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Abstract. We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that

accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange

and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving

generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corre-

sponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature

effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including

a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to

track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for

physical situations that could not be treated before.
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1. Introduction

The dynamics of an isothermal homogeneous fluid that can appear in either a liquid or a vapor phase is
governed by the compressible Euler equations for density and velocity provided that viscosity and heat
conduction effects are neglected. In this framework it is natural to consider a sharp interface approach
for the phase boundary which results in a mathematical model in the form of a free boundary value
problem. Let Ω ⊂ R

d with d ∈ N be an open, bounded set. For any t ∈ [0, θ], θ > 0, we assume that Ω is
portioned into the union of two open sets Ωvap(t) and Ωliq(t), which contain the two bulk phases and a
hypersurface Γ(t)—the sharp interface—that separates the two spatial bulk sets. In the spatial-temporal
bulk sets { (x, t) ∈ Ω × (0, θ) | x ∈ Ωvap(t) ∪ Ωliq(t) } we then have the hydromechanical system

�t + div(�v) = 0,
(�v)t + div (�v ⊗ v + p̃(�) I) = 0.

(1.1)

Here, � = �(x, t) > 0 denotes the unknown density field and v = v(x, t) = (v1(x, t), · · · , vd(x, t))
ᵀ ∈ R

d

the unknown velocity field. The pressure p̃ = p̃(�) is a given scalar function, and I ∈ R
d×d the d-

dimensional unit matrix.
Besides appropriate initial and boundary conditions it remains to provide coupling conditions at the

free boundary Γ(t). Let some ξ ∈ Γ(t) be given. We denote the speed of Γ(t) in the normal direction
n = n(ξ, t) ∈ S

d−1 by σ = σ(ξ, t) ∈ R. Throughout the paper the direction of the normal vector is always
chosen such that n points into the vapor domain Ωvap. Across the interface the following d + 1 trace
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conditions are imposed, which represent the conservation of mass and the balance of momentum in the
presence of capillary surface forces (see, e.g., [4]).

�� (v · n − σ)� = 0, (1.2)

�� (v · n − σ)v · n + p̃(�)� = (d − 1)ζ∗ κ, (1.3)
�
v · tl

�
= 0 (l = 1, . . . , d − 1). (1.4)

Thereby, we use �a� := avap − aliq and avap/liq := limε→0,ε>0 a(ξ ± εn) for some quantity a defined
in Ωvap(t) ∪ Ωliq(t). In (1.3) by κ = κ(ξ, t) ∈ R we denote the mean curvature of Γ(t) associated with
orientation given through the choice of the normal n. The surface tension coefficient ζ∗ ≥ 0 is assumed
to be constant, and t1, . . . , td−1 ∈ S

d−1 denote a complete set of vectors tangential to n.
We apply the concept of entropy solutions and seek for functions (�,v) that satisfy the entropy

condition E(�,v)t + div ((E(�,v) + p̃(�))v) ≤ 0 in the distributional sense in the bulk regions and

−σ (�E(�,v)� + (d − 1)ζ∗ κ) + �(E(�,v) + p̃(�))v · n� ≤ 0 (1.5)

at the interface. Here, we use E(�,v) = �ψ(1/�) + 1/2 � |v|2 and the Helmholtz free energy ψ defined
below in Definition 2.1. Note that (1.5) accounts for surface tension.

In addition to the coupling conditions (1.2), (1.3), (1.4), (1.5) the mass transfer across the phase
boundary has to be determined. In this paper we rely on the so-called kinetic relations [1,39]. In the
simplest case this results in an additional algebraic jump condition across Γ(t), which may be summarized
in

K(�liq,vliq, �vap,vvap) = 0. (1.6)

A local well-posedness result for the free boundary value problem (1.1)–(1.6) with a special kinetic rela-
tion (denoted in this paper as K2, see Sect. 5) has recently been proposed in [27]. Much more analytical
knowledge can be derived if we restrict ourselves to the local one-dimensional evolution in the normal
direction through some ξ ∈ Γ(t). Mathematically, this leads to the consideration of a generalized Rie-
mann problem for a mixed-type ensemble of conservation laws. Note that the local curvature κ(ξ, t)
enters the jump relation as a source term. We will present the precise setting and the corresponding
thermodynamical framework in Sect. 2.

Riemann problems for two-phase flows have been intensively studied in the last two decades (see
[29] for a general theory, [11,13,19,21,22,30,35] for specific examples and [9,23,36,37] for approximate
Riemann solvers). However, even in the isothermal case the theory is not yet complete. It is the first major
purpose of this paper to present a solution theory for generalized Riemann problems and computable
Riemann solvers such that physically more realistic scenarios can be analyzed. In particular, we will
follow the concept of monotone decreasing kinetic functions from [13] and generalize it accordingly
(see Theorem 3.8 for a well-posedness theorem and Algorithm 3.10 for a the Riemann solver). We point
out that the concept of monotone decreasing kinetic functions does not apply for any relevant kinetic
relation, and then Theorem 3.8 fails. Nevertheless, a solution of the Riemann problem might exist and
possibly can still be computed by Algorithm 3.10. In contrast to previous results from the literature the
new approach governs surface tension effects, allows for the so-called metastable input states and can be
applied to a much larger class of fluids via a general form for the equation of state. Even tabularized
equations can be used. Finally, we note that the smoothness assumptions on K in (1.6) are relaxed. This
allows to consider kinetic relations which exhibit a typical threshold behavior for entropy release.

In the second and third parts of the paper we present several analytical and numerical results that
can be achieved by the new Riemann solver.

In Sects. 4 and 5 we review physically relevant kinetic relations and analyze to what extent they can
be treated by the theory of monotone decreasing functions. In particular, we can classify all of them
according to their entropy dissipation rate. As a by-product it turns out that the classical Liu entropy
criterion can be understood as a limiting case for the kinetic relations [33]. A central part of our work is
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the comparison of exact solutions of Riemann problems for the selected kinetic relations. This theoretical
approach shows already the limitations of several suggestions from the literature.

To conclude Sect. 5, we validate the kinetic relations against data from shock tube experiments in
[38]. It turns out that the use of a kinetic relation that has been derived by density functional theory in
[28] gives excellent agreement with the measured data, while other choices fail.

Besides the obvious interest to understand Riemann problems from the analytic point of view, the
Riemann problem is essential for all numerical methods that rely on some kind of interface tracking (see
[10,15–18,24,34]). The tracking approach uses any finite volume or discontinuous Galerkin method as
powerful tool to solve (1.1) numerically in the bulk sets. Across the interface it requires special numerical
fluxes that can be computed from solving the generalized Riemann problem. We show in the final third
part of this contribution that it is possible to perform reliable and efficient computations for a wide variety
of scenarios with the new Riemann solver. In previous works the range of applicability was limited to
very special situations. Furthermore, the new exact solver enables us to validate a previously developed
approximate Riemann solver [36], which is based on relaxation techniques.

The results of this paper rely mainly on the PhD thesis of Christoph Zeiler [40].

2. The two-phase Riemann problem

2.1. Preliminaries and two-phase thermodynamics

We denote the specific volume by τ = 1/�, and we fix the thermodynamic framework in terms of τ .
Note that the temperature T > 0 is fixed in the sequel. Therefore, we will suppress the dependence on
temperature for all thermodynamical quantities. We assume that the thermodynamic framework holds
for the rest of the paper. For some thermodynamical quantity a we have defined its trace jump �a� across
the interface already after (1.2)–(1.4); similarly, we define the mean

{a} :=
1
2

(
avap + aliq

)
, avap/liq := lim

ε→0,ε>0
a(ξ ± εn).

Definition 2.1. The functions p = p(τ), ψ = ψ(τ), μ = μ(τ) with

p(τ) = −ψ′(τ) and μ(τ) = ψ(τ) + p(τ) τ (2.1)

are called (two-phase) pressure, specific Helmholtz free energy and specific Gibbs free energy,
if there are numbers τmin

liq , τmax
liq , τmin

vap , ζmin, ζmax ∈ R with

0 < τmin
liq < τmax

liq < τmin
vap , ζmin < 0 < ζmax,

such that the following conditions hold for any ζ ∈ (ζmin, ζmax):

p ∈ C2 (Aliq ∪ Avap,R) , ψ, μ ∈ C3 (Aliq ∪ Avap,R) , (2.2)

p′ < 0 in Aliq ∪ Avap, (2.3)

p′′ > 0 in Aliq ∪ Avap, (2.4)

∃ τ sat
liq (ζ) ∈ Aliq, τ

sat
vap(ζ) ∈ Avap :

{
p(τ sat

vap) − p(τ sat
liq ) = ζ,

μ(τ sat
vap) − μ(τ sat

liq ) = 0,
(2.5)

p(τ) → ∞ for τ → τmin
liq , (2.6)

∀τliq ∈ Aliq, τvap ∈ Avap : p′(τliq) < p′(τvap), (2.7)

lim
R→∞

R∫

τmin
vap

c(τ) d τ = ∞ with c(τ) :=
√

−p′(τ). (2.8)
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Fig. 1. Left: prototypical example of a pressure function. Right: van der Waals pressure of Example 2.3

The intervals Aliq := (τmin
liq , τmax

liq ) and Avap := (τmin
vap ,∞) are called the liquid phase and the vapor

phase, and Aliq ∪ Avap is called admissible set of specific volume values.
Furthermore, we define Z := (ζmin, ζmax).

Note that p is monotone decreasing and convex in both phases, see Fig. 1(left) for some illustration.
The interval [τmax

liq , τmin
vap ] is excluded from our studies as a set of unphysical states. In fact, (1.1) becomes

ill-posed for specific volumes in [τmax
liq , τmin

vap ]. The number ζ ∈ Z is prescribed through ζ = (d − 1)ζ∗ κ in
any application and thus linked to the given curvature κ which can take any value. The restriction of ζ
to the interval Z limits our well-posedness theory to mildly curved interfaces only.

Remark 2.2. In the momentum balance (1.3) the surface tension ζ∗ is assumed to be constant. Although
this is reasonable in the isothermal setting it is interesting to consider situations where ζ∗ depends directly
on state variables, e.g., if surfactant effects on Γ become important. Then, like in the bulk domains, Γ
itself is equipped with a full set of state variables (associated with the surfactant, for instance). In the
framework of compressible fluids a thermodynamically consistent derivation of such models can be found,
e.g., in [3]. Taking interface state variables into account means to have jump conditions involving three
quantities (two bulk quantities plus one interface quantity). It is not clear how one can handle the mass
and momentum exchange between these three quantities and how one can integrate these into the Lax
curve approach. The latter technique will be used for solving Riemann problems in Sects. 3 and 4 below.

The pair
(
τ sat
liq (ζ), τ sat

vap(ζ)
)

∈ Aliq ×Avap in hypothesis (2.5) is called pair of saturation states and
depends on ζ ∈ Z. These states are attained in the thermodynamic equilibrium, i.e.,

pvap − pliq = (d − 1)ζ∗ κ, μvap = μliq. (2.9)

The sets (τ sat
liq , τmax

liq ) and (τmin
vap , τ sat

vap) are called metastable liquid and metastable vapor phases, while
the sets (τmin

liq , τ sat
liq ], [τ sat

vap,∞) are called stable (liquid/vapor) phases. Specific volume values belonging
to these sets are called (liquid/vapor) metastable or stable states.

Hypotheses (2.4), (2.6) and (2.7) limit the amount of possible wave configurations of the solution to
Riemann problems. In (2.6) it is assumed that there is a minimal molecular distance where the liquid
cannot be compressed further. Equation (2.7) is natural because the sound speed in the liquid phase of
a fluid is usually much higher than in the vapor phase. Hypothesis (2.8) excludes the case of vacuum.
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Equations of state have to be determined, e.g., by experimental measurements. However, for a simple
model fluid that occurs in a liquid and a vapor phase we may consider the following explicit form such
that all conditions of Definition 2.1 are satisfied.

Example 2.3. (van der Waals equation of state) The van der Waals equations of state are given by
the pressure function

p(τ) =
R T

τ − τmin
liq

− a

τ2
, (2.10)

with positive constants a, τmin
liq , R for τ > τmin

liq and corresponding specific Helmholtz and Gibbs free
energy functions according to (2.1). The function is monotone decreasing for (fixed) temperature T ≥ Tc,
where Tc = 8 a/(27R τmin

liq ) is the critical temperature. Below the critical temperature there are two
decreasing parts which determine the phases, see Fig. 1(right). The increasing part in between is called
elliptic or spinodal phase.

The van der Waals equations of state are defined for all τ ∈ (τmin
liq ,∞). They fulfill Definition 2.1

for temperature values below Tc. One has basically to constrain the admissible set Aliq ∪ Avap to the
convex parts of p, see Fig. 1 (right) for an illustration. Thus, the spinodal phase is a subset of the interval
[τmax

liq , τmin
vap ].

The parameters for the graphs in Fig. 1 and, e.g., Example 3.11 are

a = 3, τmin
liq =

1
3
, R =

8
3

and T = 0.85. (2.11)

The critical temperature for these numbers is Tc = 1. In order to fulfill the conditions above we consider
(2.10) only for τ ∈ Aliq ∪ Avap with Aliq = (1/3, 0.6) and Avap = (2.5,∞).

2.2. Formulation of the two-phase Riemann problem

The jump condition (1.4) shows that the tangential part of the velocity field is independent of the field
in normal direction. Therefore, it is reasonable to consider a formally one-dimensional problem in normal
direction to the interface Γ(t). We pose the Riemann initial states

(
�

v · n

)
(x, 0) =

{
(1/τL, vL)

ᵀ
for x ≤ 0,

(1/τR, vR)
ᵀ

for x > 0,
(2.12)

and τL ∈ Aliq, τR ∈ Avap, vL, vR ∈ R, x = (x − ξ) · n.
We keep in mind that the original problem remains multidimensional in the sense that the local

momentum balance (1.3) depends on surface tension. However, we solve the Riemann problem for given
constant curvature κ, such that the results can only be meaningful locally in time, but see Sect. 6 on the
use of Riemann solvers within numerical tracking schemes.

It is more convenient to switch to Lagrangian coordinates from now on. Using Lagrangian coordinates
(ξ, t) the task is to find specific volume and velocity fields τ = τ(ξ, t) > 0 and v = v(ξ, t) ∈ R, such that

(
τ
v

)

t

+
( −v

p(τ)

)

ξ

=
(

0
0

)
(2.13)

holds in the bulk domain and

s �τ� + �v� = 0, −s �v� + �p(τ)� = ζ (2.14)

at the interface. Here, p = p(τ) is the pressure as in Definition 2.1, s the speed of the phase boundary in
Lagrangian coordinates, and ζ := (d − 1) ζ∗ κ the constant surface tension term. The Lagrangian speed



76 Page 6 of 40 C. Rohde and C. Zeiler ZAMP

s is linked to the mass flux in Eulerian coordinates j := �liq(vliq · n − σ) = �vap(vvap · n − σ) via the
formula

s = −j. (2.15)

In particular, we are interested in weak solutions U = (τ, v)
ᵀ

of (2.13) that satisfy (2.14) and the entropy
condition (ψ(τ) + 1

2v2)t + (p(τ) v)ξ ≤ 0 in the distributional sense in the bulk set and

−s (�ψ(τ)� + �τ� {p(τ)} + ζ {τ}) ≤ 0, (2.16)

at the interface, where {p} denotes the mean as defined at the beginning of this section. Note that (2.16)
is the interfacial entropy condition (1.5) in Lagrangian coordinates.

