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Abstract. An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution
saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of
a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic
motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium
under the unsteady Darcy–Brinkman model. Throughout the system, a uniform electric field is applied and maintains with
constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and
when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the
relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small
for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the
thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density
and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.
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1. Introduction

Electrophoresis phenomenon was noticed, for the first time, in the pioneering work of Reuss [1]. Elec-
trophoresis is the motion of scattered particles in a fluid under the action of a uniform electric field [2,3].
It is a technique commonly used to separate charged molecules in today’s cell biology laboratory. It can be
used to separate proteins according to their size, shape, density and purity. It can also be used for plasmid
analysis, which develops our understanding of bacteria becoming resistant to antibiotics. Regardless of
the medium through which molecules are allowed to migrate, all electrophoretic separations depend upon
the charge distribution of the molecules being separated. An electrical double layer is a structure that
appears on the surface of a particle when it is embedded in a fluid. The particle might be a solid particle,
a gas bubble, a fluid droplet or a porous body. It consists of two parallel layers of charge surrounding the
particle. The first layer, the surface charge, contains ions adsorbed onto the particle. The second layer is
composed of ions attracted to the surface charge, electrically screening the first layer. This second layer
is almost associated with the particle. The electrophoretic mobility is defined as the ratio between the
drift velocity of the scattered particle and the strength of the applied electric field. In this connection,
a widely used equation in the theory of electrophoresis is Smoluchowski’s equation [4]: U = εζE/(4πη),
where U is the electrophoresis velocity of the particle, ζ is the zeta potential of the particle, E is the
strength of the applied electric field, and ε and η are, respectively, the permittivity and the viscosity of
the fluid dispersion medium. This equation works for scattered particles for any shape and any concen-
tration and valid only for sufficiently thin double layer, when a particle of radius a is much greater than
the Debye length, κ−1 : aκ � 1. This model is valid when the Debye length is only a few nanometres.
In the literature, there are several studies in the electrophoretic theory at the steady state for the cases
of thin and arbitrary electric double layer [5–8]. However, alternating electric fields have been used for
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the measurements of electrophoretic phenomena in different situations. This motivated many researchers
to study the effect of time-variant behaviour on electrophoretic and electroosmotic flows under various
physical circumstances and different geometrical shapes [9–12]. The study of electrophoretic phenomena
for the case of time-variant electric field is essential to interpret experimental observation and to improve
and develop new separation devices.

The transient electrophoretic of a dielectric sphere was studied analytically by Morrison [13]. He
utilized a thin double layer approximation and found that the particle attains its steady electroosmotic
velocity at the instant as the electric field is suddenly imposed, showing that transient effect is remarkable
for large particles. Ivory [10] recognized that the Morrison’s assumptions, at short times, lead to unac-
ceptable physical results that the viscous stresses in the fluid become unbounded at the outer surface of
the double layer. In a trial to correct Morrison’s solution, Ivory applied an interfacial boundary condition
derived from the exact equations governing the fluid motion in the double layer. This condition is then
used to investigate the dynamic response of the particle to a time-variant electric field. Keh and Huang
[14] revisited the problem of transient electrophoresis of dielectric spheres and developed a successful
model valid for arbitrary double layers and treated all the weakness of the previous papers dealing with
this subject. In their paper, they studied analytically the dynamic electrophoretic response of a spherical
dielectric particle suspended in a fluid to a step change in the applied electric field. The double layer
enclosing the particle is considered either a small but finite thickness, or a very large thickness relative
to the particle radius. Recently, Chen and Keh [15,16] employed the developmental model of [14] to
investigate the transient response of electrolyte solution in the porous medium constructed by a homo-
geneous assemblage of parallel charged circular cylinders to the step application of an electric field and
a pressure gradient in the axial and in the transverse directions, respectively, through the use of a unit
cell model. More recently, the unit cell model was employed to investigate the transient electrophoresis
of a suspension of dielectric spheres with constant zeta potential after the application of a step function
electric field for the case of thin but finite double layer [17].

