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Abstract. Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid me-
chanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step
in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully
discrete approximation of the Navier–Stokes–Voigt model by an implicit Euler algorithm (with respect to the time variable)
and a Fourier–Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible
Navier–Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant
solutions.
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1. Introduction

We consider the incompressible Navier–Stokes equations (NSE) with periodic boundary conditions

∂tu − Δu + (u · ∇)u + ∇p = 0 in (0, T ) × T
3,

∇ · u = 0 in (0, T ) × T
3,

u|t=0 = u0 on T
3,

(1.1)

where T > 0 is arbitrary and T
3 is the three-dimensional flat torus. Here, the velocity field u ∈ R

3 and
the pressure p ∈ R are both space periodic and with zero mean value. Even if turbulent phenomena arise
for large values of the Reynolds number, we set here the viscosity equal to one and the external force
equal to zero, since these assumptions do not affect the main result.

Obtaining an accurate prediction (of averaged quantities) of turbulent flows is a central difficulty
in computational fluid mechanics, and we recall that direct numerical simulations have—at present—
unaffordable computational costs to perform this task. The most promising tools to perform accurate
simulations of turbulent fluids are given by the large eddy simulations (LES) models. LES models are
based on the idea that in many practical situations it is enough to simulate the mean characteristics of the
flow by averaging/filtering the equations. A very popular LES model is given by the Navier–Stokes–Voigt
equations, whose Cauchy problem reads as follows:

∂t(uα
t − α2Δuα) − Δuα + (uα · ∇)uα + ∇pα = 0 in (0, T ) × T

3,

∇ · uα = 0 in (0, T ) × T
3,

uα|t=0 = u0 on T
3.

(1.2)

Here, the parameter α > 0 has the dimension of a length and—roughly speaking—the scales smaller than
α are truncated. It is also well known that for system (1.2) one can prove global existence and uniqueness
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of solutions. We refer to [9,19] for the analysis of the Cauchy problem (1.2) and for the interpretation of
the results. In particular, the regularization introduced by the operator −∂tΔ is of hyperbolic type (not
an extra dissipation as in eddy viscosity models) and the system is of pseudo-parabolic type. To assess
the model from the mathematical point of view, one important question is to show that the solutions, in
the limit as α → 0, produce weak solutions of the Navier–Stokes equations which satisfy the local energy
inequality

∂t

( |u|2
2

)
+ ∇ ·

(( |u|2
2

+ p

)
u

)
− Δ

( |u|2
2

)
+ |∇u|2 ≤ 0, (1.3)

in the sense of distributions over (0, T ) × T
3.

We recall that starting with the results on global existence of weak solutions for the NSE by Leray [20]
and Hopf [18] a still unsolved problem is that of uniqueness and regularity of these solutions. Moreover,
among weak solutions those satisfying the local energy inequality (1.3) are of particular importance
because for them holds true the celebrated partial regularity theorem of Caffarelli–Kohn–Nirenberg [8].
Finally, we notice that the inequality (1.3) is a natural request that solutions constructed by numerical
methods should satisfy, see Guermond [16,17]. A weak solution of (1.1) satisfying (1.3) is known in
the literature a suitable weak solution. The first existence result of suitable weak solutions is due to
Caffarelli–Kohn–Nirenberg [8]. Then, the convergence to suitable weak solutions has been proved for
different methods, see [1,2,6,12], but the approximation methods are of all of “infinite-dimensional type”,
that is obtained by approximating the NSE (1.1) by another system of partial differential equations, and
few results are available when the approximation methods are finite-dimensional as in numerical methods.
In [14,15], Guermond proved the convergence to a suitable weak solution for numerical solutions obtained
by using some finite element Galerkin methods (only with respect to the space variables), while some
conditional results on Fourier-based Galerkin methods on the torus are proved in [7]. In particular, the
convergence to a suitable weak solution of the standard Fourier–Galerkin method is still an interesting
open problem and the space-periodic setting and the use of Fourier series expansion is not an assumption
to simplify the technicalities. From the numerical point of view, another important issue is the time
discretization. In [5], it is proved that solutions of periodic Navier–Stokes equations constructed by the
standard implicit Euler algorithm are suitable. The result has been later extended to a general domain
assuming at the boundary slip vorticity-based conditions, which are important in the vanishing viscosity
problem [3,4]. The case of Dirichlet boundary conditions is treated in Gigli and Mosconi [13] with a
semigroup approach.

The aim of this paper is to perform a space–time full discretization of (1.2) and to prove the conver-
gence (varying the parameters of the numerical discretization and as α → 0) to approach weak solutions
of Navier–Stokes equations satisfying the local energy inequality.

In order to discretize in time (1.2), we use the implicit Euler algorithm, while in space we use the
spectral Galerkin methods, based on Fourier series expansion

dt(uα,m
n − α2Δuα,m

n ) − Δuα,m
n + Pn((uα,m

n · ∇)uα,m
n ) = 0, (1.4)

where dt denotes the backward finite difference operator and Pn is the projection over the space of
Fourier modes smaller of equal than n; see Sect. 3 for the precise formulations of the discretization.
Here, we only point out that the output of this Euler–Fourier–Galerkin type of approximation is a triple
(uα,M

n , vα,M
n , pα,M

n ), where M ∈ N is the parameter defining the time-step κ = T/M . The main result of
this paper is the following theorem. See Sect. 2 for the notations concerning the spaces.