For U = (τ, v)
ᵀ

and f(U) = (−v, p(τ))
ᵀ

system (2.13) can be written in conservation form Ut +
f(U)ξ = 0. The eigenvalues of f are

λ1(τ) = −c(τ), λ2(τ) = c(τ), (2.17)

where c = c(τ) is the sound speed in Lagrangian coordinates (see (2.8)).

3. Two-phase Riemann solvers for monotone decreasing kinetic functions

Colombo and Priuli introduced in [13] exact solutions of the Riemann problem for the two-phase p-system
with homogeneous Rankine–Hugoniot conditions (ζ ≡ 0). The solutions are only given for initial states
in stable phases. However, the limitation to initial states in stable phases is inappropriate, e.g., for the
interfacial flux computation (see Sect. 6). Note also that static solutions correspond to saturation states
and appear at least locally in most scenarios. Thus, two-phase Riemann solvers have to handle initial
states in the vicinity of saturation states, which are stable and metastable states.

In this section we extend the theory in [13] for the case with surface tension and for initial data in
metastable phases. Theorem 3.8 presents the well-posedness results. We stress that this approach relies
on kinetic relations that take the form of monotone decreasing kinetic functions (Definition 3.1).

Section 3.2 introduces the algorithm of the corresponding Riemann solver for given kinetic functions.
Note that our implementation allows for equations of state that are provided by external thermodynamical
libraries like [5]. In this section the (monotone decreasing) kinetic functions are not specified. Physically
relevant examples for such functions and a detailed study on their properties follow in Sect. 4.

3.1. Solving the two-phase Riemann problem exactly

Let now a constant surface tension term ζ ∈ Z be given. The required additional condition to attain
unique solutions is kinetic functions. Later on, subsonic phase boundaries are constrained to those which
are related to a kinetic function.

A discontinuous wave

U(ξ, t) =

{
Uliq for ξ − s t ≤ 0,

Uvap for ξ − s t > 0
(3.1)

of speed s ∈ R that connects a left state Uliq = (τliq, vliq)
ᵀ ∈ Aliq × R and a right state Uvap =

(τvap, vvap)
ᵀ ∈ Avap × R is called phase boundary if it satisfies the entropy condition (2.16). It follows

from (2.14) that phase boundaries propagate with speed

se(τliq, τvap) = −
√

ζ − p(τvap) + p(τliq)
τvap − τliq

or sc(τliq, τvap) =

√
ζ − p(τvap) + p(τliq)

τvap − τliq
. (3.2)



ZAMP On Riemann solvers and kinetic relations Page 7 of 40 76

The subscript e stands for evaporation and c for condensation. The shock speeds in (3.2) make only
sense if the roots are real. Therefore, we will assure in the subsequent analysis that any phase boundary
connecting τliq with τvap is such that ζ − p(τvap) + p(τliq) ≥ 0 holds. This restricts the possible range of
specific volume values to τliq ∈ (τmin

liq , τ sat
liq (ζ)], τvap ∈ [τ sat

vap(ζ),∞), see Definition 2.1. A phase boundary
with negative speed is called an evaporation wave, and a phase boundary with positive speed is called
a condensation wave.

Furthermore, we have for evaporation waves vvap = vliq + P (τliq, τvap) and for condensation waves
vvap = vliq − P (τliq, τvap), where

P (τliq, τvap) = sign(τvap − τliq)
√

(τvap − τliq) (ζ − p(τvap) + p(τliq)). (3.3)

An evaporation wave (condensation wave) is called subsonic if there holds

|se(τliq, τvap)| < c(τvap), ( |sc(τliq, τvap)| < c(τvap) ), (3.4)

and sonic if (3.4) holds with equal sign. Phase boundaries that satisfy (3.4) are undercompressive shock
waves, cf. [29]. Note that these waves violate the Lax entropy condition

λ1(τliq) > sc(τliq, τvap) > λ1(τvap), λ2(τliq) > se(τliq, τvap) > λ2(τvap). (3.5)

Self-similar solutions of two-phase Riemann problem are composed of bulk rarefaction waves, bulk shock
waves and phase boundaries. For brevity we introduce for states τl, τr in one-phase bulk elementary waves.
An elementary wave is either a bulk rarefaction wave or a bulk shock wave of Lax type and satisfies

vr =

{
vl + E(τl, τr) if i = 1,

vl − E(τl, τr) if i = 2
for E(τl, τr) =

{
R(τl, τr) if i = 1 and τl < τr or i = 2 and τl > τr,

S(τl, τr) else,
(3.6)

with

R(τl, τr) :=

τr∫

τl

√
−p′(τ) d τ, S(τl, τr) := sign(τr − τl)

√
−(τr − τl) (p(τr) − p(τl)). (3.7)

Definition 3.1. (Pair of monotone decreasing kinetic functions) Let the fixed surface tension term ζ ∈ Z,
corresponding equations of state from Definition 2.1, numbers τ sc

liq ∈ (τmin
liq , τ sat

liq ), τ se
vap ∈ (τmin

vap ,∞) and
two differentiable functions

kc : [τ sc
liq, τ

sat
liq ] → Avap and ke : [τ sat

vap, τ se
vap] → Aliq

be given.
We call (kc, ke) a pair of monotone decreasing kinetic functions if k′

c ≤ 0, k′
e ≤ 0 and the

following conditions are satisfied

�ψ(τ)� + �τ� {p(τ)} + ζ {τ}
{

≥ 0 for all τliq ∈ [τ sc
liq, τ

sat
liq ], τvap = kc(τliq),

≤ 0 for all τvap ∈ [τ sat
vap, τ se

vap], τliq = ke(τvap)
(3.8)

with �τ� = τvap − τliq and {τ} = 1
2 (τliq + τvap) and

kc(τ sat
liq ) = τ sat

vap, kc(τ sc
liq) = τ sc

vap,
∣∣sc(τ sc

liq, τ
sc
vap)

∣∣ = c(τ sc
vap),

ke(τ sat
vap) = τ sat

liq , ke(τ se
vap) = τ se

liq,
∣∣se(τ se

liq, τ
se
vap)

∣∣ = c(τ se
vap), k′

e(τ
se
vap) = 0.

Note that sonic phase boundaries are determined by the end states τ sc
liq, τ sc

vap resp. τ se
vap = τ se

liq. The
superscripts sc and se stand for sonic condensation and sonic evaporation, respectively.

We will consider pairs of monotone decreasing kinetic functions in order to single out a unique two-
phase Riemann solution. Examples of such functions will be given in Sect. 4.
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Table 1. Definition of the map L1 : Aliq × Aliq ∪ [τ sat
vap, ∞) → R that determines the Lax curve v∗ = vL + L1(τL, τ∗) of

the first family. The resulting (multiple) waves for left and right trace specific volume values τL and τ∗ are composed of
the waves given in the fourth column (from left to right): 1E stands for 1-elementary wave, 1R stands for 1-rarefaction

wave, KE stands for subsonic evaporation wave that is related to a kinetic function, and SE stands for sonic evaporation.
The functions E, P and R are given in (3.6), (3.3) and (3.7), respectively. The interface states are given by the last two

columns

Type τL τ∗ Composition L1(τL, τ∗) τliq τvap
1L Aliq Aliq 1E E(τL, τ∗) – –

2L Aliq [τ sat
vap, τ se

vap] 1E-KE E(τL, ke(τ∗)) + P (ke(τ∗), τ∗) ke(τ∗) τ∗

3L Aliq (τ se
vap, ∞) 1E-SE-1R E(τL, τ se

liq) + P (τ se
liq, τ se

vap) + R(τ se
vap, τ∗) τ se

liq τ se
vap

Definition 3.2. (Admissible phase boundary) A phase boundary that connects a left state Uliq =
(τliq, vliq)

ᵀ ∈ Aliq × R and a right state Uvap = (τvap, vvap)
ᵀ ∈ Avap × R is called admissible phase

boundary if and only if either

• it is a sonic or a supersonic wave of Lax type (3.5), or
• it is a subsonic condensation wave that satisfies kc(τliq) = τvap, or
• it is a subsonic evaporation wave that satisfies ke(τvap) = τliq,

where kc and ke are a pair of monotone decreasing kinetic functions as in Definition 3.1.

Note that it follows with (3.8) that all admissible phase boundaries satisfy the entropy inequality
(2.16). Furthermore, thermodynamic equilibrium solutions (discontinuous waves (3.1) with Ul =
(τ sat

liq (ζ), 0)
ᵀ
, Ur = (τ sat

vap(ζ), 0)
ᵀ
) are admissible subsonic phase boundaries.

We seek for a self-similar entropy solutions of the two-phase Riemann problem that contains exactly one
admissible phase boundary. Furthermore, we prefer solutions with subsonic phase boundaries, whenever
this is possible. We call such a solution (admissible) two-phase Riemann solution.

It is possible to define generalized Lax curves for these requirements. The Lax curve v∗ = vL +
L1(τL, τ∗) of the first family is given in Table 1. The structure changes depending on the arguments τL

and τ∗. We enumerate the different wave patterns with the symbols of the first column in the table.
The subscript L indicates that the wave connects the left initial state (τL, vL)

ᵀ
to an intermediate state

(τ∗, v∗)
ᵀ
.

Figure 2 shows a wave of type 2L and a wave of type 3L where we used

Fig. 2. The sketch on the left-hand side shows the graph of the pressure function (3.9). The τ -values where the Lax curve
of the first family alters its wave structure are marked with a dot. The red curve corresponds to wave type 2L, and the blue
curve to wave type 3L. The figure on the right-hand side shows these waves at time t = 1 in the (τ, ξ)-plane. Note that the
surface tension quantity ζ is set to zero here (color figure online)
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p(τ) =

{
2/τ + 1 : τ ∈ (0, 2/3),
20/τ − 1 : τ ∈ (3,∞)

with τ sat
liq = 1/2, τ sat

vap = 10/3. (3.9)

The equation of state (3.9) was chosen in order to visualize wave patterns more clearly.
We summarize the main properties in a proposition.

Proposition 3.3. (Properties of the generalized Lax curve L1) Let a left state (τL, vL)
ᵀ ∈ Aliq ×R and the

map L1 : Aliq × Aliq ∪ [τ sat
vap,∞) → R in Table 1 be given. Then the following properties hold.

(i) The map L1 is continuous.
(ii) The map

Aliq ∪ [τ sat
vap,∞) → R, τ∗ → v∗ = vL + L1(τL, τ∗)

is differentiable and strictly monotone increasing in Aliq and in [τ sat
vap,∞).

(iii) It holds that L1(τL, τ sat
liq ) = L1(τL, τ sat

vap).
(iv) All propagation speeds (se, λ1) are negative. For waves of type 2L and type 3L the phase boundary

propagates faster than the elementary wave in the liquid phase and slower than the rarefaction wave
connecting to τ∗ in wave type 3L.

(v) Evaporation waves are either subsonic or sonic.
(vi) The speed of an evaporation wave is limited by the sound speed −c(τ se

vap).

Proof. (i) By definition, the map L1 is piecewise continuous. It is readily checked with Table 1 that also
the transition from one domain of definition to another is continuous.

(ii) Note that L1 is piecewise smooth. The critical point is τ∗ = τ se
vap. A short calculation gives

lim
τ∗→τse

vap

d S

d τ∗ (τL, ke(τ∗)) = 0, lim
τ∗→τse

vap

dR

d τ∗ (τL, ke(τ∗)) = 0 with k′
e(τ

se
vap) = 0,

lim
τ∗→τse

vap

d S

d τ∗ (τ se
vap, τ∗) = c(τ se

vap), lim
τ∗→τse

vap

dR

d τ∗ (τ se
vap, τ∗) = c(τ se

vap) and

lim
τ∗→τse

vap

dP

d τ
(ke(τ∗), τ∗) = c(τ se

vap) with k′
e(τ

se
vap) = 0 and

∣∣se(τ sc
liq, τ

sc
vap)

∣∣ = c(τ sc
vap)

for the functions S, R and P , from (3.7) and (3.3). Thus, the derivatives of a wave of type 2L and type 3L

coincide in τ se
vap. The functions S and R are strictly monotone increasing with respect to the second

argument. A short calculation shows that L1 is strictly monotone increasing also for a wave of type 2L

since k′
e < 0.

(iii) The condition holds because P (τ sat
liq , τ sat

vap) = 0.
(iv)-(vi) By definition, all waves of the first family have non-positive propagation speeds. The speed

of the evaporation wave is in [−c(τ se
vap), 0]. Due to the pressure assumptions (Definition 2.1), waves in

the liquid phase propagate faster (in absolute values) than the vapor sound speed. The phase boundary
in wave type 3L is sonic, and the vapor rarefaction wave is attached. �

The generalized Lax curve of the second family may contain a condensation wave. Condensation waves
change from subsonic to supersonic or vice versa in the point τ sc

liq. The next lemmas introduce further
points in Aliq ∪ Avap where the solution changes its structure. The lemmas are a direct consequence of
the pressure assumptions in Definition 2.1.

The first lemma states that phase boundaries move slower than sound in the liquid phase. In terms of
the pressure this means that the slope of p in an arbitrary τliq ∈ Aliq is steeper as the slope of the chord
from (τliq, p(τliq) + ζ) to (τvap, p(τvap)), for any τvap ∈ Avap.

Lemma 3.4. (Sound in the liquid travels faster than phase boundaries) Let the pressure function p :
Aliq ∪ Avap → R of Definition 2.1 be given.
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Fig. 3. Pressure function (left) and specific volume distribution (right) as shown in Fig. 2. The red curve corresponds to
wave type 4R, and the blue curve to wave type 3R. Again, we have chosen ζ = 0 (color figure online)

For all τliq ∈ Aliq and τvap ∈ Avap it holds that

p′(τliq) <
p(τvap) − p(τliq) − ζ

τvap − τliq
,

or equivalently c(τliq) >
∣∣se/c(τliq, τvap)

∣∣.
Proof. Consider first the case τliq = τ sat

liq . Define f(τ) := p′(τmax
liq ) (τ − τmax

liq ) + p(τmax
liq ) + ζ − p(τ). Due

to (2.3) and (2.5) the inequality f(τmin
vap ) < 0 holds, and due to (2.7) we have f ′(τmin

vap ) < 0. With (2.4) it
follows

p(τvap) > p(τmax
liq ) + ζ + p′(τmax

liq )(τvap − τmax
liq )

= p(τmax
liq ) + ζ + p′(τmax

liq )(τliq − τmax
liq ) + p′(τmax

liq )(τvap − τliq)
> p(τliq) + ζ + p′(τliq)(τvap − τliq).

�

The subsequent lemmas introduce values τ̂ , τ̌ and a function gs. The value τ̂ is such that the pressure
function has the same slope in τR as the chord from (τ̂ , p(τ̂) + ζ) to (τR, p(τR)), see Fig. 3(left) for
illustration. The value τ̌ is such that the points (τ̌ , p(τ̌)+ζ), (τ sat

vap, p(τ sat
vap)), (τR, p(τR)) lie on one straight

line. The function gs is determined such that the pressure function has the same slope in gs(τ) as the
chord from (τ, p(τ) + ζ) to (gs(τ), p(gs(τ))), see Fig. 3(left).