The subject of electrophoretic motion of charged particles embedded in a porous medium filled with
an electrolyte solution is of particular interest in the area of chemical engineering and its related in-
terdisciplinary fields such as environmental engineering [18–20] and biomedical engineering [21,22]. Few
studies of this subject have been reported in the literature. In various practical applications, the elec-
trophoresis in a porous medium is an effective separation technique. For instance, the separation of large
bio-macromolecules in gel electrophoresis such as proteins and DNAs can be performed by moving sam-
ples through polymer gels under the action of an electric field [23,24]. However, electrophoresis through
agarose or polyacrylamide gels is a standard method used to separate, identify and purify nucleic acids,
since both these gels are porous in nature [25]. In addition to the above-cited classic applications, elec-
trophoresis can be employed in the remediation treatment of contaminated soil in situ by applying an
electric field through the wet soil to remove colloidal pollutants directly such as petroleum hydrocarbons
[26,27]. Feng et al. [28] studied the motion of a chargeless sphere near planar confining boundaries in a fi-
bre matrix modelled as a Brinkman medium. Tsai et al. [29] investigated theoretically the electrophoretic
motion of a charged spherical particle in a porous medium by focusing on the boundary effect of a solid
plane towards which the particle moves perpendicularly. This motivated us to consider in this article the
time-dependent electrophoresis of a dielectric spherical particle embedded in a charged porous medium
according to Brinkman’s model and applying the transient model developed by Keh and Huang [14].

2. Field equations

The field equations governing an incompressible time-dependent viscous fluid flow through porous media,
according to the Darcy–Brinkman model, are given [29,30], under the Stokesian assumption as:

∇ · �q = 0, (2.1)
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ρ

ϕ

∂�q

∂t
= η ∇2�q − η

K
�q − ∇p +

1
ϕ

�F , (2.2)

where �q is the volume-averaged velocity vector, p is the pore average pressure, ρ and η are the density and
the viscosity of the fluid, respectively, and (ϕ,K) represent the porosity and Darcy permeability of the
porous medium. Here �F represents the external body forces. The porous medium is characterized by its
permeability which is a measure of the flow conductivity in the porous medium. It is also characterized by
its porosity that is a ratio of the void space to the total volume of the medium. Note that the term �FD = γ �q
in Brinkman’s model represents an extra local friction force generated within the porous medium, where
γ = η/K is termed as friction coefficient. The permeability K is a scalar for isotropic porous medium;
otherwise, K is a second-order tensor [31]. This model has two viscous terms: The first is the usual Darcy
term and the second is analogous to the Laplacian term that appears in the Navier–Stokes equation.
This equation is well accepted for porous media of high porosity. In most of the experimental methods
used to predict a medium’s permeability, investigators apply a constant pressure gradient to the porous
medium in order to determine the average velocity of the flow from the measured fluid flow rate. Following
this, the investigator applies Darcy’s law to calculate the permeability coefficients [32,33]. Due to the
complexity of the flow in the porous media, it is generally described in terms of macroscopic quantities.
The macroscopic flow can be defined as the local volume average of the microscopic flow through the
pores. Both the continuity and Brinkman equations are actually volume-averaged formulations. For media
with low porosity, the Darcy law is a good approximation for the momentum equation, while Brinkman’s
model gives acceptable results for flows in high-porosity media. The validity of the Brinkman’s model has
been treated extensively in the literature [34–37].

3. Time-dependent electroosmotic flow through porous medium parallel to a dielectric plane

In this section, we consider the unsteady flow of an ionic fluid through a sparse of porous medium within
an electric double layer abutting to a dielectric plane wall. As illustrated in Fig. 1, a uniform electric field
E is suddenly applied tangentially to the wall at time t and maintained afterwards t = 0. The purpose of
this section is to obtain the electroosmotic velocity at the outer edge of the double layer. This velocity
will be used as a boundary condition for the mathematical modelling of the transient electrophoresis of
dielectric spherical particle embedded in a sparse of porous medium [14–17]. The following assumptions
are made: the gravitational forces are neglected and the uniformly distributed discrete charges over the
plane wall are also neglected. Let a plane wall be at the coordinate surface, y = 0 and y-direction normal
to the wall. We assume that the space charge density ρe and the electrostatic potential are function of
y only, while the averaged velocity of the fluid q within the porous medium, which is in the direction of
the applied electric field, is a function of (y, t). In this case, the equation of continuity for incompressible
flow is satisfied automatically and the Brinkman equation reduces to

ρ

ϕ

∂q

∂t
= η

∂2q

∂y2
− η

K
q +

ρe + ρf

ϕ
E, (3.1)

O

q

x

y

δ

E

Fig. 1. Geometrical sketch of the double layer in porous medium
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where ρf is the fixed charge density through the charged porous medium. Note that the last term in
the modified Brinkman equation (3.1) represents the electrostatic effect due to the applied electric field
[30]. Also note that the contributions from the pressure gradient and the electrostatic potential gradient
cancel out in the Brinkman equation.