Theorem 1.1. Let u0 ∈ H2
0,σ and let {(uα,M

n , vα,M
n , pα,M

n )}(n,α,M) be a sequence of solutions of the approx-
imating Euler–Fourier–Galerkin scheme of (1.4). Let {Mn}n ⊂ N be any monotone sequence converging
to infinity and let αn ⊂ (0, 1) be any monotone sequence converging to zero and such that

lim
n→∞ nα3

n = 0. (1.5)
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Then, there exists

(u, p) ∈ L∞(0, T ;L2
0,σ) ∩ L2(0, T ;H1

0,σ) × L5/3((0, T ) × T
3),

such that, up to a subsequence not relabelled, the following convergences hold true as n → ∞:

vαn,Mn
n → u strongly in L2((0, T ) × T

3),

uαn,Mn
n → u strongly in L2((0, T ) × T

3),

∇uαn,Mn
n ⇀ ∇u weakly in L2((0, T ) × T

3),

pαn,Mn
n ⇀ p weakly in L5/3((0, T ) × T

3).

Moreover, (u, p) is a suitable weak solution of (1.1) in the sense of Definition 2.2.

Remark 1.2. The assumption on the initial datum can be relaxed, by an appropriate regularization.
We do not state and prove Theorem 1.1 under this more general hypothesis in order to avoid further
technicalities.

Remark 1.3. We note that, while the sequence {αn}n is related to n by (1.5), the sequence {Mn}n is
arbitrary. This means that there is no need to link the time and the space approximation in order to
have convergence of the scheme. Theorem 1.1 may be equivalently stated in terms of a double sequence
{(uαn,M

n , vαn,M
n , pαn,M

n }(M,n), and the convergences hold as (M,n) → ∞.

The convergence of Fourier–Galerkin method of (1.2) to a suitable weak solutions of (1.1), without
the time discretization, but with αn satisfying (1.5) has been proved as one of the results in [6]. Here,
new difficulties arise from the non-trivial combinations of the time discretization and the proof of certain
discrete a priori estimates, which are counterpart of those obtained in [6].

The problem of the convergence of numerical schemes to solutions satisfying local energy-type balance
is present also in several other equations in fluid mechanics. Among them, we want to cite the case of
the two-dimensional Euler equations with vorticity in Lp. In this case, satisfying the local energy balance
is almost equivalent to solving the vorticity equations in the renormalized sense and the additional
information obtained is that the solution obtained is Lagrangian; we refer to [10,11] for further details.

Plan of the paper In Sect. 2, we fix the notation that we use in the paper, and we recall the main
definitions regarding the NSE (1.1) and the tools used. In Sect. 3, we introduce and describe in detail the
space–time discretization we consider. In Sect. 4, we prove the main a priori estimates needed to study
the convergence, and finally in Sect. 5 we prove Theorem 1.1.

2. Preliminaries

In this section, we give details on the functional setting and then we recall the main definitions concerning
weak solutions of incompressible Navier–Stokes equations.

2.1. Notations

We introduce the notations typical of space-periodic problems. The three-dimensional torus is defined
by T

3 := R
3/2πZ3. We denote with C∞

c (I;C∞(T3)) the space of smooth functions or vectors which are
compactly supported on the interval I ⊂ R and 2π-periodic with respect to the space variables. In the
sequel, we shall use the customary Lebesgue spaces Lp(T3) and Sobolev spaces W k,p(T3) and we shall
denote their norms by ‖ · ‖p and ‖ · ‖Wk,p . Moreover, in the case p = 2 we use the notation Hs(T3) :=
W s,2(T3) and, for simplicity, we shall not distinguish between scalar and vector-valued functions. Finally,
we use (·, ·) to denote the L2(T3) paring. Since we are working in the periodic setting, we denote by the
subscript “0” the subspaces of zero average vectors of L2(T3) and Hs(T3), for any exponent s ≥ 0.
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The divergence-free constraint is also directly included in the function spaces in the analysis of the
NSE and, as usual, we define

L2
0,σ :=

⎧⎨
⎩w : T3 → R

3, w ∈ L2(T3), ∇ · w = 0
∫
T3

w dx = 0

⎫⎬
⎭ ,

Hs
0,σ :=

⎧⎨
⎩w : T3 → R

3, w ∈ Hs(T3), ∇ · w = 0
∫
T3

w dx = 0

⎫⎬
⎭ ,

and we recall that the divergence condition can be easily defined in terms of the Fourier coefficients. For
any s > 0, we denote by H−s := (Hs

0,σ)′.
Finally, the space Lp(0, T ;X), where X is a Banach space, is the classical Bochner spaces endowed

with its natural norm denoted by ‖ · ‖Lp(X).

2.2. Leray–Hopf and suitable weak solutions

We start by recalling the definition of weak solution of the initial value problem (1.1), as introduced by
Leray and Hopf.