For ease of notation, we skip the dependencies on numbers that are constant for two-phase Riemann
problems, i.e., τL ∈ Aliq, τR ∈ Avap and ζ ∈ Z. Recall that the pressure function and saturation states
depend on the constant ζ, see Definition 2.1

Lemma 3.5. (The values τ̂ and τ̌) For a fixed τR ∈ (τmin
vap , τ sc

vap] there exists a unique τ̂ ∈ Aliq, such that

p′(τR) =
p(τR) − p(τ̂) − ζ

τR − τ̂
, (3.10)

or equivalently λ2(τR) = sc(τ̂ , τR) holds. Moreover, τ̂ ∈ (τmin
liq , τ sc

liq].
On the other hand, for fixed τR > τ sc

vap, there exists a unique τ̌ ∈ Aliq, such that

p(kc(τ̌)) − p(τ̌) − ζ

kc(τ̌) − τ̌
=

p(τR) − p(τ̌) − ζ

τR − τ̌
,

or equivalently sc(τ̌ , kc(τ̌)) = sc(τ̌ , τR) holds. Moreover, τ̌ ∈ (τ sc
liq, τ

sat
liq ).
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Table 2. Definition of the map L2 : (τmin
liq , τ sat

liq ] ∪ Avap × Avap → R that determines the Lax curve v∗ = vR + L2(τ∗, τR)

of the second family. The resulting (multiple) waves for left and right trace specific volume values τ∗ and τR are composed
of the waves given in the fourth column (from left to right): 2E stands for 2-elementary wave, SC for sonic condensation,

LC for supersonic (Lax-type) condensation, and KC for a condensation wave that is related to a kinetic function. The
functions E, P , R and S are given in (3.6), (3.3) and (3.7). The interface states are given by the last two columns

Type τ∗ τR Composition L2(τ∗, τR) τliq τvap
1R Avap Avap 2E E(τ∗, τR) – –

2R (τmin
liq , τ̂ ] (τmin

vap , τ sc
vap] LC P (τ∗, τR) τ∗ τR

3R (τ̂ , τ sc
liq) (τmin

vap , τ sc
vap] SC-2R P (τ∗, gs(τ∗)) + R(gs(τ∗), τR) τ∗ gs(τ∗)

4R [τ sc
liq, τ sat

liq ] (τmin
vap , τ sc

vap] KC-2E P (τ∗, kc(τ∗)) + E(kc(τ∗), τR) τ∗ kc(τ∗)

5R (τmin
liq , τ̌ ] (τ sc

vap, ∞) LC P (τ∗, τR) τ∗ τR
6R (τ̌ , τ sat

liq ] (τ sc
vap, ∞) KC-2S P (τ∗, kc(τ∗)) + S(kc(τ∗), τR) τ∗ kc(τ∗)

At the value τ̂ , a supersonic condensation wave (see wave of type 2R in Table 2) splits up into a sonic
condensation wave and a 2-rarefaction wave. At the value τ̌ a supersonic condensation wave (see wave of
type 5R) breaks into a subsonic condensation wave and a 2-shock wave.

Proof of Lemma 3.5. Define the function

f̂(τ ; τR) := p′(τR) − p(τR) − p(τ) − ζ

τR − τ
, whereby lim

τ→τmin
liq

f̂(τ ; τR) = ∞

holds due to (2.6). By definition of the points τ sc
liq, τ

sc
vap we find f̂(τ sc

liq; τR) < f̂(τ sc
liq; τ

sc
vap) = 0. The

function f̂ is continuous; thus, τ̂ ∈ (τmin
liq , τ sc

liq] exists, where f̂(τ̂ ; τR) = 0. The derivation f̂ ′(τ ; τR) =(
p′(τ) − p(τR)−p(τ)−ζ

τR−τ

)
/(τR − τ) is positive due to τ ∈ Aliq and Lemma 3.4. Thus, there exists a unique

τ̂ .
For the second part define

f̌(τ) :=
p(kc(τ)) − p(τ) − ζ

kc(τ) − τ
− p(τR) − p(kc(τ))

τR − kc(τ)
for τ ∈ [τ sc

liq, τ
sat
liq ].

Note that kc(τ sc
liq) = τ sc

vap and kc(τ sat
liq ) = τ sat

vap. With (2.4) there holds f̌(τ sc
liq) < 0 and with (2.3) f̌(τ sat

liq ) > 0.
The function f̌ is continuous such that there exists τ̌ ∈ (τ sc

liq, τ
sat
liq ) with f̌(τ̌) = 0. For uniqueness we show

that f̌ is strictly monotone increasing. It follows from (2.7) that p′(τ) < p′(kc(τ)) for τ ∈ [τ sc
liq, τ

sat
liq ]. This

is applied to f̌ ′ and yields

f̌ ′(τ) >
k′
c(τ)−1

kc(τ)−τ

(
p′(kc(τ)) − p(kc(τ))−p(τ)−ζ

kc(τ) − τ

)
+

k′
c(τ)

τR−kc(τ)

(
p′(kc(τ)) − p(τR)−p(kc(τ)))

τR − kc(τ)

)
> 0.

The first bracket is zero for τ = τ sc
liq and negative otherwise. The second bracket is negative due to (2.4).

Thus, τ̌ is uniquely determined. �

Waves of type 3R are composed of a sonic condensation wave and an attached 2-rarefaction wave, cf.
Table 2. The following lemma is helpful to find the sonic vapor end state of the wave in terms of the
liquid end state.

Lemma 3.6. (The function gs) For any given τR ∈ (τmin
vap , τ sc

vap], let τ̂ ∈ (τmin
liq , τ sc

liq] as in Lemma 3.5 be
given.

There exists a continuous monotone increasing function gs : [τ̂ , τ sc
liq] → [τR, τ sc

vap], τ → gs(τ) such that

p′(gs(τ)) =
p(gs(τ)) − p(τ) − ζ

gs(τ) − τ
,

or equivalently λ2(gs(τ)) = sc(τ, gs(τ)) holds.



76 Page 12 of 40 C. Rohde and C. Zeiler ZAMP

Fig. 4. Pressure function (left) and specific volume distribution (right), like Fig. 2. The red curve corresponds to wave
type 6R, and the blue curve to wave type 5R (color figure online)

Note that the domain of definition depends on τ̂ and thus on τR. The function gs does not depend on
τR. However, the restriction to [τ̂ , τ sc

liq] guarantees the existence of gs.

Proof of Lemma 3.6. We apply the implicit function theorem to the function

F (τliq, τvap) := p′(τvap)(τvap − τliq) − p(τvap) + p(τliq) + ζ.

With (3.10), it follows that F (τ̂ , τR) = 0. The local existence of the function gs follows from ∂F/∂τliq =
−p′(τvap) + p′(τliq) < 0 with (2.7). We can proceed with the latter argument until τ sc

liq is reached, where
F (τ sc

liq, τ
sc
vap) = 0 holds.

With (2.4) it holds that ∂F/∂τvap = p′′(τvap)(τvap − τliq) > 0. The monotonicity follows from
d F
d τ (τ, gs(τ)) = ∂F/∂τliq + ∂F/∂τvap g′

s(τ) = 0. �

The Lax curves v∗ = vR+L2(τ∗, τR) of the second family are given in Table 2, and the main properties
are summarized in the proposition below. Examples of wave type 3R and wave type 4R are shown in Fig. 3,
while Fig. 4 shows an example of waves type 5R and wave type 6R.

Proposition 3.7. (Properties of the generalized Lax curve L2) Let a right state (τR, vR)
ᵀ ∈ Avap ×R and

the map L2 : (τmin
liq , τ sat

liq ] ∪ Avap × Avap → R of Table 2 be given. Then the following properties hold.

(i) The map L2 is continuous.
(ii) The map

(τmin
liq , τmax

liq ) ∪ Avap → R, τ∗ → v∗ = vR + L2(τ∗, τR)

is differentiable and strictly monotone decreasing in (τmin
liq , τmax

liq ) and in Avap.
(iii) It holds that L2(τ sat

liq , τR) = L2(τ sat
vap, τR).

(iv) All propagation speeds are positive. In wave 3R, 4R and 6R, the phase boundary propagates slower
than the elementary wave in the vapor phase.

(v) In wave 2R and wave 5R appear supersonic condensation waves.

Proof. (i) The map L2 is piecewise continuous, and it is readily checked with Table 2 that also the
transition from one domain of definition to another one is continuous.

(ii) Note that L2 is piecewise smooth. The critical point in the transition of wave type 2R to wave
type 3R is τ∗ = τ̂ , in the transition of wave type 3R to wave type 4R it is τ∗ = τ sc

liq, and from type 5R to
type 6R it is τ∗ = τ̌ . For later use we derive
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dP

d τ
(τ, g(τ)) =

(g′(τ) − 1) sc(τ, g(τ))
2

+
c2(g(τ)) g′(τ) − c2(τ)

2 sc(τ, g(τ))
,

dS

d τ
(g(τ), τR) = −g′(τ) s2(g(τ), τR)

2
− c2(g(τ)) g′(τ)

2 s2(g(τ), τR)

for some smooth function g with τ < g(τ) < τR, the sound speed c in (2.8) and the propagation speed sc
in (3.2). The bulk shock speed s2 is determined by

s2(τl, τr) = +

√
−p(τr) + p(τl)

τr − τl
.

Furthermore, there holds d R
d τ (g(τ), τR) = −c(g(τ)) g′(τ).

We first check the limit τ∗ → τ̂ and τR ∈ (τmin
vap , τ sc

vap]. Note that gs(τ̂) = τR and sc(τ̂ , τR) = c(τR) with
Lemma 3.6. We use the above derivative with g = gs to find

lim
τ∗→τ̂

d P

d τ∗ (τ∗, τR) =
−1
2

(
c(τR) +

c2(τ̂)
c(τR)

)
, lim

τ∗→τ̂

d R

d τ∗ (gs(τ∗), τR) = −g′
s(τ̂) c(τR),

lim
τ∗→τ̂

d P

d τ∗ (τ∗, gs(τ∗)) =
−1
2

(
c(τR) +

c2(τ̂)
c(τR)

)
+ g′

s(τ̂) c(τR).

Thus, the derivatives of a wave of type 2R and a wave of type 3R coincide in τ∗ = τ̂ .
Now we check the limit τ∗ → τ sc

liq at τR ∈ (τmin
vap , τ sc

vap]. Here, it holds kc(τ sc
liq) = gs(τ sc

liq) = τ sc
vap and

sc(τ sc
liq, τ

sc
vap) = c(τ sc

vap) with Definition 3.1. In wave type 4R, we find

lim
τ∗→τsc

liq

dP

d τ∗ (τ∗, kc(τ∗)) =
−1
2

(
c(τ sc

vap) +
c2(τ sc

liq)
c(τ sc

vap)

)
+ c(τ sc

vap) k′
c(τ

sc
liq),

lim
τ∗→τsc

liq

d R

d τ∗ (kc(τ∗), τR) = lim
τ∗→τsc

liq

dS

d τ∗ (kc(τ∗), τR) = −c(τ sc
vap) k′

c(τ
sc
liq),

such that limτ∗→τsc
liq

d P
d τ∗ L2(τ∗, τR) = −1/2

(
c(τ sc

vap) + c2(τ sc
liq)/c(τ sc

vap)
)
. The same holds for wave type 3R

replacing kc by gs. Thus, the derivatives coincide in τ∗ = τ sc
liq.

Finally, we have to check the limit τ∗ → τ̌ and τR ∈ (τ sc
vap,∞). With Lemma 3.5 it holds sc(τ̌ , kc(τ̌)) =

s2(kc(τ̌), τR) = sc(τ̌ , τR). With the derivatives above we find that the limits from both sides (type 5R and
type 6R) are

lim
τ∗→τ̌

dL2

d τ∗ (τ∗, τR) =
−1
2

(
sc(τ̌ , τR) +

−c2(τ̌)
sc(τ̌ , τR)

)
.

Monotonicity: The functions E and P are strictly decreasing with respect to the first argument; thus,
for wave type 1R, type 2R and type 5R, there is nothing to do.

Consider d L2
d τ∗ (τ∗, τR) in case of wave type 3R. All terms with g′

s cancel out since sc(τ∗, gs(τ∗)) =
c(gs(τ∗)) holds. The remaining terms are negative such that L2(·, τR) is a strictly decreasing function.
The same holds for wave type 4R with kc(τ∗) > τR. The wave is composed of a condensation wave and
an attached 2-rarefaction wave, cf. wave type 3R, and all terms with k′

c cancel out.
In wave type 4R with kc(τ∗) < τR and type 6R the function kc is monotonously decreasing and the

term sc + c2(τ∗)/sc is positive. Thus, it remains to demonstrate that

sc(τ∗, kc(τ∗)) +
c2(kc(τ∗))

sc(τ∗, kc(τ∗))
− s2(kc(τ∗), τ∗

R) − c2(kc(τ∗))
s2(kc(τ∗), τR)

≥ 0.

We skip the dependencies and rearrange the inequality: (s2 − sc)
(

c2

sc s2
− 1

)
≥ 0. This is true because

the speeds in waves of type 4R and type 6R satisfy c > s2 ≥ sc. Thus, L2(·, τR) is a strictly decreasing
function.
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(iii) The condition holds due to P (τ sat
liq , τ sat

vap) = 0.
(iv), (v) By definition, all waves of the second family have nonnegative propagation speeds. The

propagation speed of sonic and subsonic condensation waves is less than the sound speed in the vapor.
The (supersonic) condensation wave in waves of type 2R propagates faster than sound. �

The solution of the two-phase Riemann problem exists if the two generalized Lax curves from Propo-
sitions 3.3 and 3.7 intersect each other.

Theorem 3.8. (Existence and uniqueness of two-phase Riemann solutions) Let a pair of monotone decreas-
ing kinetic functions kc, ke as in Definition 3.1 be given.

For any pair of states (τL, vL)
ᵀ ∈ Aliq × R and (τR, vR)

ᵀ ∈ Avap × R the equation

vL + L1(τL, ·) = vR + L2(·, τR), (3.11)

with L1 (L2) from Table 1 (Table 2) has a unique solution τ∗ ∈ (τmin
liq , τ sat

liq ] ∪ (τ sat
vap,∞).

The corresponding Riemann solution U = (τ(ξ, t), v(ξ, t))
ᵀ ∈ A × R is a unique self-similar entropy

solution composed of rarefaction waves, shock waves and exactly one admissible phase boundary as in
Definition 3.2. The function U is composed of a wave connecting the left initial state with (τ∗, v∗)

ᵀ

according to Table 1 and a wave connecting (τ∗, v∗)
ᵀ

to the right initial state according to Table 2, with
v∗ = vL + L1(τL, τ∗) = vR + L2(τ∗, τR).

Note that the solution contains exactly one phase boundary and subsonic phase boundaries are pre-
ferred, whenever this is possible. Both conditions are needed for uniqueness. Otherwise, L2 is not unique
(see Example 3.12) and Riemann solutions with, e.g., three phase boundaries are possible.