In connection with the above assumptions made, we assume also that the ionic diffusion time scale
across the double layer is much shorter than the viscous time scale. This makes that the lateral potential
distribution is not affected by the tangential applied electric field. Therefore, the Poisson equation [11]
takes the form

d2ψ

dy2
= − 4π (ρe + ρf )

ε ϕ
, (3.2)

where ε = 4πε0εr, in which εr is the relative permittivity of the electrolyte solution and ε0 is the permit-
tivity of a vacuum. We assume that both ε and ρf are constant [38].

The governing equations (3.1) and (3.2) must be completed by the following initial and boundary
conditions:

q = 0 at t = 0, (3.3)
ψ = ζ, q = 0 at y = 0, (3.4)
dψ

dy
= 0,

∂q

∂y
= 0 at y = δ, (3.5)

where ζ is the zeta potential at the surface of the wall and y = δ represents the equation of the outer
edge of the electric double layer. Here δ will be considered as δ = b κ−1, where κ−1 is the Debye length
(characteristic thickness of the double layer) and b is a positive number which is for clear fluid (K → ∞)
in the range between 3 and 5 [14].

It should be noted that the thin double layer approximation is accurate when

(κ a)−1 cosh(Zeζ/2σTc) � 1, (3.6)

where Z is the charge number of the electrolyte, assumed the same for both ions, e is the charge of one
proton, Tc is the absolute temperature, and σ is Boltzmann’s constant [39].

3.1. Steady-state solution

To find the starting solution of the initial boundary value problem (3.1)–(3.5), we first have to define and
solve the steady-state problem:

lim
t→∞

∂q

∂t
= 0, and lim

t→∞ q(y, t) = qs(y). (3.7)

Then the differential equation satisfied by the steady-state solution qs(y) is

d2qs

dy2
− 1

K
qs +

ρe + ρf

η ϕ
E = 0. (3.8)

Eliminating the total charge densities term (ρe + ρf ) between Eqs. (3.2) and (3.8), we get the differential
equation satisfied by qs: (

d2

dy2
− α2

)
qs =

εE

4π

d2ψ

dy2
, (3.9)

where α = 1/K1/2 is the dimensional permeability parameter. Using boundary conditions (3.4) and (3.5),
it is found that the steady-state limiting solution is given by the expression
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qs = − εE

4π η

[
ζ

cosh α(y − δ)
cosh αδ

− ψ(y)

+α

δ∫
0

ψ(ξ)
sinhαy cosh α(δ − ξ)

cosh αδ
dξ − α

y∫
0

ψ(ξ) sinh α(y − ξ) dξ
]
. (3.10)

3.2. Time-dependent solution

To find the fluid velocity profile q(y, t) along the plane wall, let

qτ (y, t) = q(y, t) − qs(y). (3.11)

Inserting Eq. (3.11) into Eqs. (3.1)–(3.5) and using the differential equation (3.9), we get the initial
boundary value problem satisfied by qτ (y, t) :

1
ν

∂qτ

∂t
+ α2 qτ =

∂2qτ

∂y2
, (3.12)

and

qτ = − qs(y) at t = 0, (3.13)
qτ = 0 at y = 0, (3.14)
∂qτ

∂y
= 0 at y = δ, (3.15)

where ν = η ϕ/ρ is the effective kinematic viscosity. Using the separation of variables techniques, we
obtain the solution of qτ as

qτ (y, t) = −
∞∑

n=1

⎛
⎝2δ−1

δ∫
0

qs(y) sin(λny) dy

⎞
⎠ sin(λny) e−(λ2

n+α2)νt, (3.16)

where λn = (2n − 1)π/(2δ). Substituting (3.10) and (3.16) into (3.11) gives the fluid averaged velocity
distribution q(y, t) along the plane wall. The series term in the averaged velocity q(y, t) converges rapidly
for large time parameter ν t/δ2. The averaged fluid velocity Uδ(t) at large distance from the surface of
the plane wall (with κy ≥ κδ = b) can be obtained as