Definition 2.1. (Leray–Hopf Weak Solutions) The vector field u ∈ L∞(0, T ;L2
0,σ) ∩ L2(0, T ;H1

0,σ) is a
Leray–Hopf weak solution of (1.1) if:

(1) u satisfies the following identity

T∫
0

(u, ∂tϕ) − (∇u,∇ϕ) − ((u · ∇)u, ϕ) dt + (u0, ϕ(0)) = 0,

for all smooth, periodic and divergence-free functions ϕ ∈ C∞
c ([0, T );C∞(T3)) with zero mean value

over T
3.

(2) The following energy inequality holds true:

1
2
‖u(t)‖22 +

t∫
0

‖∇u(s)‖22 ds ≤ 1
2
‖u0‖22 for all t ∈ [0, T ].

We remark that u attains the initial datum in the strong sense, namely

lim
t→0+

‖u(t) − u0‖2 = 0.

Suitable weak solutions are a particular subclass of Leray–Hopf weak solutions. They were introduced
by Scheffer in [22] and Caffarelli–Kohn–Nirenberg in [8]. The definition in the periodic setting is the
following.

Definition 2.2. (Suitable Weak Solutions) A pair (u, p) is a Suitable Weak Solution to the Navier–Stokes
equation (1.1) if u is a Leray–Hopf weak solution, p ∈ L

5
3 ((0, T )×T

3), and the local energy balance holds
true

T∫
0

∫
T3

|∇u|2φ dxdt ≤
T∫

0

∫
T3

[ |u|2
2

(∂tφ + Δφ) +
( |u|2

2
+ p

)
u · ∇φ

]
dxdt, (2.1)

for all φ ∈ C∞
0 (0, T ;C∞(T3)) such that φ ≥ 0.
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3. Time-discrete Fourier–Galerkin methods

In this section, we introduce the space–time full discretization of the Navier–Stokes–Voigt equations (1.2)
we are going to analyse. Let P denote the Leray projector of L2

0(T
3) onto L2

0,σ, which explicitly reads in
the orthogonal Hilbert basis of complex exponentials as follows:

P : g(x) =
∑

k∈Z3\{0}
ĝk eik·x �→ Pg(x) =

∑
k∈Z3\{0}

[
ĝk − (ĝk · k)k

|k|2
]

eik·x.

Then, for any n ∈ N, we denote by Pn the projector of L2
0(T

3) on the finite-dimensional sub-space
Vn := Pn(L2

0,σ), given by the following expression

Pn : g(x) =
∑

k∈Z3\{0}
ĝk eik·x �→ Png(x) =

∑
0<|k|≤n

[
ĝk − (ĝk · k)k

|k|2
]

eik·x.

The (space) approximate Fourier–Galerkin method to (1.2) is given by the following system

∂t(uα
n − α2Δuα

n) − Δuα
n + Pn((uα

n · ∇)uα
n) = 0 in (0, T ) × T

3,

uα
n|t=0 = Pnu0 in T

3,
(3.1)

where
uα

n(t, x) =
∑

0<|k|≤n

ûα
n,k(t) eik·x, with k · ûα

n,k = 0. (3.2)

We note that the divergence-free condition is encoded in (3.2) and (3.1) is a (finite-dimensional) system
of ODEs in the unknowns ûα

n,k(t).
Next, we proceed by performing the time discretization of (3.1) by finite differences in time. Let

M ∈ N and κ = T/M . We consider the net IM = {tm}M
m=0 with t0 = 0 and tm = mκ and discretize (3.1)

by using the implicit Euler algorithm: Set uα,0
n = Pnu0. For any m = 1, . . . ,M , given uα,m−1

n ∈ Vn find
uα,m

n ∈ Vn by solving

dt(uα,m
n − α2Δuα,m

n ) − Δuα,m
n + Pn((uα,m

n · ∇)uα,m
n ) = 0, (3.3)

where
uα,m

n (x) =
∑

0<|k|≤n

ûα,m
n,k eik·x, with k · ûα,m

n,k = 0, (3.4)

and

dtu
α,m
n :=

uα,m
n − uα,m−1

n

κ
.

We point out that again the divergence-free condition is enforced by (3.4) and now, for each m = 1, . . . ,M ,
the system (3.3) is a finite-dimensional nonlinear (algebraic) system in the unknowns ûα,m

n,k ∈ R.
Finally, since we are considering the periodic setting we can define the associated approximation for

the pressure by solving the Poisson problem

− Δpα,m
n = ∇ · (∇ · (uα,m

n ⊗ uα,m
n )

)
m = 1, . . . ,M, (3.5)

with periodic boundary conditions and zero mean value on pα,m
n . Moreover, in order to prove the con-

vergence to a suitable weak solution, it will turn out to be convenient to (re)formulate Eq. (3.3) as
follows

dt(uα,m
n − α2Δuα,m

n ) − Δuα,m
n + (uα,m

n · ∇)uα,m
n − Qn((uα,m

n · ∇)uα,m
n ) + ∇pα,m

n = 0, (3.6)

where the operator Qn is defined by Qn := P − Pn.
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As usual in the study of finite difference numerical schemes, we can now rephrase the problem (3.3)
on (0, T ) × T

3, by introducing the following time-dependent functions

uα,M
n (t) =

{
uα,m

n for t ∈ [tm−1, tm),

uα,M
n for t = tM ,

vα,M
n (t) =

⎧⎨
⎩

uα,m−1
n +

t − tm−1

κ
(uα,m

n − uα,m−1
n ) for t ∈ [tm−1, tm),

uα,M
n for t = tM ,

pα,M
n (t) =

{
pα,m

n for t ∈ [tm−1, tm),

pα,M
n for t = tM .

