than their death rates, and the intrinsic
birth rate of the prey should be large enough. In this case, system (1.5) has a unique positive spatially
homogeneous equilibrium (u∗, v∗, w∗) and it is globally stable provided that the prey-tactic coefficients
φ1(w) and φ2(w) are small or the diffusion coefficient d of the prey is large.

The conditions

(b1 − a1)q + a2b1 − a1b2 ≤ 0, (b2 − a2)q + a1b2 − a2b1 > 0, a2 < b2

show that the role of the predator u is weaker than that of the predator v. In such a situation, the
predator u will eventually disappear, system (1.5) has a semi-trivial spatially homogeneous equilibrium
(0, ṽ, w̃) and it is globally stable if the prey-tactic coefficient φ2(w) is small or the diffusion coefficient d
of the prey is large.

Symmetrically, the conditions

(b1 − a1)q + a2b1 − a1b2 > 0, (b2 − a2)q + a1b2 − a2b1 ≤ 0, a1 < b1

show that the role of the predator v is weaker than that of the predator u. In such a situation, the
predator v will eventually disappear, system (1.5) has a semi-trivial spatially homogeneous equilibrium
(û, 0, ŵ) and it is globally stable if the prey-tactic coefficient φ1(w) is small or the diffusion coefficient d
of the prey is large.

The conditions bi ≤ ai, i = 1, 2 mean that the predator’s predation rates are less than their death
rates, and so the two predators will eventually disappear and the prey will stabilize at its unique positive
equilibrium state.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

References

[1] Ainseba, B.E., Bendahmane, M., Noussair, A.: A reaction–diffusion system modeling predator–prey with prey-taxis.
Nonlinear Anal. RWA 9, 2086–2105 (2008)

[2] Amann, H.: Dynamic theory of quasilinear parabolic equations II. Reaction–diffusion systems. Differ. Integral Equ.
3(1), 13–75 (1990)

[3] Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana
Univ. Math. J. 65, 553–583 (2016)



ZAMP Boundedness and global stability of the two-predator Page 23 of 24 63
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