Uδ = − ε ζ E

4π η

(
1

cosh αδ
+

∞∑
n=1

2(−1)nλn

δ (α2 + λ2
n)

e−(λ2
n+α2)νt

)
, (3.17)

where ψ(y) → 0 far from the plane wall. Taking δ as the half-thickness of a capillary slit filled with a
sparse of the porous medium, Eqs. (3.16) and (3.17) can also represent the corresponding electroosmotic
averaged velocity of the fluid within the slit [11].

4. Time-dependent electrophoresis of a spherical particle embedded in a porous medium with
a thin double layer

Consider the unsteady electrophoretic motion of a dielectric spherical particle of radius a. The particle is
placed in an electrolyte-saturated porous medium of permeability K, which can be determined either by
theoretical prediction or by experimental measurement. When the Brinkman equation is scaled by the
particle radius a and made dimensionless, a parameter, α′ = a/K1/2, appears. Therefore, α′ describes
the ratio of the particle dimension to the fibre interaction layer thickness, K1/2; that is K depends on
the fibre spacing fs and to a lesser extent on the fibre radius fr [28]. A spherical particle of radius a will
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Fig. 2. Geometrical sketch for the electrophoresis of a sphere in porous medium

not be able to translate in a rigid periodic fibre array when the open spacing between fibres, fs, is less
than the sphere diameter. Thus for a rigid fibre array, the Brinkman parameter α′ = a/K1/2 describing
the motion of a spherical particle in a Brinkman medium will have a maximum value if the particle is
not to be trapped by the fibres. For a periodic fibre array one must satisfy an assumption on K that
is fs > 2a [28]. Feng et al. [28] show that, for a spherical particle diffusing in a rigid fibre array, the
maximum value of α′ is approximately 1.5 and varies weakly with the fibre radius. This restriction on
α′ will not apply if a large particle is forced to move through a highly flexible matrix with weak fibre
adhesion energy. Tsay and Weinbaum [40] indicated that K1/2 is of the same order as the fibre spacing fs.
The main point in using the Brinkman equation to evaluate the drag force exerted on a diffusing particle
is the constraint on α′ for which the effective medium theory applies. The parameter α′ describes the
transition from small-scale viscous motion given by the Stokes equation to larger-scale pressure-driven
motions ruled by Darcy’s equation. We use a spherical coordinate system (r, θ, φ) with the origin at the
centre of the particle. Further, the particle enveloped by a finite thin electric double layer (κa � 1) in an
electrolyte fluid-saturated porous medium. Initially, t = 0 a constant electric field E0 is imposed suddenly
throughout the system in the θ = 0 direction and maintained afterwards, as shown in Fig. 2. As a result,
the particle experiences an electrophoretic motion with a time-dependent velocity in the same direction
as E0. Note that U(t) is unknown and has to be determined with U(0) = 0. The Reynolds number of this
electrokinetic flow is very low; therefore, the motion of the electrolyte solution-saturated porous medium
outside the double layer can be modelled by the unsteady Brinkman equation (2.2). Since the charge
density, outside the double layer, approaches zero as e−κy, the outer region is electrically neutral [39]. In
the electrolyte, cations and anions are dissolved and the amount of each ion species is the same because
of the charge neutrality of the system [41]. Also the electrolyte outside the double layer is of constant
conductivity and of uniform composition. Due to the symmetry of the problem we have ∂/∂φ = 0. It is
convenient to use the stream function Ψ(r, θ) which is related to the velocity components qr(r, θ), qθ(r, θ)
by

qr = − 1
r2 sin θ

∂Ψ
∂θ

, qθ =
1

r sin θ

∂Ψ
∂r

. (4.1)

Therefore, the stream function satisfied by the fourth-order differential equation:

L−1

(
L−1 − α2 − 1

ν

∂

∂t

)
Ψ = 0, (4.2)

where L−1 is the axisymmetric Stokesian operator:

L−1 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (4.3)
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Solving the Laplace equation, ∇2V = 0 governing the electric potential V in the medium outside the
thin double layer surrounding the dialectic spherical particle and applying the non-conducting (zero-
flux) condition at the outer edge of the double layer, ∂V/∂r = 0 at r = a+ as well as the condition:
(V +E0r cos θ) is finite in r > a. The solution of this problem is V = −E0[r + a3/(2r2)] cos θ. Therefore,
the local tangential electric field Eθ in θ-direction at the surface of the dielectric sphere caused by the
imposed electric field is

Eθ = − 1
r

∂V

∂θ

∣∣∣
r=a+

= − 3
2
E0 sin θ. (4.4)

This tangential electric field interacts with the thin double layer to produce a local electroosmotic velocity
at r = a+. Thus, the initial and boundary conditions for the velocity components qr and qθ of the fluid
through the porous medium can be expressed as:

t = 0 : qr = qθ = 0, (4.5)
r = a+ : qr = U cos θ, (4.6)

qθ = −U sin θ +
3εζE0

8π η

( 1
cosh αδ

+
∞∑

n=1

2(−1)nλn

δ(α2 + λ2
n)

e−(λ2
n+α2)νt

)
sin θ, (4.7)

r → ∞ : qr = qθ = 0, (4.8)

where r = a+ represents the outer edge of the thin double layer. The unknown velocity U(t) of the
dielectric particle can be written as

U(t) = U0 µ(t), (4.9)

where U0 = limt→∞ U(t) is the steady-state particle’s velocity, which is given by the modified Smolu-
chowski equation for porous medium [4],

U0 ≡ εζE0

4π η cosh αδ
. (4.10)

Note that μ(0) = 0 and limt→∞ μ(t) = 1.
The starting hydrodynamic drag force (in the z-direction) exerted by the porous fluid on the spherical

boundary surface can be determined from [14,42]

F (t) = π η a

π∫
0

[
r4 sin3 θ

∂

∂r

( L−1Ψ
r2 sin2 θ

)
− α2r2 sin θ

∂Ψ
∂r

− 1
ν

r3 sin2 θ
∂qθ

∂t

]
r=1+

dθ, (4.11)

where, here and in all subsequent expressions and parameters, we normalized all lengths with respect to
the radius of the particle a.

This drag force, F (t), is equal to the rate of change of the electrophoretic particle momentum, i.e.

F (t) = M
dU

dt
, (4.12)

where M is the mass of the particle.
The velocity at the surface of the dielectric particle r = 1+ caused by the electroosmotic effect, which

drives the electrophoretic motion of the particle, is called the apparent velocity slip and is given by the
last term of Eq. (4.7). A normalized quantity of this time-dependent velocity slip can be expressed as

Vslip =
1

cosh αδ
+

∞∑
n=1

2(−1)nλn

δ(α2 + λ2
n)

e−(λ2
n+α2)νt, (4.13)

which is a function of the parameter νt/δ2[= (κa/b)2(νt/a2)] and the non-dimensional permeability
parameter α = a/K1/2.



43 Page 8 of 18 E. I. Saad and M. S. Faltas ZAMP

4.1. Solution in the Laplace transform domain

Introducing the Laplace transform (denoted by an overbar) defined by the formula

f̄(r, θ; s) =

∞∫
0

f(r, θ; t) e−st dt, (4.14)

into Eq. (4.2) and using the initial condition (4.5), we obtain

L−1(L−1 − β2)Ψ̄ = 0, (4.15)

and the transformed boundary conditions are

r = 1+ : q̄r = Ū cos θ, (4.16)

q̄θ = − Ū sin θ +
3εζE0

8π η

(
1

s cosh αδ
+

∞∑
n=1

2(−1)na2λn

δ(α2 + λ2
n) (α2ν + λ2

nν + a2s)

)
sin θ, (4.17)

r → ∞ : q̄r = q̄θ = 0, (4.18)

where β =
√

α2 + a2s/ν.
The bounded solution of (4.15) is given by

Ψ̄ =
(

A

r
+

B

r
(β r + 1) e−β r

)
sin2 θ, (4.19)

where the two unknown coefficients A and B are functions of the transform parameter s and determined
using the boundary conditions (4.16) and (4.17), with the result

A =
U0

2β2

(
3(β + 1)ϑ cosh αδ − (β2 + 3β + 3) μ̄(s)

)
, (4.20)

B =
3U0

2β2
(μ̄(s) − ϑ cosh αδ)eβ , (4.21)

with

ϑ =
1

s cosh αδ
+

∞∑
n=1

2(−1)na2λn

δ (α2 + λ2
n) (α2 ν + ν λ2

n + a2s)
.