(3.7)

Then, Eq. (3.3) reads as follows

∂t(vα,M
n − α2Δvα,M

n ) − Δuα,M
n + Pn((uα,M

n · ∇)uα,M
n ) = 0, (3.8)

and Eq. (3.6) on (0, T ) × T
3 becomes

∂t(vα,M
n − α2Δvα,M

n ) − Δuα,M
n + (uα,M

n · ∇)uα,M
n − Qn((uα,M

n · ∇)uα,M
n ) + ∇pα,M

n = 0. (3.9)

We stress that in order to prove the convergence to a suitable weak solution, it is crucial to prove that
the term involving Qn goes to zero as n → ∞. To this end, we recall the following lemma, which is proved
as one of the main steps in [7, Lemma 4.4].

Lemma 3.1. Let be given φ ∈ C∞((0, T ) × T
3), and let un be defined as

un(t, x) :=
∑

0<|k|≤n

Ûn
k (t) eik·x.

Then, there exists a constant c, depending only on φ (but independent of n ∈ N), such that

‖Qn(un(t)φ(t))‖2∞ ≤ c

⎛
⎝n2

∑
|k|≥n

2

|Ûn
k (t)|2 +

1
n

∑
k∈Z3

|Ûn
k (t)|2

⎞
⎠ .

4. A Priori Estimates

In this section, we prove the a priori estimates needed to prove the convergence to (1.1). We start with
the following basic discrete energy inequality.

Lemma 4.1. Let be given u0 ∈ H2
0,σ. Let uα,m

n be a solution of (3.3). Then, the following discrete energy
equality holds true for all M ∈ N and m = 1, . . . ,M

‖uα,m
n ‖22+

m∑
i=1

‖uα,i
n − uα,i−1

n ‖22 + 2κ

m∑
i=1

‖∇uα,i
n ‖22

+ α2‖∇uα,m
n ‖22 + α2

m∑
i=1

‖∇uα,i
n − ∇uα,i−1

n ‖22 = ‖u0‖22 + α2‖∇u0‖22.
(4.1)

Proof. Fix M ∈ N and m = 1, . . . ,M . Consider Eq. (3.1) for i = 1, . . . , m and multiply (3.1) by uα,i
n .

Then, after integration by parts over T
3, we get(

uα,i
n − uα,i−1

n

κ
, uα,i

n

)
+ α2

(∇uα,i
n − ∇uα,i−1

n

κ
,∇uα,i

n

)
+ ‖∇uα,i

n ‖22 = 0,
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where we used that fact that since uα,i
n ∈ Vn then

(Pn((uα,i
n · ∇)uα,i

n ), uα,i
n ) = 0.

By using the elementary equality

(a, b − a) =
|a|2
2

− |b|2
2

+
|a − b|2

2
, (4.2)

the terms involving the discrete derivative become the following:

(uα,i
n − uα,i−1

n , uα,i
n ) =

1
2
(‖uα,i

n ‖22 − ‖uα,i−1
n ‖22) +

1
2
‖uα,i

n − uα,i−1
n ‖22,

(∇uα,i
n − ∇uα,i−1

n ,∇uα,i
n ) =

1
2
(‖∇uα,i

n ‖22 − ‖∇uα,i−1
n ‖22) +

1
2
‖∇uα,i

n − ∇uα,i−1
n ‖22.

Finally, by summing up over i = 1, . . . ,m we get (4.1). �

The next lemma regards two weighted estimates on higher derivatives of solutions of (3.3), and they
will be useful when proving the convergence to a suitable weak solution. The results in the following
lemma are a discrete counterpart of those proved in [6].

Lemma 4.2. Let u0 ∈ H2
0,σ and α ≤ 1. Let M ∈ N and m = 1, . . . ,M . Let uα,m

n be a solution of (3.3).
Then, there exists c > 0, independent of α > 0, M ∈ N, and n ∈ N, such that

α3κ

M∑
m=1

‖dtu
α,m
n ‖22 ≤ c, (4.3)

α6κ

M∑
m=1

‖Δuα,m
n ‖22 ≤ c. (4.4)

Proof. Let M ∈ N and m = 1, . . . , M . We multiply (3.3) by α3dtu
α,m
n . After integrating by parts over

T
3, we get

α3(dt∇uα,m
n ,∇uα,m

n ) + α3‖dtu
α,m
n ‖22 + α5‖dt∇uα,m

n ‖22 + α3(Pn((uα,m
n · ∇)uα,m

n , dtu
α,m
n ) = 0.