Proof of Theorem 3.8. First, we see that τ∗ /∈ (τ sat
liq , τ sat

vap), such that we can exclude this interval from
our consideration.

The Lax curves satisfy

lim
τ→τmin

liq

L1(τL, τ) = −∞, lim
τ→τmin

liq

L2(τ, τR) = +∞,

lim
τ→∞ L1(τL, τ) = +∞, lim

τ→∞ L2(τ, τR) = −∞.

Set Δ := τ sat
vap − τ sat

liq . Proposition 3.3 and Proposition 3.7 ensure that the function

f(τ) =

{
vR − vL +L2(τ, τR) −L1(τL, τ) for τ ≤ τ sat

liq

vR − vL +L2(τ − Δ, τR) −L1(τL, τ − Δ) for τ > τ sat
vap

is continuous and strictly monotone decreasing from +∞ to −∞. Thus, τ∗ ∈ (τmin
liq ,∞) exists such that

f(τ∗) = 0. If τ �= τ sat
liq then τ∗ resp. τ∗ +Δ is the unique solution of (3.11). If τ = τ sat

liq , then also τ = τ sat
vap

solves (3.11).
The existence of a unique Riemann solution follows from the existence of a unique intersection point

of the Lax curves in Propositions 3.3 and 3.7. �

Theorem 3.8 provides an existence and uniqueness result for two-phase Riemann problems. Not only
from the theoretical point of view, but also with respect to numerical issues, it would be desirable to
analyze the solutions from Theorem 3.8 concerning continuous dependence on the initial datum and the
various system parameters. The correct technical framework for such a study would be the L1-topology
and generalized Riemannian semi-groups as introduced, e.g., in [11] for two-phase problems. Consider the
Riemann initial datum

U0(ξ) = UL ∈ Aliq × R for ξ ∈ (−∞, 0), U0(ξ) = UR ∈ Avap × R for ξ ∈ (0,∞). (3.12)
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Let U be the solution from Theorem 3.8, and consider the semi-group formalism Tt[U0](ξ) = U(ξ, t) for
ξ ∈ R and t ≥ 0. For initial datum U1

0 ,U2
0 it has been shown in [13] in a less general framework (zero

surface tension, no metastable states in the initial datum) that there is a constant C > 0 such that
∥∥Tt[U1

0 ] − Tt[U2
0 ]

∥∥
L1

loc(R)
≤ C

(|U1
L − U2

L| + |U1
R − U2

R|) (3.13)

holds for t ≥ 0. It is beyond the scope of this paper to perform the same analysis for our case. However,
we would like to discuss possible outcomes in the following remark.

Remark 3.9. (Continuous dependence)
(i) Let us first consider the case ζ = 0, and assume that the initial datum does not contain any

metastable states. Corollary 4.4 below ensures that the solution U does not involve metastable
states. As a consequence, one can apply the results of [13] to verify (3.13). Now let ζ = 0 and let
the initial datum with values in the metastable region. From the construction of the Lax curves (see
Tables 1, 2) one can see that the Riemann solution U from Theorem 3.8 connects the metastable
states first with classical waves to stable states in the same phase and then advances as in the
first case. Therefore, we would conjecture that the metastable situation satisfies also a continuous
dependence estimate. In view of the complex wave structure we are not able to prove this statement
rigorously.

(ii) Another issue is the continuous dependence with respect to problem parameters like the flux or the
kinetic relation. General results for two-phase problems have been derived in [11,12]. Particularly
interesting in the context of this paper is the dependence of the solutions in Theorem 3.8 on the
surface tension parameter ζ.

Basically, our approach to handling surface tension cases with ζ ∈ Z is to change the pressure
function trace values smoothly at the liquid side of the phase boundary, i.e.,

p(τliq) is substituted by p(τliq) − ζ,

see (3.2). Let us denote by U ζ the corresponding Riemann problem solution from Theorem 3.8 for
initial datum (3.12) and by T ζ

t [U0] the associated Riemann semi-group. The proofs in [12] can then
be transferred to our case and provide a statement like (3.13), at least for initial states outside the
metastable region and |ζ| << 1.

Let now ζ1, ζ2 ∈ Z be given. Under appropriate smallness conditions on the data, in particular
|ζ1|, |ζ2| << 1, one would get for some constant C > 0 the continuous dependence statement

∥∥T ζ1
t [U0] − T ζ2

t [U0]
∥∥

L1(R)
≤ C|ζ1 − ζ2| (t ≥ 0).

In Example 5.4 below we provide a numerical study on the sensitivity of Riemann solutions with
respect to ζ, in fact for a metastable situation.

3.2. Algorithm and an illustrating examples

We are now able to define the two-phase Riemann solver for a properly defined pair of monotone decreasing
kinetic functions kc, ke. The two-phase Riemann solver is a mapping of type{Aliq × R × Avap × R × Z → Aliq × R × Avap × R × R

(τL, vL, τR, vR, ζ) → (τliq, vliq, τvap, vvap, s), (3.14)

which map the initial conditions (2.12) and the constant surface tension term ζ (:= (d − 1) ζ∗ κ) to the
end states and the speed of the phase boundary. In this way, it is used in Sect. 6.

Algorithm 3.10 (Two-phase Riemann solver). Let the arguments (τL, vL, τR, vR, ζ) of mapping (3.14) be
given.
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(a) (b)

(c) (d)

Fig. 5. Riemann solution of Example 3.11. a The specific volume, b the velocity, c the pressure over the Lagrangian space
variable at time t = 1 and d the Lax curves of the first (blue) and the second (red) families are drawn. The initial states
are marked with a square (color figure online)

Step 1 Determine the points in Aliq ∪ Avap where the solution can alter its structure. These are τ sat
liq/vap

due to (2.5), τ se
liq/vap, τ sc

liq/vap due to Definition 3.1, and τ̂ , τ̌ due to Lemma 3.5.
Step 2 Find τ∗ ∈ (τmin

liq , τ sat
liq ] ∪ (τ sat

vap,∞) that solves (3.11).
Step 3 Return (τliq, vliq, τvap, vvap, s):

• In case of τ∗ ∈ (τmin
liq , τ sat

liq ], the values τliq, τvap are given in the last two columns of Table 1.
The velocities are vliq = vL + E(τL, τliq) and vvap = vliq + P (τliq, τvap), and the speed is
s = se(τliq, τvap).

• In case of τ∗ ∈ (τ sat
vap,∞), the values τliq, τvap are given in the last two columns of Table 2.

The velocities are vvap = vR − E(τvap, τR) and vliq = vvap − P (τliq, τvap), and the speed is
s = sc(τliq, τvap).

Note that Step 2 requires explicit knowledge of the kinetic functions. We close the section with an
illustrating example of rather simple kinetic functions.

Example 3.11 (Riemann solution and Lax curves). Consider the initial conditions UL = (0.5, 0)
ᵀ

and
UR = (15, 2)

ᵀ
, the van der Waals pressure of Example 2.3, ζ = 0 and the following pair of monotone

decreasing kinetic functions

kc(τliq) = τ sat
vap, ke(τvap) = τ sat

liq for all τliq ∈ [τ sc
liq, τ

sat
liq ], τvap ∈ [τ sat

vap, τ se
vap].

Figure 5 shows the solution composed of a wave of type 3L and type 1R in Tables 1 and 2. Waves
of type 3L consist of a rarefaction wave, followed by an evaporation wave and an attached rarefaction
wave. A wave of type 1R is solely a shock wave. Figure (d) shows that the monotone increasing Lax
curve of the first family intersects the monotone decreasing Lax curve of the second family in the point
(τ∗, v∗)

ᵀ ≈ (12.65, 2.24)
ᵀ
.
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Fig. 6. Left: Lax curve v∗ = L2(τ∗, τR) + vR from Example 3.11 (red) and the Lax curve v∗ = LLax
2 (τ∗, τR) + vR from

Example 3.12 (blue). Right: pressure function and relevant specific volume values (color figure online)

In Table 2, proceeding similarly as in [13], Riemann solutions with subsonic phase boundaries are
preferred whenever there is more than one solution. The following example specifies such a situation
which is then ruled out by this criterion.

Example 3.12 (A Lax curve preferring Lax shocks rather than subsonic phase boundaries). We recall
the definition of the generalized Lax curve L2 from Example 3.11. Now we prefer solutions with phase
boundaries of Lax type. For τR = 15 and the van der Waals pressure of Example 2.3 with ζ = 0 we have
τ̂ > τ sat

liq . Thus, any τ∗ in the liquid phase can be reached by a single phase boundary of Lax type and

LLax
2 (τ∗, τR) :=

{
E(τ∗, τR) for τ∗ ∈ (τmin

liq , τ sat
liq ],

P (τ∗, τR) for τ∗ ∈ Avap

determines the generalized Lax curve of the second family for this example. Compared with L2 from
Table 2 one can see that only wave type 6R is different. Figure 6 shows the Lax curves schematically
to focus on the interval (τ̌ , τ sat

liq ], where the curves are different. Note in particular that LLax
2 (τ sat

liq , τR) >

LLax
2 (τ sat

vap, τR) such that there might be no intersection with the Lax curve of the first family.

We have solved the Riemann problem only for initial states in different phases. It is also of highest
interest to construct Riemann solutions that model the nucleation of a new phase. Our analysis does not
apply in this case because it is restricted to small values of ζ. This is not relevant for nucleation. In the
next example we show how Algorithm 3.10 can be used to treat a nucleation with zero surface tension
parameter.

Example 3.13. (Nucleation) Consider a Riemann problem for the pressure from Example 2.3, ζ = 0,
and with both initial states in the vapor phase. Precisely, we choose UL = UR = (2.8, 0)

ᵀ
. As a pair of

monotone decreasing kinetic functions we take

kc(τliq) = τ sat
vap, ke(τvap) = τ sat

liq for all τliq ∈ [τ sc
liq, τ

sat
liq ], τvap ∈ [τ sat

vap, τ se
vap].

We construct from a wave of type 3R a Riemann solution connecting the left state UL with an intermediate
state U∗ ≈ (0.55301, 0). Similarly, we obtain a Riemann solution connecting the intermediate state U∗

with the right initial state UR. By juxtaposition, we get a nucleation-type Riemann solution that is
visualized in Fig. 7. Note that the constant solution U = UL = UR is an alternative Laxian Riemann
solution.

4. Kinetic relations and kinetic functions for two-phase Riemann solvers

Pairs of monotone decreasing kinetic functions have been introduced in the last section in order to deter-
mine unique Riemann solutions. The more general form of an algebraic coupling condition to overcome
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(a) (b)

(c)

Fig. 7. Riemann solution from Example 3.13. a The specific volume; b the velocity at time t = 1 and c the Lax curves. In
blue color a Lax curve from the second family emanating in the left state, and in red color a Lax curve of the second family
emanating in the right state. The initial states are marked with a square (color figure online)

the lack of well-posedness of the mixed hyperbolic–elliptic problem is a kinetic relation [2,39]. Kinetic
relations provide an implicit condition to single out admissible phase boundaries. We will distinguish
very clearly between kinetic relations, kinetic functions and, in particular, pairs of monotone decreasing
kinetic functions such that Theorem 3.8 applies.

Abeyaratne and Knowles [1] and Hantke et al. [21] apply kinetic relations directly in order to construct
Riemann solutions. However, their approaches require piecewise linear pressure functions and are not
applicable to equations of state in the sense of Definition 2.1. The aim of this section is to derive criteria,
which guarantee that a kinetic relation corresponds to a pair of (monotone decreasing) functions, see
Theorems 4.1 and 4.2.

In the literature kinetic relations have been suggested (see [2,39]), which control the entropy dissi-
pation explicitly. In terms of a general form these are given by either

K = K(f, s) := f − g(s) = 0 or K = K(f, s) := h(f) − s = 0 (4.1)

with continuous functions g, h : R → R, the speed of the phase boundary s, and a driving force f in terms
of the traces. Note that if g is injective, then h is just g−1. Notably, there are examples with non-invertible
g or h, see, for instance, K1,K5,K8 in Table 3.

Let the speed s be given by formulas (3.2), and define the driving force f : Aliq × Avap → R by

f(τliq, τvap) = �ψ(τ)� + �τ� {p(τ)} + ζ {τ} . (4.2)

The kinetic relation imposes a condition on the interfacial entropy production. The relation of (4.1)
to entropy consistency can be seen as follows. Multiplying (4.1) by s or f one obtains −s f = −g(s) s,
respectively, −s f = −h(f) f . This is related to the entropy jump condition (2.16), where the functions
g, h with
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Table 3. Different kinetic relations and their properties. In particular, we indicate by a hook (cross) the (non)existence
of a corresponding pair of monotone decreasing kinetic functions due to Theorem 4.2. In the nonexistence case we refer

to the available literature on the corresponding Riemann problem. The kinetic relation K6 is suggested here as an

entropic limit case. To our knowledge results for K6 are not available. The parameters satisfy k∗ > 0, a > 0

Kinetic relation Corresponds to a pair of
monotone decreasing kinetic
functions, references

The phase boundary

Dissipates
entropy
(f s �= 0)

Is static (s = 0)

K1(f, s) := f ✓ ✗ ✗

K2(f, s) := f − k∗ s ✗, [21] ✓ ✗

K3(f, s) := f − k∗ sign(s) s2 ✓ for small k∗ > 0 ✓ ✗

K4(f, s) := f − k∗ s3 ✓ for small k∗ > 0 ✓ ✗

K5(f, s) :=

⎧
⎨
⎩

f + a −k∗ s : f < −a
−k∗ s : |f | ≤ a

f − a −k∗ s : f > a
✗,[1] ✓ ✗

K6(f, s, τliq, τvap) := f − sign(s) s2 �τ�2 ✗, – ✓ ✗

K7 such that

{
kc(τliq) = τ sat

vap : s ≥ 0

ke(τvap) = τ sat
liq : s < 0

✓ ✓ ✗

K8(f, s) := −s ✗,[16] ✗ ✓

Fig. 8. The figure shows the set Avap×Aliq. The gray area corresponds to states, which lead to supersonic phase boundaries.
The white area refers to the set Apb. The shaded area corresponds to complex values of the functions sc, se. The driving
force f is zero along the orange curve, positive on the left side of that curve and negative on the right side. The sound speed
is zero along the black curve (color figure online)

g(s) s ≥ 0, h(f) f ≥ 0

determine the amount of entropy that is dissipated.
The connection between kinetic relations and kinetic functions is given by the following theorems.

Kinetic functions are applied only to subsonic phase boundaries. The same holds for kinetic rela-
tions. The white area in Fig. 8 illustrates admissible end states of subsonic phase boundaries, i.e., the
set

Apb :=
{

(τliq, τvap) ∈ Aliq × Avap

∣∣∣∣ p′(τliq), p′(τvap) ≤ �p� − ζ

�τ�
, �p� ≥ ζ

}
.

We use Lagrangian coordinates and an equation of state as in Definition 2.1.