Therefore, the Laplace transform of the drag force, given by Eq. (4.11), acting on the spherical particle
will be

F̄ (s) = π η a

π∫
0

[
r4 sin3 θ

∂

∂r

(
L−1Ψ̄

r2 sin2 θ

)
− α2r2 sin θ

∂Ψ̄
∂r

− s

ν
r2 sin θ

∂Ψ̄
∂r

]
r=1+

dθ, (4.22)

=
4
3
π η aβ2

(
A − 2B (β + 1) e−β

)
. (4.23)

Therefore, we obtain the transformed drag force as

F̄ (s) = 6π aU0η

[
(β + 1)ϑ cosh αδ −

(
β2

9
+ β + 1

)
μ̄(s)

]
. (4.24)

Taking the Laplace of Eq. (4.12) and noting that U(0) = 0, we obtain

F̄ (s) = MsU0μ̄(s), (4.25)

where

μ̄(s) =

√
α2 + a2s/ν + 1

α2/9 +
√

α2 + a2s/ν + 1 + χ−2a2s/ν

(
1
s

+
∞∑

n=1

2(−1)nλna2 cosh αδ

δ (α2 + λ2
n) (α2ν + λ2

nν + a2s)

)
, (4.26)
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in which χ2 = 9m/(2M +m) and m = (4/3)πa3ρ/ϕ. Clearly, 0 ≤ χ ≤ 3, with the upper and lower bounds
occurring at the limits M/m = 0 and M/m → ∞, respectively. Note that the spherical particle velocity
vanishes as M/m → ∞, while it has a large value at M/m = 0.

It is convenient to define a non-dimensional time T and its counterpart S in the Laplace transform as
[14]

T =
t ν χ2

a2
, and S =

a2s

ν χ2
. (4.27)

In terms of these new variables (T, S), we obtain

μ̄∗(s) =
9
(√

Sχ2 + α2 − χ2 + 1
)
S + α2

√
Sχ2 + α2 + 9 − 8α2

9(S − �) (S − j)

×
(

1
S

+
∞∑

n=1

2(−1)nχ
√

ωn cosh αδ

δ (α2 + χ2ωn) (α2/χ2 + ωn + S)

)
, (4.28)

where

μ̄∗(s) = μ̄(s)νχ2/a2,
√

ωn = (2n − 1)πa/(2χδ) = (2n − 1)πκa/(2χb),

while � and j are the roots of the quadratic equation:

S2 +
(

2α2

9
− χ2 + 2

)
S +

(α2 + 9)2

81
− α2 = 0. (4.29)

4.2. Inverse of the Laplace transforms

The electrophoretic mobility can be obtained by the inverse Laplace transform of Eq. (4.28). After
algebraic manipulation, we obtain

μ =
e�T

9(� − j)�

(
χ
√

Λ2 + � (Λ2χ2 + 9�) erf
(√

T (Λ2 + �)
) − (8Λ2 χ2 + 9 � χ2 − 9� − 9)

)

− ejT

9(� − j)j

(
χ

√
Λ2 + j (Λ2χ2 + 9j) erf

(√
T (Λ2 + j)

) − (8Λ2χ2 + 9j χ2 − 9j − 9)
)

+
1

9�j

(
Λ3χ3 erf

(
Λ

√
T

) − (8Λ2χ2 − 9)
)
+

∞∑
n=1

2(−1)nλn cosh αδ

δ (α2 + λ2
n)

[
e�T

9(� − j) (Λ2 + � + ωn)

×
(
χ

√
Λ2 + � (Λ2χ2 + 9�) erf

(√
T (Λ2 + �)

) − (8Λ2χ2 + 9� χ2 − 9� − 9)
)

− ejT

9(� − j)(Λ2 + j + ωn)

(
χ

√
Λ2 + j (Λ2χ2 + 9j) erf

(√
T (Λ2 + j)

) − (8Λ2χ2 + 9j χ2 − 9j − 9)
)

− e−(Λ2+ωn)T

9(Λ2 + � + ωn)(Λ2 + j + ωn)

(
(
√

ωn χ − 1)(Λ2χ2 − 9Λ2 − 9ωn) erfi
(√

ωnT
) − 9ωnχ2 − 9

)]
,

(4.30)

where Λ = α/χ, while erf(x) and erfi(x) represent the error function and imaginary error function,
respectively.