By using (4.2) and multiplying by κ, we then get

α3

2
(‖∇uα,m

n ‖22 − ‖∇uα,m−1
n ‖22) +

α3

2
‖∇uα,m

n − ∇uα,m−1
n ‖22

+ α3κ‖dtu
α,m
n ‖22 + α5κ‖dt∇uα,m

n ‖22 ≤ α3κ|((uα,m
n · ∇)uα,m

n , dtu
α,m
n )|,

(4.5)

where we used the fact that dtu
α,m
n ∈ Vn. By using Hölder and Gagliardo–Nirenberg inequalities, we

estimate the right-hand side as follows

α3κ|((uα,m
n · ∇)uα,m

n , dtu
α,m
n )| ≤ α3κ‖uα,m

n ‖4‖∇uα,m
n ‖2‖dtu

α,m
n ‖4

≤ cα3κ‖uα,m
n ‖ 1

4
2 ‖∇uα,m

n ‖ 7
4
2 ‖∇dtu

α,m
n ‖ 3

4
2 ‖dtu

α,m
n ‖ 1

4
2

≤ cα3κ(‖u0‖22 + α2‖∇u0‖22)
1
8 ‖∇uα,m

n ‖ 7
4
2 ‖∇dtu

α,m
n ‖ 3

4
2 ‖dtu

α,m
n ‖ 1

4
2 ,

where in the second line we used (4.1). By using Young inequality with p1 = 2, p2 = 8
3 , and p3 = 8, we

get

α3κ|((uα,m
n · ∇)uα,m

n , dtu
α,m
n )| ≤ cκ(‖u0‖22 + α2‖∇u0‖22)

1
4 α

3
2 ‖∇uα,m

n ‖ 3
2
2 ‖∇uα,m

n ‖22
+

α3

2
κ‖dtu

α,m
n ‖22 +

α5

2
κ‖∇dtu

α,m
n ‖22.

(4.6)
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Then, by using again (4.1) we have that α
3
2 ‖∇uα,m

n ‖ 3
2
2 ≤ (‖u0‖22 +α2‖∇u0‖22

) 3
4 , and then inequality (4.5)

becomes
α3‖∇uα,m

n ‖22−α3‖∇uα,m−1
n ‖22 + α3‖∇uα,m

n − ∇uα,m−1
n ‖22

+ α3κ‖dtu
α,m
n ‖22 + α5κ‖22dt∇uα,m

n ‖22 ≤ cκ‖∇uα,m
n ‖22,

where c is a positive constant depending only on the initial datum u0. By summing up over m = 1, . . . ,M ,
we get (4.3).

To prove (4.4), we multiply by −Δuα,m
n Eq. (3.1) and after integration by parts in space we get

(dt∇uα,m
n ,∇uα,m

n ) + α2(dtΔuα,m
n ,Δuα,m

n ) + ‖Δuα,m
n ‖22 − (Pn((uα,m

n · ∇)uα,m
n ) · Δuα,m

n ) = 0.

By using (4.2), the fact that Δuα,m
n ∈ Vn, and Hölder inequality, we get

‖∇uα,m
n ‖22+α2‖Δuα,m

n ‖22 − ‖∇uα,m−1
n ‖22 − α2‖Δuα,m−1

n ‖22
+ ‖∇uα,m

n − ∇uα,m−1
n ‖22 + α2‖Δuα,m

n − Δuα,m−1
n ‖22

+ 2κ‖Δun‖22 ≤ 2κ‖uα,m
n ‖4‖∇uα,m

n ‖4‖Δuα,m
n ‖2.

(4.7)

Then, by Gagliardo–Nirenberg inequality and Young inequality we have that

κ‖uα,m
n ‖4‖∇uα,m

n ‖4‖Δuα,m
n ‖2 ≤ κ‖uα,m

n ‖ 1
4
2 ‖∇uα,m

n ‖2‖Δuα,m
n ‖ 7

4
2

≤ cκ‖uα,m
n ‖22‖∇uα,m

n ‖82 +
κ‖Δuα,m

n ‖22
2

.
(4.8)

Then, by inserting (4.8) in (4.7) and using (4.1) we get

‖∇uα,m
n ‖22 + α2‖Δuα,m

n ‖22 − ‖∇uα,m−1
n ‖22 − α2‖Δuα,m−1

n ‖22
+ ‖∇uα,m

n − ∇uα,m−1
n ‖22 + α2‖Δuα,m

n − Δuα,m−1
n ‖22

+ κ‖Δun‖22 ≤ cκ‖uα,m
n ‖22‖∇uα,m

n ‖82.
(4.9)

By multiplying the previous inequality on both sides by α6, using again (4.1), and summing up over
m = 1, . . . ,M , we get (4.4) with a constant c independent of α, n and of M , thus ending the proof. �

Finally, we prove an a priori estimate on the approximate pressure, which is, as usual, a crucial step
when considering the local energy inequality.