Theorem 4.1. (Existence and uniqueness of kinetic functions) Let sc : Apb → [0,∞) and se : Apb →
(−∞, 0] be the propagation speed of condensation and evaporation waves, as defined in (3.2), and let
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a Lipschitz continuous kinetic relation K : R × R → R as in (4.1) be given. Assume that K fulfills
K(0, 0) = 0 and

∂K

∂f

(
f(τliq, τvap), sc/e(τliq, τvap)

) − ∂K

∂s

(
f(τliq, τvap), sc/e(τliq, τvap)

) 1
�τ�

2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣ > 0, (4.3)

for almost all (τliq, τvap) ∈ Apb.
Then there exist values τ sc

liq ∈ [τmin
liq , τ sat

liq ), τ se
vap ∈ (τ sat

vap,∞] and two continuous functions
kc : (τ sc

liq, τ
sat
liq ] → Avap and ke : [τ sat

vap, τ se
vap) → Aliq with K (f(τliq, kc(τliq), sc(τliq, kc(τliq))) = 0 and

K (f(ke(τvap), τvap), se(ke(τvap), τvap)) = 0.

Note that either ∂K/∂f = 1 and ∂K/∂s = −g′(s) or ∂K/∂f = h′(f) and ∂K/∂s = −1. Driving
force and propagation speed are zero for the end states (τ sat

liq , τ sat
vap). The condition K(0, 0) = 0 guarantees

then that the saturation states are a solution of the kinetic relation (4.1). The Riemann solver of Sect. 3
requires kinetic functions with monotonic decay. The subsequent theorems state corresponding necessary
conditions for the kinetic relations.

Theorem 4.2. (Pairs of monotone decreasing kinetic functions) Let a kinetic relation K : R × R → R be
given that fulfills the conditions of Theorem 4.1. If, in addition, K is differentiable in R×R\{ (0, 0) } and

∂K

∂f

(
f(τliq, τvap), sc/e(τliq, τvap)

)
+

∂K

∂s

(
f(τliq, τvap), sc/e(τliq, τvap)

) 1
�τ�

2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣ ≥ 0 (4.4)

holds for all (τliq, τvap) ∈ Åpb, then a pair of monotone decreasing kinetic functions in the sense of
Definition 3.1 exists uniquely.

The proof of Theorem 4.1 requires a variant of the implicit function theorem that does not require
C1-smoothness.

Theorem 4.3. (Implicit function theorem for continuous functions) Suppose that F : D ⊂ R × R → R is
a continuous function with

F (a0, b0) = 0.

Assume that there exist open neighborhoods A ⊂ R and B ⊂ R of a0 and b0, respectively, such that for
all b ∈ B, F (·, b) : A ⊂ R → R is injective. Then, for all b ∈ B, the equation

F (a, b) = 0

has a unique solution a = H(b) ∈ A. The function H : A → R is continuous.

The theorem is proven in [25] for the more general case of functions F : D ⊂ R
n × R

m → R
n with

n,m ∈ N.

Proof of Theorem 4.1. Let us first extend the functions sc and se to the domain

Aext :=
{

(τliq, τvap) ∈ Aliq × Avap

∣∣∣∣ p′(τliq), p′(τvap) ≤
∣∣∣∣
�p� − ζ

�τ�

∣∣∣∣
}

.

Define s̄c(τliq, τvap) = sign(ζ − �p�)
√|(ζ − �p�)/ �τ�| and s̄e(τliq, τvap) = −s̄c(τliq, τvap) for (τliq, τvap) ∈

Aext. Note that the pair of saturation states (τ sat
liq , τ sat

vap) is an inner point of the set Aext. In Fig. 8 the set
Aext is the union of the white area with the shaded area.

The following derivatives and monotonicity properties are readily checked
∂f

∂τvap
(τliq, τvap) =

1
2

(p′(τvap) �τ� + ζ − �p�) < 0 in Åext,

∂f

∂τliq
(τliq, τvap) =

1
2

(p′(τliq) �τ� + ζ − �p�) < 0 in Aext,
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− ∂sc
∂τvap

(τliq, τvap) =
∂se

∂τvap
(τliq, τvap) =

1
2 �τ�

2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣ (p′(τvap) �τ� + ζ − �p�) < 0 in Åext,

∂sc
∂τliq

(τliq, τvap) = − ∂se
∂τliq

(τliq, τvap) =
1

2 �τ�
2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣ (p′(τliq) �τ� + ζ − �p�) < 0 in Aext.

The derivatives with respect to τvap are zero in the sonic case such that strict monotonicity holds only
in the interior of the set Aext. The derivatives with respect to τliq are negative in the sonic point.
The saturation states (2.5) satisfy f(τ sat

liq , τ sat
vap) = 0 and se/c(τ sat

liq , τ sat
vap) = 0. Furthermore, the condition

K(0, 0) = 0 ensures that one solution is given by (τ sat
liq , τ sat

vap) ∈ Aext.
We start with the condensation case and define a kinetic relation in terms of specific volume val-

ues via Kc(τliq, τvap) := K(f(τliq, τvap), s̄c(τliq, τvap)) for (τliq, τvap) ∈ Aext. Figure 8 illustrates the set
{ (τliq, τvap) ∈ Aext | Kc(τliq, τvap) = 0 }. With (4.3) it holds

dKc

d τvap
(τliq, τvap) =

∂K

∂f

∂f

∂τvap
+

∂K

∂s

∂sc
∂τvap

=
1
2

(p′(τvap) �τ� + ζ − �p�)

(
∂K

∂f
− ∂K

∂s

1
�τ�

2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣
)

< 0

for almost all (τliq, τvap) ∈ Åext. There exists an open neighborhood Bliq ⊂ Aliq of τ sat
liq and an open

neighborhood Bvap ⊂ Avap of τ sat
vap such that the function Kc(τliq, ·) : Bvap → R is strictly decreasing and

injective for any τliq ∈ Bliq. With Theorem 4.3, there exists a unique continuous function kc : Bliq → Bvap

such that Kc(τliq, kc(τliq)) = 0 holds. For values τliq < τ sat
liq we can proceed with the same arguments as

long as (4.3) holds. Finally, we restrict the domain of definition to values less than or equal to τ sat
liq .

The evaporation case is very similar. For Ke(τliq, τvap) := K(f(τliq, τvap), s̄e(τliq, τvap)) it holds with
(4.3) that

dKe

d τliq
(τliq, τvap) =

∂K

∂f

∂f

∂τliq
+

∂K

∂s

∂se
∂τliq

=
1
2

(p′(τliq) �τ� + ζ − �p�)

(
∂K

∂f
− ∂K

∂s

1
�τ�

2

√∣∣∣∣
�τ�

ζ − �p�

∣∣∣∣
)

< 0,

for almost all (τliq, τvap) ∈ Aext. The function Ke(·, τvap) is strictly decreasing and injective in an open
neighborhood of the saturation states, and we can apply the same arguments as above. �

Proof of Theorem 4.2. Due to Theorem 4.1 there are continuous kinetic functions kc : (τ sc
liq, τ

sat
liq ] → Avap

and ke : [τ sat
vap, τ se

vap) → Aliq. The extra regularity assumption of differentiability is inherited to the kinetic
functions.

We show that kc is a monotone decreasing function and use the functions defined in the proof of
Theorem 4.1. From condition (4.4) it follows that

dKc

d τliq
(τliq, τvap) =

∂K

∂f

∂f

∂τliq
+

∂K

∂s

∂sc
∂τliq

=
1
2

(p′(τliq) �τ� + ζ − �p�)

(
∂K

∂f
+

∂K

∂s

1
�τ�

2

√
�τ�

ζ − �p�

)
≤ 0

for (τliq, τvap) ∈ Apb. We consider Kc(τ, kc(τ)) = 0 and derive

0 =
dKc

d τ
(τ, kc(τ)) =

∂Kc

∂τliq
(τ, kc(τ)) +

∂Kc

∂τvap
(τ, kc(τ)) k′

c(τ).
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The derivatives of the kinetic relation are both not positive, and ∂Kc
∂τvap

is negative except of the sonic
point τ sc

vap; thus, k′
c(τvap) ≤ 0 for all τvap ∈ [τ sat

vap, τ sc
vap).

We proceed with the evaporation case and show that the function ke is monotone decreasing. From
(4.4) it follows that

dKe

d τvap
(τliq, τvap) =

∂K

∂f

∂f

∂τvap
+

∂K

∂s

∂se
∂τvap

=
1
2

(p′(τvap) �τ� + ζ − �p�)

(
∂K

∂f
+

∂K

∂s

1
�τ�

2

√
�τ�

ζ − �p�

)
≤ 0

for (τliq, τvap) ∈ Apb. Consider Ke(ke(τ), τ) = 0 and derive

0 =
dKe

d τ
(ke(τ), τ) =

∂Ke

∂τliq
(ke(τ), τ) k′

e(τ) +
∂Ke

∂τvap
(ke(τ), τ) . (4.5)

The term ∂Ke
∂τliq

is negative, and the term ∂Ke
∂τvap

is not positive; thus, k′
e ≤ 0 in (τ sc

liq, τ
sat
liq ].

It remains to show that the domain of definition can be extended up to the sonic points, with
sc(τ sc

liq, kc(τ sc
liq)) = c(τ sc

vap), −se(ke(τ se
vap), τ se

vap) = c(τ se
vap) and the condition k′

e(τ
se
vap) = 0. Note that the

points (τ sc
liq, kc(τ sc

liq)), (ke(τ se
vap), τ se

vap) are the intersection points of the kinetic functions with the bound-

ary segment p′(τvap) = �p�−ζ
�τ� , c.f. Fig. 8. The kinetic functions are monotone decreasing in Apb. Thus,

kc and ke intersect the boundary segment p′(τvap) = �p�−ζ
�τ� between the points (τ∗

liq, τ
sat
vap) and (τ sat

liq , τ∗
vap).

The points are the intersection points with a horizontal line { (τliq, τvap) ∈ Apb | τliq = τ sat
liq } and a verti-

cal line { (τliq, τvap) ∈ Apb | τvap = τ sat
vap } through the saturation states. The first intersection point exists

due to Lemma 3.5 with τR = τ sat
vap and τ∗

liq = τ̂ . The second intersection point exists due to Lemma 3.6
with τ∗

vap = gs(τ sat
liq ). Thus, also intersection points (τ sc

liq, τ
sc
vap) and (τ se

liq, τ
se
vap) exist with τ sc

vap := kc(τ sc
liq),

τ se
liq := ke(τ se

vap).
Finally, we find that dKe

d τvap
(τ se

liq, τ
se
vap) = 0 and dKe

d τliq
(τ se

liq, τ
se
vap) > 0 in (4.5). This means that k′

e(τ
se
vap) = 0.

Thus, (kc, ke) is a pair of monotone decreasing kinetic functions. �

The applicability of kinetic relations that correspond to pairs of monotone decreasing functions is in
fact limited. This is underlined by the following result (see also Sect. 5.4).

Corollary 4.4. (Metastable phase boundaries) Consider a phase boundary (3.1) that obeys a kinetic rela-
tion as required in Theorem 4.2.

Then, the end states τliq, τvap of the phase boundary belong to stable phases, i.e., τliq ≤ τ sat
liq and

τvap ≥ τ sat
vap. Thus, metastable end states are excluded.

Proof. Due to Theorem 4.2 there is a pair of monotone decreasing kinetic function such that the end
states τliq ∈ Aliq, τvap ∈ Avap satisfy kc(τliq) = τvap for a condensation wave and ke(τliq) = τvap for
an evaporation wave. One pair of end states is given by the saturation states, i.e., kc(τ sat

liq ) = τ sat
vap and

ke(τ sat
liq ) = τ sat

vap. Because of the monotonicity of kc and ke it holds that τ sat
vap ≤ τvap for τliq ∈ [τ sc

liq, τ
sat
liq ] in

the condensation case and that τliq ≤ τ sat
liq for τvap ∈ [τ sat

vap, τ se
vap] in the evaporation case. �

5. Examples of kinetic relations and two-phase Riemann solutions

We apply the theorems of the previous section to examples of kinetic relations as they have been suggested
in the literature. Furthermore, two-phase Riemann solutions are determined and studied with respect
to different kinetic relations and also with respect surface tension. A comparison with experimental
measurements from [38] is presented.



ZAMP On Riemann solvers and kinetic relations Page 23 of 40 76

Fig. 9. Zero contour lines of kinetic relations, i.e., { (τliq, τvap) ∈ Apb | K(τliq, τvap) = 0 }, and a pair of monotone decreasing
kinetic functions, i.e., (τliq, kc(τliq)) ⊂ Apb and (ke(τvap), τvap) ⊂ Apb resulting from K3. The shaded area corresponds to
complex speeds sc, se, and the gray area to supersonic phase boundaries. The white area corresponds to the set Apb of
subsonic phase boundaries

Fig. 10. Kinetic relations for n-dodecane with respect to the pressure. Relation K2 for k∗ = 5m4/kg s and Kdft as in

Example 5.1. Kinetic functions kc and ke result from K3 with k∗ = 0.005m6/kg2. The gray line marks sonic phase boundaries.
The black dots mark measured values from the experiment in Sect. 5.4

5.1. Examples of kinetic relations

Table 3 provides a list with examples for kinetic relations as they can be found in the literature [2,6–
8,21,27,39]. Figure 9 shows the zero contour lines of the kinetic relations and an equation of state as in
Definition 2.1. Figure 10 illustrates the same as Fig. 9, but in terms of the pressure and for an equation
of state of n-dodecane at T = 230 ◦C, computed by the library CoolProp [5]. To be precise, the set
{ (p(τvap), p(τliq)) ∈ R

2
+ | K(τliq, τvap) = 0 } is shown.

We proceed with a description of the kinetic relations in Table 3.
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5.1.1. K1: kinetic relation with zero entropy dissipation. The kinetic relation K1 has been analyzed in
[6,8]. We find ∂K1/∂f = 1, ∂K1/∂s = 0 such that conditions (4.3) and (4.4) hold. Due to Theorem 4.1
there is a pair of monotone decreasing kinetic functions (kc, ke).

A phase boundary that satisfies kinetic relation K1 conserves the entropy since s f = 0 (cf. (2.16))
and ke is the inverse function of kc. From a thermodynamic point of view this can be interpreted as a
reversible process.

5.1.2. K2, K3 and K4: kinetic relations with polynomial growth. The kinetic relation K2 has been
suggested in [39] and has been analyzed in [7,27] concerning the stability of multidimensional interfaces.
We find ∂K2/∂f = 1, ∂K2/∂s = −k∗ such that condition (4.3) holds for any k∗ > 0, but (4.4) is
not satisfied. The term

√
�τ�/(ζ − �p�) = 1/ |s| is infinite in the saturation state (s = 0) and monotone

decreasing in |s|. Due to Theorem 4.1, kinetic functions exist, but are not monotone decreasing for k∗ > 0.
A pair of monotone decreasing kinetic functions exists only for k∗ = 0 (kinetic relation K1). Otherwise,
the kinetic functions are not monotone, see also Fig. 10. With a slight change in the kinetic relation K2

and ζ = 0 the Riemann problem has been completely analyzed in [21]. In that paper, the inverse of the
vapor pressure shows up as prefactor of k∗.

In the following example a specific choice of k∗ > 0 in K2 is considered. This choice will lead to
consistent results with physical experiments in Sect. 5.4.