Equation (4.30) indicates that the non-dimensional start-up of electrophoretic mobility μ is a function
of the following parameter:
(1) The non-dimensional time T.
(2) The permeability parameter α of the porous medium.
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(3) The Debye length (inverse double layer thickness) parameter κa/b (= a/δ).
(4) The mass density parameter χ (0 ≤ χ ≤ 3).

The infinite series in Eq. (4.30) is the contribution from the dynamic response of the electroosmotic
porous flow at the particle surface after the electric field is suddenly applied. In the limit α = 0, the
normalized electrophoretic mobility μ reduce to the results obtained by Keh and Huang [14].

5. Time-dependent translation of a spherical particle caused by a suddenly applied body force

Initially at the time t = 0, a constant force FA is applied on the particle in the θ = 0 direction and kept
acting on the particle afterwards. When the Reynolds number is low, the stream function of the fluid
flow through the porous medium is governed by Eq. (4.2). The initial and boundary conditions of this
problem are still given by Eqs. (4.5)–(4.8), but with Eq. (4.7) replaced by

r = 1 : qθ = −U sin θ, (5.1)

where U(t) is the unsteady translational velocity of the particle to be determined, which can be expressed
according to Brinkman model as U = U0μ(t) with [28]

U0 ≡ FA

6π η a(α2/9 + α + 1)
, (5.2)

where also μ(0) = 0 and lim
t→∞ μ(t) = 1.

Again the transformed differential equations and the transformed boundary conditions are still the
same as the previous section except (4.17) is replaced by

r = 1 : q̄θ = − Ū sin θ. (5.3)

Therefore, the stream function is still given by (4.19) where A and B are now replaced by

A = − U0

2β2
(β2 + 3β + 3) μ̄(s), (5.4)

B =
3U0

2β2
μ̄(s)eβ . (5.5)

The time-dependent drag force F acting on the spherical boundary r = 1 by the fluid through the porous
medium can also be determined from Eq. (4.11). Therefore, the momentum equation of the particle takes
the form

FA + F = M
dU

dt
. (5.6)

Taking the Laplace transform of Eq. (5.6) and using Eqs. (4.23), (5.4) and (5.5), one obtains

μ̄(s) =
1
s

(
α2

9
+ α + 1

) (
α2

9
+

√
α2 +

a2s

ν
+ 1 +

a2s

ν χ2

)−1

. (5.7)

Again, in terms of the non-dimensional variables defined by (4.26) and μ̄∗(s) = μ̄(s)νχ2/a2, Eq. (5.7)
becomes

μ̄∗(s) =
(

α2

9
+ α + 1

)
α2/9 −

√
Sχ2 + α2 + S + 1

S(S − �) (S − j)
, (5.8)
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where � and j are the roots of Eq. (4.29). The inverse Laplace transform of Eq. (5.8) leads to

μ =
α2/9 + α + 1

9

[
e�T

(� − j)�

(
Λ2χ2 − 9χ

√
Λ2 + � erf

(√
T (Λ2 + �)

)
+ 9� + 9

)

− ejT

(� − j)j

(
9 + 9j + Λ2χ2 − 9χ

√
Λ2 + j erf

(√
T (Λ2 + j)

))
+

1
�j

(
Λ2χ2 − 9Λχ erf

(
Λ

√
T

)
+ 9

)]
.

(5.9)

For α = 0, we get the same result for the normalized electrophoretic mobility μ as obtained by Keh and
Huang [14].