Lemma 4.3. Let u0 ∈ H2
0,σ. Let M ∈ N and m = 1, . . . , M . Let uα,m

n be a solution of (3.5). Then, there
exists c > 0, independent of α > 0, of n ∈ N, and of M ∈ N such that

κ

M∑
m=1

‖pα,m
n ‖ 5

3
5
3

≤ c. (4.10)

Proof. The proof is rather standard. We recall that by Gagliardo–Nirenberg inequality we have

‖uα,m
n ‖ 10

3
≤ ‖uα,m

n ‖ 2
5
2 ‖∇uα,m

n ‖ 3
5
2 . (4.11)

By using the Lq-elliptic estimates applied to (3.5), we have that

‖pα,m
n ‖ 5

3
≤ c‖uα,m

n ‖210
3

.

Then, by using (4.11) we obtain

‖pα,m
n ‖ 5

3
5
3

≤ ‖uα,m
n ‖ 4

3
2 ‖∇uα,m

n ‖22 ≤ c‖∇uα,m
n ‖22, (4.12)

where we used (4.1). By multiplying both sides of (4.12) by κ, by summing up over m = 1, . . . , M , and
by using again the equality (4.1), we get (4.10). �

At this point, we re-state the a priori estimates proved in Lemmas 4.1–4.3 in terms of the (time-
dependent) functions defined in (3.7).
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Proposition 4.4. Let u0 ∈ H2
0,σ. There exists c > 0, independent of α > 0, of M ∈ N and of n ∈ N, such

that

‖vα,M
n ‖L∞(L2)∩L2(H1) ≤ c, (4.13)

‖∂tv
α,M
n ‖L4/3(H−2) ≤ c, (4.14)

‖uα,M
n ‖L∞(L2)∩L2(H1) ≤ c, (4.15)

‖pα,M
n ‖L5/3(L5/3) ≤ c, (4.16)

α‖∇vα,M
n ‖L2(L2) ≤ c, (4.17)

α
3
2 ‖∂tv

α,M
n ‖L2(L2) ≤ c, (4.18)

α3‖Δuα,M
n ‖L2(L2) ≤ c. (4.19)

Moreover, we also have the following identities

‖vα,M
n − uα,M

n ‖2L2(0,T ;L2(T3)) =
κ

3

M∑
m=1

‖uα,m
n − uα,m−1

n ‖22, (4.20)

‖∇uα,M
n − ∇vα,M

n ‖2L2(0,T ;L2(T3)) =
κ

3

M∑
m=1

‖∇uα,m
n − ∇uα,m−1

n ‖22. (4.21)

Proof. The bound (4.13) follows from Lemma 4.1 and the definition (3.7). We remark that in order to
get the bound in L2(0, T ;H1

0,σ) we need u0 ∈ H1
0,σ. The bounds (4.15), (4.16), and (4.17) follow from the

definitions in (3.7) and Lemma 4.1. Finally, the bound (4.14) follows by a simple comparison argument
on (3.8). The bounds (4.18) and (4.19) follow by Lemma 4.2 and (3.7); the identities (4.20) and (4.21)
follow by a direct calculation. �

5. Proof of the Main Theorem

In this section, we give the proof of Theorem 1.1. We divide the proof into two main steps: a) the
convergence to a Leray–Hopf weak solution and b) the convergence to a suitable weak solution. Let
{Mn}n ⊂ N and {αn}n ⊂ (0, 1) be two sequences as in the statement of Theorem 1.1. We recall that
{αn}n is chosen such that

lim
n→+∞ nα3

n = 0. (5.1)

Step 1: Convergence to a Leray–Hopf weak solution
Let ϕ ∈ C∞

c ([0, T );C∞(T3)) with ∇ · ϕ = 0 and zero mean value. It is easy to show that there exists
a sequence {ϕn}n ⊂ C1([0, T );Vn) such that

sup
t∈(0,T )

‖ϕn − ϕ‖H1 + ‖∂t(ϕn − ϕ)‖H1 → 0, as n → ∞. (5.2)

In order to simplify the exposition, we use the following abbreviations:

vn := vαn,Mn
n , un := uαn,Mn

n , and pn := pαn,Mn
n .

Then, (3.8) reads as follows

∂t(vn − α2Δvn) − Δun + (un · ∇)un − Qn((un · ∇)un) + ∇pn = 0. (5.3)

We recall from (4.13) and (4.14) that (with bounds independent of n)

vn ∈ L∞(0, T ;L2
0,σ) ∩ L2(0, T ;H1

0,σ),

∂tv
n ⊂ L

4
3 (0, T ;H−2).
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Then, there exists v ∈ L∞(0, T ;L2
0,σ) ∩ L2(0, T ;H1

0,σ) such that, up to a subsequence not relabelled,

vn → v strongly in L2(0, T ;L2
0,σ), as n → ∞.