Example 5.1 (Density functional theory and kinetic relation Kdft). Density functional theory is used
in [26] to compute resistivities for heat transfer and for mass transfer at vapor liquid interfaces. The
authors assume a correlation between the interfacial mass flux and differences in the chemical potential
that is similar to kinetic relation K2. For isothermal one-component fluids the correlation reduces to
�μ� = −T R j, where R ≥ 0 is called interfacial resistivity. That gives for (2.1), (4.2), (2.15) and ζ = 0
the relation

�f� + {τ} �p� = T R s.

Note that this is K2 with k∗ = T R up to the term {τ} �p�. The term vanishes in the equilibrium case
(2.9) and is small for slow phase boundaries, since |s| =

√
�p� / �τ�.

One finds values of R for n-octane in [28]. We assume that the fluids n-octane and n-dodecane behave
similarly, since both are alkanes. The resistivity values are now used to estimate k∗ in kinetic relation
K2. For n-dodecane at 230 ◦C, this results in the definition

Kdft(f, s) := f − s k∗
dft with k∗

dft = 28 m4
/kg s. (5.1)

As a particular choice of K2, the kinetic functions for Kdft exist, but they are not monotone decreasing.
Thus, Theorem 3.8 is not applicable. However, in Sect. 5.4 below we show that Riemann solutions can
nevertheless be computed by Algorithm 3.10.

Kinetic relations K3 and K4 in Table 3 were chosen as further examples to satisfy the conditions of
Theorem 4.2. They lead to pairs of monotone decreasing kinetic functions for sufficiently small k∗ > 0.
Therefore, they can be used for Algorithm 3.10. Kinetic relations K3 and K4 behave very similarly, and
we consider only K3 in the following. Note that the parameter k∗ > 0 in the kinetic relations K2, K3 and
K4 has different physical units.

If one splits the contour lines at the saturation point into two branches, one finds the corresponding
kinetic functions for evaporation ke = ke(τvap) and condensation waves kc = kc(τliq), respectively. This is
shown in Fig. 9 for K3. Generally, kinetic functions for evaporation waves are located right to the curve
K1 = 0 and kinetic functions for condensation waves are located left to this curve. This is a consequence
of the entropy inequality (2.16) because f s ≥ 0 holds.
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5.1.3. K5: a non-smooth kinetic relation with multiple static solutions. Kinetic relations such as K5

in Table 3 are often considered for phase boundaries in solid mechanics (see [2, Section 4.4]). Then no
transition takes place until the driving force f passes a certain threshold a > 0. If the driving force f is
sufficiently small, the phase boundary does not propagate. Note that this involves static phase boundaries
whose end states are not the saturation states.

The conditions of Theorem 4.1 are satisfied, but for |f | < a condition (4.4) is violated. Thus, Theo-
rem 4.2 does not apply. In [1] unique Riemann solutions are singled out assuming non-monotone pressure
functions that are piecewise linear.

5.1.4. K6: limit case of a kinetic relation with maximal entropy dissipation. Because there is no entropy
dissipation for K1 and K8 (see Table 3), since either f = 0 or s = 0, the kinetic relation with the
highest entropy release has to be searched somewhere in between. The interfacial entropy production is
given by the product s f , see (2.16). We may derive a kinetic relation with the highest entropy release at
constant τliq or at constant τvap related to the extreme value of f(τliq, τvap) sc/e(τliq, τvap). The conditions

d
d τvap

f sc = 0 and d
d τliq

f se = 0 lead to the relations

f(τliq, τvap) + sc(τliq, τvap)2 �τ�
2 = 0, f(τliq, τvap) − se(τliq, τvap)2 �τ�

2 = 0.

Kinetic relation K6(f, s, τliq, τvap) = f − sign(s) s2 �τ�
2 takes both cases into account. Note that K6

needs more arguments. Figure 10 shows that the corresponding kinetic functions for K6 are monotone
increasing; thus, Theorem 4.2 is not applicable.

Note that this kinetic relation does not correspond to the energy rate admissibility criterion in [14,22].
In these references the entropy is minimized with respect to a set of admissible Riemann solutions. Here
the entropy is minimized with respect to a set of phase boundaries with one fixed end state.

5.1.5. K7: limit case of a kinetic relation that corresponds to Liu’s entropy criterion. Godlewski and
Seguin solved in [19] the one-dimensional two-phase Riemann problem for homogenized pressure laws
applying the Maxwell equal-area rule. For uniqueness they apply the entropy criterion of Liu [33]. This
was extended to the surface-tension-dependent case in [24].

In terms of Definition 2.1 the homogenized pressure law is given by

pζ : (τmin
liq ,∞) → R pζ(τ) =

⎧
⎪⎨
⎪⎩

p(τ) + ζ if τ ∈ (τmin
liq , τ sat

liq ],
p(τ sat

vap) if τ ∈ (τ sat
liq , τ sat

vap),
p(τ) if τ ∈ [τ sat

vap,∞).
(5.2)

Note that pζ depends on the surface tension term ζ and that p(τ sat
liq ) + ζ = p(τ sat

liq ), see (2.5). The two-
phase Riemann problem with that pressure law and the entropy criterion of Liu implies a kinetic relation
implicitly. All subsonic phase boundaries connect to one of the saturation states. This determines the
kinetic functions

kc :
{

[τ sc
liq, τ

sat
liq ] → Avap,

τliq → τ sat
vap,

ke :
{

[τ sat
vap, τ sc

vap] → Aliq,
τvap → τ sat

liq .
(5.3)

The corresponding kinetic relation is named K7 in Table 3 and Fig. 9. For K7 it is simpler to state the
kinetic functions directly. The relation was already applied in Example 3.11.

The kinetic functions are constant and can be seen as the limit case of monotone decreasing functions
because k′

c = 0 and k′
e = 0. They fulfill the conditions of Definition 3.1 and Theorem 3.8 applies.

Note that the difference between the Riemann solution with K7 and the Liu Riemann solution
from [19,24] is the different underlying pressure function. The Liu Riemann solver uses the homogenized
pressure (5.2) and not the pressure of Definition 2.1 which is defined only for bulk phases. However,
because of p′(τ) = pζ′(τ) for τ ∈ (τmin

liq , τ sat
liq ] ∪ [τ sat

vap,∞), both solutions are identical for initial states in
stable phases. A proof of that statement can be found in [40].
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5.1.6. K8: limit case of a kinetic relation for static phase boundaries/zero mass flux. The limit case
K2 with k∗ → ∞ leads to the kinetic relation K8(f, s) = −s. This means that no entropy is dissipated
because s f = 0 (cf. (2.16)). Recall that the case k∗ → 0 leads to K1. Theorem 4.1 can be applied for K8,
but the corresponding kinetic functions are monotone increasing. Phase boundaries that obey K8 satisfy
s = 0, vliq = vvap, p(τliq) = p(τvap). The kinetic functions are given by

kc(τliq) = p−1
vap(p(τliq)) and ke(τvap) = p−1

liq (p(τvap)), (5.4)

where p−1
liq is the inverse function of p : Aliq → R and p−1

vap is the inverse of p : Avap → R.
In Eulerian coordinates s = j = 0 (cf. (2.15)) mean that there is no mass transfer between the phases.

Such a phase boundary may represent material boundaries of different immiscible substances. Riemann
solvers for impermeable material boundaries can be found, e.g., in [16].

Remark 5.2. (Entropy dissipation rate for evaporation waves and condensation waves) Kinetic relations
K2, . . . ,K5 depend on the parameter k∗ that controls the amount of entropy dissipation. There is no phys-
ical reason why evaporation waves and condensation waves share the same value for k∗. The parameter
could also depend on the sign of s, but this is not considered here.

5.2. Riemann solvers for non-decreasing kinetic functions

We presented several examples of kinetic relations leading to non-decreasing kinetic function such that
Theorem 3.8 is not applicable. However, it is remarkable that unique Riemann solutions may still exist,
see, e.g., Kdft in Sect. 5.4. Further examples are K7 and K8:

The arguments for K8 are rather simple because the related generalized Lax curves are strictly mono-
tone. The kinetic functions (5.4) are monotone increasing and such that the pressure is equal in both end
states. This means that the value of the Lax curve is the same as in the metastable phase. More precisely,

L1(τL, τvap) = L1(τL, ke(τvap)) for τvap ≥ τ sat
vap, since p(ke(τvap)) = p(τvap) and

L2(τliq, τR) = L2(kc(τliq), τR) for τliq ≤ τ sat
liq , since p(kc(τliq)) = p(τliq).

The domain of definition for such Lax curves is restricted since we cannot expect that the pressure
function provides for any pressure value in a stable phase a corresponding metastable volume value with
the same pressure. Furthermore, attached waves are excluded due to the zero propagation speed of the
phase boundary. However, as long as the Lax curves exist they are monotone.

For K7 the corresponding kinetic functions (5.3) are constant, related to the extreme case of a mono-
tone function. But even in this case the Lax curves are by far not constant [see Fig. 5(right)] that would
be the crucial limit for monotonicity. We believe therefore that considering monotone decreasing kinetic
functions is too restrictive and not necessary for unique two-phase Riemann solutions.

5.3. Comparative study of Riemann solutions for different kinetic relations and surface tension

We apply different kinetic relations to the Riemann solver of Sect. 3. In order to distinguish two-phase
Riemann solutions we write Kn-Riemann solution if the contained phase boundary satisfies one of
the kinetic relations Kn in Table 3. We will consider the kinetic relations K1, K3 and K7 such that
Theorem 3.8 guarantees unique solvability.

Example 5.3 (Influence of different kinetic relations). This example illustrates the effect of different kinetic
relations. We use the van der Waals pressure of Example 2.3 and initial conditions

U(ξ, 0) =

{
(0.57, 0)

ᵀ
for ξ ≤ 0,

(50, 0)
ᵀ

for ξ > 0,
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Fig. 11. Liu Riemann solution (dashed line) and Riemann solution (solid lines) with different kinetic relations. The left
figure shows the pressure, and the right one the velocity as a function of the Lagrangian space variable at time t = 1

Fig. 12. K7-Riemann solutions for different surface tension terms. The left figure shows the specific volume, and the right
one the velocity as a function of the Lagrangian space variable at time t = 1

such that the liquid state is in the metastable phase. The solid lines in Fig. 11 show Riemann solutions
for ζ = 0 and different kinetic relations. All solutions are composed of a shock wave followed by an
evaporation wave with attached rarefaction wave and a shock wave. In terms of the notation in Table 1
and Table 2 the solution is composed of wave type 3L and type 6R. We see that the pressure in the liquid
phase is higher for phase boundaries that dissipate more entropy, while the propagation speed becomes
slower.

Furthermore, the example illustrates the difference to the Liu Riemann solution which uses the homog-
enized pressure law (5.2), see Sect. 5.1.5. The Liu Riemann solution is plotted with a dashed line in Fig. 11
and differs from the K7-Riemann solution because the liquid initial states are in the metastable phase.

Example 5.4 (Static solutions and influence of the surface tension term ζ). This example intends to
check the basic property that thermodynamic equilibrium solutions are preserved. The saturation states
τ sat
liq ≈ 0.55336, τ sat

vap ≈ 3.1276 for the van der Waals pressure of Example 2.3 with ζ = 0 are used as initial
states

U0(ξ) =

{
(τ sat

liq , 0)
ᵀ

for ξ ≤ 0,

(τ sat
vap, 0)

ᵀ
for ξ > 0,

and we apply the kinetic relation K7. The red line in Fig. 12 shows that the K7-Riemann solution and
initial condition are identical. Note that this holds for all kinetic relations in Table 3 because K(0, 0) = 0
and f(τ sat

liq , τ sat
vap) = 0, sc/e(τ sat

liq , τ sat
vap) = 0.

This changes for ζ �= 0. Figure 12 shows also the K7-Riemann solution for ζ = ±0.01. The K7-
Riemann solution for ζ = −0.01 is a composition of a shock wave followed by an evaporating wave with
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Fig. 13. Comparison of evaporation front speeds for different initial vapor pressure values pR. The measured values from
[38] are given in black color. The colored lines refer to interface speeds of two-phase Riemann solutions (color figure online)

speed s ≈ −0.004 and another shock wave, respectively, a composition of wave type 2L and 1R. For
ζ = 0.01 we find a rarefaction wave followed by a condensation wave with speed s ≈ 0.004 and another
rarefaction wave, respectively, a composition of wave type 1L and 4R.

One can interpret the examples with ζ �= 0 as considering a spherical bubble or droplet of the same
radius with the same pressure and Gibbs free energy inside and outside. In both cases the radius decreases
in order to compensate the pressure difference due to the Young–Laplace law. Due to this law the pressure
inside a static bubble or droplet is higher than that outside.

5.4. Validation with shock tube experiments

We compare the Riemann solvers against the shock tube experiments of Simoes-Moreira and Shepherd
[38]. In these experiments liquid n-dodecane is relaxed into a low-pressure reservoir. Initially, the liquid is
at saturation pressure and the vapor pressure varies between almost vacuum and the saturation pressure.
The authors then observe stable evaporation fronts of high velocity.

We consider here only the series of experiments at constant temperature T = 230 ◦C, and we compare
the measured (planar) evaporation front speed of the experiment with data from Riemann solutions.
We assume that the dissipation rate k∗ in kinetic relation K2 or K3 involves temperature1. Thus, the
isothermal series allows us to use the same value of k∗ for all test cases.

The experiment shows stable evaporation fronts until a vapor pressure of pR = 0.7 bar. Figure 13
shows the measured front speed for different values of pR. At higher pressure values either no evaporation
process starts or a train of bubbles and unstable waves is observed. The first case corresponds to zero
transition speed. In the second case no evaporation front could be determined. Our special interest lies
on the test cases which led to stable evaporation fronts, i.e., the range 0 bar ≤ pR ≤ 0.7 bar, in order to
compare front speeds.

The initial conditions for the Riemann problems are τL = τ sat
liq (pL = p(τ sat

liq ) ≈ 1.39 bar) and different
values for τR such that the vapor pressure varies from pR = 1.37 bar to almost vacuum. The initial
velocity is zero on both sides. The thermodynamic properties of n-dodecane are calculated with the
library CoolProp [5].

Figure 13 shows the propagation speed in Eulerian coordinates of the evaporation wave for the kinetic
relations K1, K3, K7 and Kdft. The constant for K3 is k∗ = 0.005 m6

/kg2, and the corresponding kinetic

1Density functional theory, cf. Example 5.1, predicts temperature-dependent resistivities.
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functions are monotone decreasing. For Kdft Theorem 3.8 is not applicable. However, we checked numer-
ically that the corresponding Lax curves are monotone such that Kdft-Riemann solutions exist uniquely.
The kinetic relations under consideration are shown in Fig. 10.

We compare the solutions with the shock tube experiments. For vapor pressure values from almost
vacuum to 0.4 bar the measured front speed values and the speed predicted by the two-phase Riemann
solver are constant. For lower pressure values the front speeds are decreasing.

The measured front speed is close to zero around 0.7 bar. The propagation speeds computed via
the two-phase Riemann solvers decrease much slower. They reach the value σ = 0 for pR = psat. This
reflects the fact that here only thermodynamic equilibrium solutions are static. A behavior like in the
experiment would require a kinetic relation with zero mass flux up to a certain threshold. Such kinetic
relations are described in Sect. 5.1.3. Recall that the authors observed unstable waves and bubbly flows
for pR > 0.7 bar. Such flows are not comparable with the solutions of Riemann problems.