Next, from (4.15) there exists u ∈ L∞(0, T ;L2
0,σ) ∩ L2(0, T ;H1

0,σ) such that, up to a subsequence not
relabelled,

un ⇀ u weakly in L2(0, T ;H1
0,σ), as n → ∞. (5.4)

Finally, by using (4.20) we have

T∫
0

‖un − vn‖22 dt =
T

3Mn

Mn∑
m=1

‖uα,m
n − uα,m−1

n ‖22 ≤ T

3Mn
(‖u0‖22 + α2

n‖∇u0‖22),

where we used Lemma 4.1. We have then that

un − vn → 0 strongly in L2(0, T ;L2
0,σ), as n → ∞. (5.5)

Hence, it follows that u = v and also that

un → u strongly in L2(0, T ;L2
0,σ), as n → ∞,

vn → u strongly in L2(0, T ;L2
0,σ), as n → ∞.

(5.6)

Let ϕn satisfy (5.2). By multiplying (5.3) by ϕn and by integrating by parts with respect to space and
time, we get

T∫
0

(vn, ∂tϕn) − α2
n(∇vn, ∂t∇ϕn) + (un ⊗ un,∇ϕn) − (∇un,∇ϕn) dt = (Pnu0, ϕ0(0)).

By using (4.17), we have then

α2
n

T∫
0

‖∇vn‖22 dt ≤ c.

This implies, in particular, that

α2
n

T∫
0

(Δ∂tv
n, ϕn) dt → 0, as n → ∞.

Then, by using (5.2), (5.4), and (5.6) it is now straightforward to prove the convergence to a Leray–Hopf
weak solution. We omit further details.
Step 2: Convergence to a Suitable Weak Solution

We prove now the most original part of this work, namely that the limit of the approximate solutions
satisfies the local energy inequality. By using (4.16), we can infer that there exists p ∈ L

5
3 ((0, T ) × T

3)
such that (again up to a subsequence)

pn ⇀ p weakly in L
5
3 ((0, T ) × T

3), as n → ∞. (5.7)

In order to prove that (u, p) is a suitable weak solution, we only need to prove that (u, p) satisfies the local
energy inequality (2.1). To this end, we consider Eq. (3.9) that we rewrite for the reader’s convenience

∂tv
n − α2∂tΔvn − Δun + (un · ∇)un − Qn((un · ∇)un) + ∇pn = 0. (5.8)
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By testing (5.8) by unφ with φ ∈ C∞
c ((0, T );C∞(T3)), φ ≥ 0, and after several integration by parts we

get
T∫

0

∫
T3

|∇un|2φ dxdt = −
T∫

0

(∂tv
n, unφ) dt + α2

n

T∫
0

(∂tΔvn, unφ) dt

+

T∫
0

( |un|2
2

,Δφ

)
dt +

T∫
0

∫
T3

( |un|2
2

+ p

)
un · ∇φ dxdt

+

T∫
0

(Qn(un · ∇)un), unφ) dt =:
5∑

i=1

In
i .

(5.9)

We treat all the terms on the right-hand side of (5.9) separately. We start by In
1 .

In
1 = −

T∫
0

(∂tv
n, unφ) dt = −

T∫
0

(∂tv
n, vnφ) +

T∫
0

(∂tv
n, (vn − un)φ) dt

=

T∫
0

( |vn|2
2

, ∂tφ

)
+

Mn∑
m=1

tm∫
tm−1

(∂tv
n, (vn − un)φ) dt.

By using that un is constant over [tm−1, tm), we infer that

Mn∑
m=1

tm∫
tm−1

(∂tv
n, (vn − un)φ) dt =

Mn∑
m=1

tm∫
tm−1

(∂t(vn − un), (vn − un)φ) dt

= −
Mn∑

m=1

tm∫
tm−1

( |vn − un|2
2

, ∂tφ

)
dt,

and we point out that there are no boundary terms arising in integration by parts due to the fact that
vn(tm) = un(tm) for any m = 1, . . . ,Mn and φ is compactly supported in time. Then,

In
1 =

T∫
0

( |vn|2
2

− |vn − un|2
2

, ∂tφ

)
dt,

and by using (5.6) and (5.5) it follows

In
1 →

T∫
0

( |u|2
2

, ∂tφ

)
dt, as n → ∞. (5.10)

Let us consider now the term In
2 . We have

In
2 = α2

2

T∫
0

(∂tΔvn, unφ) dt = α2
n

T∫
0

(∂tΔvn, (un − vn)φ) dt + α2
n

T∫
0

(∂tΔvn, vnφ) dt

=: In
2,1 + In

2,2.
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We estimate the term In
2,1 in a way similar to the term In

1,2. Indeed, by using that un is constant over the
interval [tm−1, tm) we get

In
2,1 = −α2

n

Mn∑
m=1

tm∫
tm−1

(∂t∇vn,∇(vn − un)φ) dt

= α2
n

Mn∑
m=1

tm∫
tm−1

(∂t∇(vn − un),∇(vn − un)φ) dt

= −α2
n

Mn∑
m=1

tm∫
tm−1

( |∇(vn − un)|2
2

, ∂tφ

)
dt

= −α2
n

T∫
0

( |∇(vn − un)|2
2

, ∂tφ

)
dt,

where we used that ∇vn(tm) = ∇un(tm) for any m = 1, . . . ,Mn and again that φ is compactly supported
in time. By using (4.21), we have (for a constant c depending only on φ)

|In
2,1| ≤ c α2

n

T∫
0

‖∇vn − ∇un‖22

=
c T

3Mn
α2

n

Mn∑
m=1

‖∇uα,m
n − ∇uα,m−1

n ‖22

≤ c T

3Mn
(‖u0‖22 + α2

n‖∇u0‖22) → 0, as n → ∞.