Let us concentrate again on the range 0 bar ≤ pR ≤ 0.7 bar, where Simoes-Moreira and Shepherd
observed stable evaporation fronts. It is remarkable that the propagation speed values of Kdft-Riemann
solutions match the measured vales. Note that there is no parameter that could be tuned. The propagation
speeds for the kinetic relations K1, K3 and K7 are faster than those of the experiment. The difference
reduces with rising entropy dissipation. The comparison demonstrates that for this experiment non-
decreasing kinetic functions, e.g., Kdft, are necessary to predict the correct propagation speed.

The authors also measure the pressure near the evaporation front. This is used for a second study.
Assume that the measured values are comparable to the end states at the phase boundary. The measured
pressure values (Pbottom and Pexit in [38]) are plotted in Fig. 10 with black dots. The dots are far
from what we can reach with monotone decreasing kinetic functions. A kinetic function that is fitted to
the measured values and the saturation state would be a non-decreasing function. Note that the liquid
pressure values correspond to the liquid metastable phase and phase boundaries with such end states are
generally excluded by monotone decreasing kinetic functions, see Corollary 4.4.

6. Application of the two-phase Riemann solvers in interface tracking schemes and verification

As mentioned in Introduction one of the applications of two-phase Riemann solvers is numerical schemes
of tracking type. Such interface tracking schemes involve a tracking of the phase boundary and the
computation of fluxes from the liquid phase to the vapor phase and vice versa. Like in Godunov-type
schemes Riemann solvers are applied at edges which are identified with the phase boundary. In this way,
the interfacial flux is computed. A bulk solver, e.g., a finite volume or discontinuous Galerkin method, is
then used to solve the Euler system in the bulk. We analyze this approach with the scheme described in
Sect. 6.1 (see also [36]) for one-dimensional and radially symmetric solutions of (1.1)–(1.6). In the radially
symmetric framework it is possible to take into account curvature effects without requiring a complex
computation of the curvature. It bases on a first-order finite volume method with local grid adaption at
the interface and serves as a test environment for two-phase Riemann solvers.

Section 3 provides a constructive algorithm to determine two-phase Riemann solutions for kinetic
functions and surface tension. In one space dimension (without surface tension) this is also the exact
solution. We are now able to verify the interface tracking approach. This was kept open in [36] because
no exact solution was available. Furthermore, two previously developed (approximate) Riemann solvers
will be analyzed: the Liu (Riemann) solver from [19,24], see Sect. 5.1.5, and an approximate Riemann
solver for general kinetic relations (1.6) based on relaxation techniques [36]. We called the latter one
relaxation Kn-(Riemann) solver if the considered relation is Kn. All Riemann solvers are mappings of
type (3.14). To distinguish the different two-phase solvers we call Algorithm 3.10 (exact) Kn-Riemann
solver.
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The Riemann solver of Sect. 3.2 is implemented for K1, K3 and K7. The relaxation Riemann solver
[36] applies kinetic relations directly and is less restrictive. Implementations for K1, K2 and K3 are
available. The Liu solution is considered as an approximate solution of the two-phase Riemann problem,
since it applies the modified (homogenized) equation of state (5.2). Thus, we treat the Liu solver as an
approximate solver for kinetic relation K7, cf. Sect. 5.1.5.

6.1. A bulk solver with interface tracking

Let us introduce first the radially symmetric setting. For Rmax > Rmin > 0 let a radially symmetric
solution of system (1.1) in Ω × [0, θ) with Ω =

{
x ∈ R

d
∣∣ Rmin < |x| < Rmax

}
be given by � = �(x, t),

v = v(x, t). We assume that there is a single interface of form Γ(t) = γ(t)Sd−1 with γ(t) ∈ (Rmin, Rmax)
for t ∈ [0, θ). Then there is (accepting a double use of notations for the density and momentum) a function
W = W (r, t) = (�(r, t),m(r, t))

ᵀ
with

�(x, t) = �(r, t), �(x, t)v(x, t) =
x

r
m(r, t), |x| = r, (6.1)

such that W :
(
(Rmin, Rmax) \ γ(t)

) × [0, θ) → (Ãliq ∪ Ãvap) × R satisfies

Wt +
1

rd−1

(
rd−1 F (W )

)
r

=
d − 1

r
Q(W ) (6.2)

in { (r, t) ∈ (Rmin, Rmax) × (0, θ) | r �= γ(t) }. Here, Ãliq and Ãvap are the admissible sets for the density
corresponding to Aliq, Avap in Definition 2.1. System (6.2) is completed with the initial condition

W (r, 0) = W0(r) := �0(x) (1,v0(x) · x)
ᵀ

, |x| = r,

and the boundary condition m(Rmin, t) = m(Rmax, t) = 0 for t ∈ [0, θ). In (6.2) the functions F ,Q :
(Ãliq ∪ Ãvap) × R → R

2 are given by

F (W ) =

(
m

m2

� + p̃(�)

)
, Q(W ) =

(
0

p̃(�)

)
.

The bulk solver of the numerical scheme is a moving mesh finite volume scheme with explicit time stepping.
For two successive time levels tn < tn+1, n ∈ N, the associated time step is defined by Δtn = tn+1 − tn.

To describe the moving mesh strategy let us introduce points Rmin = x0 < x1 < · · · < xI+1 = Rmax.
The numerical algorithm will determine for any n ∈ N a number γn ∈ (Rmin, Rmax) which stands for the
position of the discrete phase boundary at time tn. Let

inγ =

{
k if |γn − xk| < |γn − xi| for all i = 1, . . . , I, i �= k,

i if |γn − xi| = |γn − xi+1|
(6.3)

be the index of the closest point to γn. For the spatial discretization we introduce a time-dependent
partition through the function R : N × R → P(R),

R(inγ , γn) =
{

r0, . . . , rI+1 ∈ [Rmin, Rmax]
∣∣∣ ri = xi for i �= inγ and rin

γ
= γn

}
.

Figure 14 (taken from [36]) shows possible realizations of R.
In order to preserve the original multidimensional conservation we consider (6.2) not as a one-

dimensional system, but approximate cell averages for the original spherically symmetric situation, see,
e.g., [32]. We follow then the classical finite volume strategy in R

d instead and introduce multidimensional
grid cells

Kn
i =

{
x ∈ R

d
∣∣ rn

i ≤ |x| ≤ rn
i+1

}
for rn

i ∈ R(inγ , γn), i = 0, . . . , I,
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Fig. 14. Possible mesh modification: moving mesh strategy for tn → tn+1 resp. tn+1 → tn+2 and local remeshing when
in+1
γ = inγ + 1. The dots denote the actual partition obtained by applying R, and the gray boxes indicate the cells

with cell volume |Kn
i | = Ad(rn

i+1) − Ad(rn
i ) and surface measure |∂Kn

i | = A′
d(r

n
i+1) − A′

d(r
n
i ). Here Ad(r)

is the volume of a d-dimensional sphere with radius r > 0.
We consider now iterates

W n
i ≈ 1

|Kn
i |

rn
i+1∫

rn
i

A′
d(r)W (r, tn) d r.

The family { W n
i | n ∈ N, 0 ≤ i ≤ I } is computed for i = 0, . . . , I by

∣∣∣Kn+1,−
i

∣∣∣ W n+1
i = |Kn

i | W n
i

− Δtn
(
A′

d(r
n
i+1)F

n
i+1,− − A′

d(r
n
i )F n

i,+ − (
A′

d(r
n
i+1) − A′

d(r
n
i )

)
Q(W n

i )
)

(6.4)

for n > 0, Kn+1,−
i with respect to R(inγ , γn+1), and

W 0
i =

1
|K0

i |

r0
i+1∫

r0
i

A′
d(r)W0(r) d r.

It remains to fix the fluxes F n
i,−/+ in (6.4). Let Fnum : ((Ãliq∪Ãvap)×R)2 → R

2 be an arbitrary numerical
flux that is consistent with F from (6.2). We apply the two-phase Riemann solver (3.14) and get two
states denoted by W n

−/+ and the speed denoted by sn from the interface solver. The fluxes for (6.4) are
then given by

F n
i,−/+ =

{
Fnum(W n

i−1,W
n
i ) for i �= inγ ,

F (W n
−/+) − sn W n

−/+ for i = inγ .

For given iterates { W n
i | n ∈ N, 0 ≤ i ≤ I } we define the piecewise constant approximation

Wh(r, t) = W n
i for (r, t) ∈ [rn

i , rn
i ) × [tn, tn+1).

The complete numerical method is summarized in the subsequent algorithm.

Algorithm 6.1 (Bulk solver with interface tracking). Let a two-phase Riemann solver (3.14), W 0
0 , . . . ,W 0

I

and γ0 be given. Find i0γ via (6.3), construct R(i0γ , γ0), and set n = 0, s0 = 0.
While tn < θ do.
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Step 1 (Interface) Compute W n
−, W n

+ and sn from the states W n
in
γ −1, W n

in
γ

at the interface and the

surface tension ζ = ζ∗

γn applying (3.14).

Step 2 (Bulk) Construct the new mesh R(inγ , γn+1), compute
∣∣∣Kn+1,−

i

∣∣∣ and apply the update formula

(6.4) for i = 0, . . . , I to obtain Wh(·, tn+1).
Step 3 (Projection to New Mesh) Find in+1

γ according to (6.3). If in+1
γ �= inγ the function Wh(·, tn+1) is

substituted by the L2-projection of itself onto the set of piecewise constant functions defined on
R(in+1

γ , γn+1).
Step 4 (Update) n → n + 1

In the following we use either the dimensionless van der Waals pressure from Example 2.3 or equa-
tions of state that are provided by the thermodynamical library CoolProp [5]. For the numerical flux
computation in the bulk phases we use the local Lax–Friedrichs flux [31]. Unless otherwise specified we
apply a CFL-like time step restriction with the CFL number 0.9; details are described in [36].

6.2. Experimental order of convergence

We consider solutions W =
(
�(r, t),m(r, t)

)ᵀ
of the radially symmetric system (6.2) for the initial data

W (r, 0) =

{
WL : r ∈ [Rmin, γ0),
WR : r ∈ [γ0, Rmax].

(6.5)

The states WL ∈ Ãliq/vap × R and WR ∈ Ãvap/liq × R are constant and in different phases. Thus, the
phase boundary is initially located at γ0. Note that in one spatial dimension (6.5) defines a Riemann
problem. The set [Rmin, Rmax] is just an interval for any Rmin ∈ R. The domain in the multidimensional
case is a disk or a ball with a hole in the center, since Rmin > 0. The hole is due to the singularity of
the system (6.2) in r = 0, see [36]. The domain Ω ⊂ R

d and the time interval [0, θ] are chosen such
that the waves originating in γ0 do not reach the boundary. Furthermore, we use the boundary condition
W (Rmin, t) = WL, W (Rmax, t) = WR for t ∈ [0, θ].

With respect to a reference solution Ŵ = (�̂, m̂)
ᵀ

we compute the relative error

eI =

θ∫

0

Rmax∫

Rmin

Ad(r)
( |�I − �̂|

1 + |�̂| +
|mI − m̂|
1 + |m̂|

)
d r d t,

where (�I ,mI)
ᵀ

is the numerical solution on a grid with I ∈ N cells and Ad(r) is the volume of a
d-dimensional sphere with radius r > 0.

For a sequence of grids with Il ∈ N cells and corresponding relative errors eIl
we compute the exper-

imental order of convergence eocl := ln
(
eIl+1

/
eIl

)
/ln

(
Il

/
Il+1

)
. The number I is also the degree of

freedom for the bulk solver. The optimal order that can be expected in view of the first-order scheme
and discontinuous exact solutions is between 0.5 and 1, cf. [31].

6.2.1. Verification of the interface tracking approach in 1D. In one space dimension the solution of the
Riemann problem (6.5) is given by the exact Kn-Riemann solver after the transformation to Eulerian
coordinates. Thus, it is considered as reference solution. This framework allows us to examine convergence
toward the exact solution. We consider the kinetic relation K3 with k∗ = 0.005 m6

/kg2 and an equation of
state for the fluid n-dodecane at T = 230 ◦C provided by the library CoolProp [5].

Table 5 shows the experimental order of convergence for the conditions (A) and (B) in Table 4. The
order is in the expected optimal range in view of a first-order scheme. Here, the initial densities �L ∈ Ãliq,
�R ∈ Ãvap are computed, such that the pressure values in column pL and column pR hold initially. Note
that such conditions were already used in Sect. 5.4.
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Table 4. Series of initial conditions for n-dodecane in d spatial dimensions. The parameter for K3 is k∗ = 0.005m6/kg2

pL pR vL vR K θ γ0 Rmin Rmax d

(A) 1.39 bar 0.4 bar 0 0 K3 0.8 ms 0.7 m 0.0 m 1.0 m 1
(B) 1.39 bar 1.0 bar 0 0 K3 0.8 ms 0.7 m 0.0 m 1.0 m 1

(C) 0.098 bar 0.13 bar 0 0 K3 0.03 ms 0.05 m 0.033 m 0.07 m 2
(D) 0.098 bar 0.13 bar 0 0 K3 0.03 ms 0.1 m 0.066 m 0.14 m 3

Table 5. Error analysis for the front tracking scheme with the exact K3-Riemann solver, see Sect. 6.2.1 and Sect. 6.2.2

Test (A) Test (B) Test (C) Test (D)

I eI eoc eI eoc I eI eoc eI eoc

500 5.9e−04 8.6e−04 200 4.0e−07 2.6e−07

1000 3.7e−04 0.68 4.8e−04 0.84 400 2.0e−07 1.00 1.3e−07 0.97
2000 2.2e−04 0.76 2.6e−04 0.88 800 8.5e−08 1.23 5.8e−08 1.21
4000 1.2e−04 0.88 1.4e−04 0.91 1600 2.7e−08 1.65 1.8e−08 1.67
8000 6.2e−05 0.91 7.9e−05 0.81 3200 4.0e−09 2.77 2.3e−09 3.01

Fig. 15. Pressure distribution for test case (A) with n-dodecane fluid. In color the numerical solution with K3-Riemann
solver and in black color the (exact) K3-Riemann solution

Figure 15 displays the pressure distribution of test case (A) at time t = 0.8ms. It shows the numerical
solution for a sequence of refined grids and the exact K3-Riemann solution. The solution is a composition
of a 1-shock wave, an evaporation wave and a 2-shock wave. The phase boundary is tracked sharply, and
the bulk shock waves are approximated very well. Note that this example is more challenging than the
test cases for the van der Waals fluid because the pressure in the liquid phase is much more stiff than in
the vapor phase. For instance, one finds for the initial states p′(τL) ≈ −106 bar kg/m3 in the liquid phase
and p′(τR) ≈ −0.65 bar kg/m3 in the vapor phase. Furthermore, set Aliq is extreme small compared to the
spinodal phase.

6.2.2. Verification of the interface tracking approach for radially symmetric solutions. Exact radially
symmetric solutions are not available. For simplicity and in order to visualize the wave structure let us
use the same initial data (6.5). As reference solution we use the approximation itself computed on a very
fine grid with I = 6400 cells. Thus, we are merely able to examine grid convergence.