Now, we consider the term In
2,2. By standard manipulations involving integrations by parts, we get that

In
2,2 = α2

n

T∫
0

∫
T3

Δ∂tv
nvnφ dxdt

= α2
n

T∫
0

∫
T3

[ |∇vn|2
2

∂tφ + ∇vn∇φ ∂tv
n − |vn|2

2
Δ ∂tφ

]
dxdt

≤ α2
n

2

T∫
0

∫
T3

|∇vn|2|∂t φ|dxdt +
α2

n

2

T∫
0

∫
T3

|vn|2|Δ ∂tφ|dxdt

+ α2
n

T∫
0

∫
T3

|∂tv
n| |∇vn| |∇φ|dxdt

≤ cα2
n + cα2

n

T∫
0

‖∂tv
n‖2‖∇vn‖2 dt,
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where we used (4.13), Hölder inequality, and the fact that φ ∈ C∞
c ((0, T ) × T

3). Then,

|In
2,2| ≤ cα2

n + cα2
n

T∫
0

‖∂tv
n‖2‖∇vn‖2 dt

≤ cα2
n + cα

1
2
n

⎛
⎝

T∫
0

α3
n‖∂tv

n‖22

⎞
⎠

1
2

⎛
⎝

T∫
0

‖∇vn‖22

⎞
⎠

1
2

≤ c (α2
n + α

1
2
n ) → 0, as n → ∞.

where we used Hölder inequality in time and (4.18). In particular, we have just proved that

|In
2 | ≤ |In

2,1| + |In
2,2| → 0, as n → ∞. (5.11)

Concerning the term In
3 and In

4 , we recall that from (5.4) and (5.6)

un → u strongly in L3(0, T ;L3(T3)), as n → ∞. (5.12)

Then, (5.12) and (5.7) are enough to prove that

In
3 =

T∫
0

( |un|2
2

,Δφ

)
dt →

T∫
0

( |u|2
2

,Δφ

)
dt, as n → ∞, (5.13)

In
4 =

T∫
0

(( |un|2
2

+ pn

)
un,∇φ

)
dt →

T∫
0

(( |u|2
2

+ p

)
u,∇φ

)
dt, as n → ∞. (5.14)

We are left with the term In
5 . We have

In
5 =

T∫
0

(Qn((un · ∇)un, unφ) dt =

T∫
0

((un · ∇)un, Qn(unφ)) dt

≤
T∫

0

‖un(t)‖2‖∇un(t)‖2‖Qn(un(t)φ(t))‖∞ dt

≤ c

⎛
⎝

T∫
0

‖Qn(un(t)φ(t))‖2∞ dt

⎞
⎠

1
2

,

where in the last line we used Hölder inequality and (4.15). Then, from (3.4) and (3.7) we have that un

has the following representation in Fourier series expansion

un(t, x) =
∑

0<|k|≤n

Mn∑
m=1

χ[tm−1,tm)(t)û
αn,m
n,k eik·x.

By defining

Ûn
k (t) :=

Mn∑
m=1

χ[tm−1,tm)(t)û
αn,m
n,k ,

we can write
un(t, x) =

∑
0<|k|≤n

Ûn
k (t) eik·x.
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Then, by using Lemma 3.1 we have that
T∫

0

‖Qn(un(t)φ(t))‖2∞ dt ≤ c

n

∑
k∈Z3

|Ûk
n(t)|2 dt + c

T∫
0

n2
∑

|k|≥n
2

|Ûk
n(t)|2 =: In

5,1 + In
5,2.

Regarding the term In
5,1, it follows by (4.15) that

|In
5,1| ≤ c

n
→ 0, as n → ∞.

For the term In
5,2, we have

T∫
0

n2
∑

|k|≥n
2

|Ûn
k (t)|2 =

n2α6
n

n2α6
n

T∫
0

∑
|k|≥n

2

n2|Ûn
k (t)|2 dt

≤ 4
α6

n

n2α6
n

T∫
0

∑
|k|≥n

2

|k|4|Ûn
k (t)|2 dt

≤ 4
n2α6

n

α6
n

T∫
0

∑
k∈Z3\{0}

|k|4|Ûn
k (t)|2 dt

≤ c

n2α6
n

α6
n

T∫
0

‖Δun‖22 dt ≤ c

n2α6
n

,

where in the last inequality we have used (4.19). Then, by (5.1) we get that |In
5,2| → 0 as n → ∞ and

then
|In

5 | → 0, as n → ∞. (5.15)
Finally, by using (5.4) we have that

T∫
0

∫
T3

|∇u|2φ dxdt ≤ lim inf
n→∞

T∫
0

∫
T3

|∇un|2φ dxdt. (5.16)

By inserting (5.16), (5.10), (5.11), (5.13), (5.14), and (5.15) in (5.9), we have finally proved the local
energy inequality (2.1).
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