We consider an n-dodecane bubble in liquid n-dodecane with the initial states (C) and (D) in Table 4.
Test case (C) is considered in R

2, and (D) is considered in R
3. The resulting time step can get very low

for small values of Rmin due to the CFL condition, see [36]. This limits the size of the computational
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Fig. 16. Radial symmetric two-dimensional solution. Pressure distribution of test case (C) and n-dodecane fluid. In color
the numerical solution with K3-Riemann solver. The numerical solution for I = 6400 cells is used as reference solution for
the error computation in Table 5

domain and thus also the diameter of bubbles or droplets. For that reason we consider quite big bubbles.
The time step for I = 6400 and CFL = 0.9 was in the order of 10−10 s.

The surface tension at T = 230 ◦C is ζ∗ = 0.0089 N/m (computed with [5]). Due to the chosen bubble
radii surface tension does not affect the dynamics in these examples. Note that the initial pressure values
are far from the saturation pressure, here psat ≈ 1.39 bar, and the liquid state is metastable.

Table 5 shows the error and the experimental order of convergence for the kinetic relation K3 in
the cases (C) and (D). The computed order varies between 1 and 3. Figure 16 displays the pressure
distribution on those grids which have been used for the error analysis. This demonstrates that the
numerical solution converges with increasing grid resolution toward the finest solution. Note that plateau
values do not form due to the intrinsic geometry change in r. Any fluid movement toward the center
accumulates mass, while for flows in direction of the outer boundary mass is distributed over increasing
volume units. Thus, the pressure between r = 0.05 and r = 0.065 is not constant.

We have already seen in Sect. 6.2.1 that the method for d = 1 to the exact solution. Here, we observe
grid convergence for a real fluid equations of state. Hence, we expect that the method converges also in
the multidimensional case toward the exact solution.

6.3. Experimental order of convergence with approximate Riemann solvers

6.3.1. Application of the Liu Riemann solver. We verify the Riemann solver [24] in the framework of the
one-dimensional interface tracking scheme. The solver is implemented for the van der Waals pressure. We
compare the numerical solution for kinetic relation K7.

Table 7 shows the error values and the experimental orders of convergence for increasing grid resolution
and the test cases (E)–(G) in Table 6. The initial values of the cases (E) and (F) are in the stable phases.
Here, the scheme converges with the expected order. However, for metastable initial values [case (G)]
the algorithm converges to a different solution. The error values in that case remain almost constant
for decreasing grid sizes. The reason is the modification of the equation of state between the saturation
states, see Sect. 5.1.5.

6.3.2. Application of the relaxation Riemann solver. The relaxation solver [36] is implemented for van der
Waals fluids and also for external thermodynamic libraries. We compare the exact K3-Riemann solution.

Example 6.2 (Error analysis for van der Waals equations of state). The bulk solver combined with the
K3-relaxation Riemann solver is applied to the test cases (H)–(J) in Table 6. We could not observe
decreasing error norms for the time step restriction with CFL = 0.9: The numerical solution in case (H)



ZAMP On Riemann solvers and kinetic relations Page 35 of 40 76

Table 6. Series of initial conditions for a van der Waals fluid in one spatial dimension. The parameter for K3 is
k∗ = 0.2

τL τR vL vR K θ γ0 Rmin Rmax d

(E) 0.553 5.5 1.0 0.0 K7 0.20 0.5 0 1 1
(F) 0.500 5.0 0.0 5.0 K7 0.05 0.5 0 1 1
(G) 0.557 3.0 0.0 0.0 K7 0.10 0.5 0 1 1
(H) 0.553 5.5 1.0 0.0 K3 0.20 0.5 0 1 1
(I) 0.530 3.0 0.1 5.0 K3 0.10 0.5 0 1 1
(J) 0.557 3.0 0.0 0.0 K3 0.10 0.5 0 1 1

Table 7. Error analysis for the method with the Liu Riemann solver, see Sect. 6.3.1

Test (E) Test (F) Test (G)
I eI eoc eI eoc eI eoc

500 3.8e−04 2.9e−04 1.0e−04
1000 2.2e−04 0.81 1.9e−04 0.64 9.7e−05 0.10
2000 1.2e−04 0.86 1.2e−04 0.68 9.2e−05 0.07
4000 6.6e−05 0.88 7.2e−05 0.71 8.9e−05 0.05
8000 3.6e−05 0.86 4.3e−05 0.74 8.7e−05 0.03

Table 8. Error analysis for the method with the relaxation K3-Riemann solver, see Sect. 6.3.2

Test (H) Test (I) Test (J) Test (B)

I eI eoc eI eoc eI eoc eI eoc

500 6.3e−04 3.9e−04 8.3e−05 8.8e−04
1000 4.2e−04 0.60 2.8e−04 0.49 7.4e−05 0.17 6.1e−04 0.53
2000 2.9e−04 0.52 2.0e−04 0.47 6.6e−05 0.16 4.3e−04 0.50
4000 2.2e−04 0.38 1.5e−04 0.45 6.1e−05 0.10 3.3e−04 0.40
8000 1.9e−04 0.23 1.1e−04 0.41 5.8e−05 0.07 2.8e−04 0.24

seems to converge toward a different solution; initial conditions of case (I) lead to negative values of
specific volume and pressure. The numerical solution in case (J) was oscillatory.

Table 8 shows the result for CFL = 0.1. The relaxation solver needs apparently more iteration steps to
converge. This has been already reported in [9]. However, the convergence orders are low and decreasing.
In particular for case (J) the numerical solution does not converge to the exact solution.

Example 6.3 (Error analysis for n-dodecane equations of state). For the second example we use the test
cases of Table 4. The fluid under consideration is n-dodecane. We try several combinations of parameters
and CFL numbers, but only test case (B) leads to a stable result. Any proper choice of the parameters
for the first few iterates fails at later time steps. The reasons are negative specific volume values or values
in the spinodal phase.

The initial conditions of test case (B) are near to the equilibrium solution. Then elementary waves are
almost negligible, and the solution mainly consists of a single traveling wave. Note that this is a simple
test case for the relaxation Riemann solver because the solver is conceived in order to preserve isolated
phase boundaries.

The error for test case (B) is shown in Table 8. Figure 17 displays the solution on different grids
and the exact K3-Riemann solution. One clearly can see that the numerical solution converges, but to a
different solution.

The examples demonstrate that the relaxation solver combined with the interface tracking scheme do
not converge to the exact solution. We observe grid convergence toward some other solution. In previous
contributions [9,36] the relaxation solver was applied only to very specific examples, in particular much
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Fig. 17. Pressure distribution for test case (B) with n-dodecane fluid. In color the numerical solution with relaxation
K3-Riemann solver and in black the (exact) K3-Riemann solution

simpler equations of state and linear kinetic functions. More complex problems can now be solved with
the exact Kn-Riemann solvers.

6.4. Global entropy release and steady-state solutions

A transient solution should reach its steady state W (x, t) → W ∞(x) ∈ (Ãliq ∪ Ãvap) × R for t → ∞
and at the same time Γ(t) → Γ∞ ⊂ R

d and Ωliq/vap(t) → Ω∞
liq/vap ⊂ R

d. Furthermore, the steady state
should be the minimizer of the associated mathematical entropy. For reflecting boundary conditions the
mathematical entropy at time t is given by

E(�(·, t),m(·, t)) =
∫

Ωliq∪Ωvap

�(x, t)ψ

(
1

�(x, t)

)
+

|m(x, t)|2
2 �(x, t)

d v + ζ∗ |Γ(t)| .

Gurtin has demonstrated in [20] that the minimum E∞ := min{E(�∞,m∞)| ∫
Ω

�∞ dx =
∫
Ω

�0 d x} is

determined by the global thermodynamic equilibrium. Moreover, the minimizer corresponds to a single
spherical droplet or bubble, cf. [20]. Thus, we expect that Γ∞ is a sphere with some radius γ∞ > 0 and

�∞(x) =

{
1/τ sat

liq for x ∈ Ω∞
liq,

1/τ sat
vap for x ∈ Ω∞

vap,
m∞(x) = 0.

Note that saturation states τ sat
liq/vap = τ sat

liq/vap(ζ∞) exist uniquely, since for spherical bubbles ζ∞ :=
(d − 1) ζ∗/γ∞ is constant. The same holds for spherical droplets, with ζ∞ := −(d − 1) ζ∗/γ∞.

We consider a van der Waals fluid with ζ∗ = 0.01 and radially symmetric solutions in Ω =
{x ∈ R

2 | 0.005 < |x| < 2 }. The phase boundary is initially located at Γ(0) = S. The saturation states
of a droplet with radius 1 are τ sat

liq (0.01) ≈ 0.55444, τ sat
vap(0.01) ≈ 3.15. Initial condition

(
�
v

)
(x, 0) =

{
(1/τ sat

liq , 0.05)
ᵀ

for |x| ∈ [0.005, 1],
(1/τ sat

vap,−0.05)
ᵀ

for |x| ∈ (1, 2]

and boundary condition v · n = 0 at ∂Ω are such that right from the beginning waves are emitted and
reflected from the boundary. The initial condition satisfies �(x, 0) = �∞(x) such that potential energy
and surface energy are initially at the global minimum, while the total kinetic energy is positive. As time
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Fig. 18. Evolution of the total mathematical entropy in time. Both figures correspond to the same legend

advances, the waves run forth and back, within some density range around the saturation solution and
with decreasing amplitudes.

We compare the exact and approximate Riemann solvers. We will find that only the newly developed
exact Kn-Riemann solvers lead to monotone energy decay.

Example 6.4 (Entropy release applying the Liu Riemann solver). The numerical results in Fig. 18 are
performed for the bulk solver on a grid with I = 100 cells, combined with the Riemann solvers. Figure 18
shows the evolution of the total entropy t → E(�,m) (left) and the shifted total entropy t → E(�,m)−E∞

(right) in order to use a logarithmic scale. The steady-state solution is given by above saturation states.
We find E∞ ≈ −21.08621 where the contribution of the surface energy is ζ∗ |Γ∞| = 0.02π.

We note that the Liu solver leads to an increase in the total entropy at the beginning of the simulation.
For t > 8 the entropy decays very fast compared to the result obtained with the K7-Riemann solver.
This strange behavior is due to the fact that the Liu solver by construction applies a different pressure
function as the bulk solver. Note that the initial states were chosen such that the bulk solution varies
around the saturation states. Thus, initial states for the Riemann solvers are very often in the metastable
phases where the pressure functions actually are different.

Example 6.5 (Entropy release applying the relaxation Riemann solver). For the relaxation solver with
K1

3 and k∗ = 0.2 one observes in Fig. 18 that the method converges to the stationary solution up to a
difference of 10−5. For t > 150 the numerical solution behaves unstable and E remains on a constant
level. The entropy decay is not completely monotone; furthermore, a CFL number of 0.01 is necessary.
For CFL = 0.5 and CFL = 0.1 the final difference to the stationary solution is around 10−2. Decreasing
the CFL number once more (not shown in the figure) or using a higher dissipation rate, i.e., K2

3 with
k∗ = 2, pushes the final difference below 10−6.

Example 6.6 (Entropy release applying the exact Riemann solver). The numerical results for the inter-
face tracking scheme combined with the exact Riemann solvers are convincing. Figure 18 shows strictly
monotone decreasing values of total mathematical entropy toward the expected limit E∞. Although the
surface tension is entirely handled on the Riemann solver level, the method is able to predict the global
contribution of the surface energy. The decay rate for K7 is higher than for K1

3 . Note that kinetic relation
K7 dissipates more entropy than K1

3 with k∗ = 0.2. This indicates that increasing the interfacial entropy
dissipation has a damping effect.
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Fig. 19. Time evolution of the radii γ(t) of vapor bubbles in different fluids and for different kinetic relations

6.5. Condensation of bubbles

We consider spherical bubbles in the domain Ω = {x ∈ R
2 | 0.5mm < |x| < 20mm } with initial and

boundary conditions such that the bubbles vanish. More precisely, we compare the evolution of the phase
boundary until it approaches the inner boundary. The test is performed for equations of state of the fluids
n-dodecane at 230 ◦C, butane at 20 ◦C, acetone at 20 ◦C, water at 80 ◦C and different kinetic relations.
The fluid n-dodecane was already used in former test cases; the other fluids are just randomly selected.
Note that Algorithm 3.10 does not rely on a specific equation of state and enables to compare diverse
fluids and kinetic relations.

The setting is as follows. We compute the saturation pressure psat (with ζ = 0) for each fluid and apply
initial density values such that the vapor pressure is 0.4 psat and the liquid pressure is 4 psat. The initial
fluid velocity is zero, and the bubble radius is γ0 = 10mm. Waves at the inner boundary are reflected.
At the outer boundary, we apply a Dirichlet condition for the density to keep the pressure constant. The
fixed pressure at the outer boundary guarantees that the bubble vanishes.

We use the interface tracking scheme with the exact two-phase Riemann solver of Algorithm 3.10 for
I = 100 cells and CFL = 0.9. The evolution of the bubble radii, see Fig. 19, depends on the selected
fluid and the kinetic relation. We do not want to classify that correlation. But, as expected, all bubbles
vanish for the selected boundary condition. For higher entropy dissipation (kinetic relation K7) the vapor
liquefies faster. The difference is small for butane and n-dodecane but still visible. Once more, we see
that increasing the interfacial entropy dissipation has a damping effect.

The radius is not always monotone decreasing, see the example of acetone with K1. At t = 1.2ms
the radius is increasing. This is an effect of the bulk dynamics, but we are wondering if it is influ-
enced by curvature effects or the volume change toward the center. The same setting with ζ∗ = 0
(circles in Fig. 19) shows that surface tension is too low to affect the evolution. The behavior in
the one-dimensional setting (denoted by triangles) is different. The radius decreases monotonously but
slower.

Let us remark that nucleation of bubbles is not taken into account. However, we observe waves of
high amplitudes and negative pressure values in the liquid shortly after the bubbles collapsed. Negative
pressure values may indicate the nucleation of a new vapor phase. The effect of surface tension was not
visible in the examples because the curvature is too low. The simulation of smaller bubbles requires
a different bulk solver. The time step in this experiment is between 10−10 s and 10−9 s, regardless of
the fluid. However, the simulation of the water test cases takes much longer and the evaluation of the
associated equations of state is apparently more expensive.
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6.6. Summary and conclusion

In this section we have shown how the exact Riemann solver from Sect. 5 can be used in an interface
tracking scheme for general two-phase initial value problems. The combination of both methods may pave
the way for quantitatively correct simulation of two-phase behavior.

The first examples underline that the approach works successfully for real fluid’s equations of state
(in particular from the alkane family). It is verified that the integration of a non-homogeneous term into
the jump conditions for the Riemann solver suffices to account for geometric effects induced by curved
interfaces.

Thermodynamical consistency is an important validation criterion for any numerical method. We
demonstrated that the interface tracking with exact Riemann solution leads to the expected entropy
decay, even in situations where other approaches based on approximate Riemann solvers or the Liu
solution clearly fail. In fact, the latter two approaches become doubtful if metastable states are involved.

We concluded the section with a numerical experiment for a condensating radially symmetric vapor
bubble in various fluids and using various kinetic relations. These results can be understood as the starting
point to comparisons with further experimental findings.
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