6. Time-dependent electrophoresis of a dielectric spherical particle with a thick double layer

In this section, we use the results of the previous section to investigate the unsteady electrophoresis
problem of a small dielectric spherical particle enclosed by a thick double layer (κa → 0) in an electrolyte
solution through a porous medium. At the time t = 0, a constant electric field E0 is imposed in the θ = 0
direction and maintained afterwards. Due to the fact that the gradient of the electrostatic potential is a
small quantity of order κ|ζ|, the effect of electric force in the Brinkman equation of motion is ignored.
Thus, in the limit of low Reynolds number, the flow field enclosed by the electrophoretic particle is also
governed by Eqs. (4.2), (4.5), (4.6), (4.8) and (5.1).

Using the Debye–Hückel approximation [43], the total surface charge Q on a dielectric spherical particle
of radius a is given by

Q = a ε ζ. (6.1)

The body force acting on the dielectric particle, due to the electric field, is

FA = QE0 = a ε ζ E0. (6.2)

Therefore, expression (6.2) indicates that the unsteady motion of a particle under the effect of step
function electric field is the same as that treated in Sec. 5 for the starting translation of a spherical
particle caused by a suddenly applied body force with the steady particle velocity U0, in Eq. (5.2),
replaced by

U0 ≡ εζ E0

6π η(α2/9 + α + 1)
. (6.3)

7. Results and discussion

7.1. Velocity slip results

In this subsection, we present the results of the apparent velocity slip, given by (4.13), at the outer
boundary of the double layer caused by the electroosmotic effect. Figure 3 indicates the plots of Vslip for
various values of the dimensionless elapsed time νt/a2, the permeability parameter α and κa/b. When a
colloidal particle is suspended in a viscous fluid with kinematic viscosity ν of order 10−6 m2/s and has a
radius of order 1µm for the case of thin double layer and 0.1µm for the case of thick double layer, these
relaxation responses correspond to times of order μs [14]. For a fixed value of α or κa/b, the apparent
velocity slip at the particle surface increases monotonically and quickly with the time from zero at t = 0
to its steady-state magnitude as t → ∞. Again for fixed values of α and νt/a2, the normalized velocity
slip decreases monotonically with a decrease in κa/b or an increase in the thickness of the double layer.
Due to the fact that the response time of the fluid within an infinitely thin double layer to the applied
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Fig. 3. Variation of the normalized velocity slip Vslip at the particle surface. Calculations of Vslip in a, b versus the non-

dimensional elapsed time νt/a2 at α = 2 and κa/b = 3, respectively, c versus the parameter κa/b at α = 2, and d versus

the permeability parameter α with κa/b = 5
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Fig. 4. Variation of the normalized electrophoretic mobility μ versus the non-dimensional elapsed time νt/a2 with M/m
and α as parameters. Calculations of a κa/b = 0, b κa/b = 3, c κa/b → ∞, and calculations of μ in d versus the permeability

parameter α with κa/b = 5
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Fig. 5. Variation of the normalized electrophoretic mobility μ versus the non-dimensional elapsed time νt/a2 with κa/b
and α as the parameters. Calculations of a M/m = 10 and b M/m = 0

electric field is zero, Vslip = 1 as κa/b → ∞, regardless of the duration and for any finite value of the
permeability parameter. For the entire range of the permeability parameter under the thin double layer
assumption κa/b � 1, the velocity slip approaches its steady-state quantity rapidly, indicating that it is
justified to neglect the relaxation effect of this velocity slip in Morrison [13] analysis. For any specified
value of the permeability parameter, the time-dependent duration of Vslip to approach its steady state
is shorter for thin double layer and longer as the thickness of the double layer increases. Again for a
fixed value of κa/b, the time-dependent duration of Vslip to approach its steady state is shorter for low
permeability and is longer for high permeability and reaches a maximum duration for the Stokes clear
fluids. It should be noted here that the results for the case of the clear fluids α = 0 (K → ∞) are in
perfect agreement as that of Keh and Huang [14]. We note that, for any fixed value of dimensionless
time νt/a2, the velocity slip decreases monotonically with an increase in the permeability parameter α.
It indicates that the velocity slip has maximum relative effects on the flow when the particle surface was
surrounded by Stokes’ flow (α = 0). For fixed values of α and κa/b, Vslip increases with the increase in
dimensionless elapsed time. For any value of νt/a2 and as α tends to the Darcian limit, Vslip → 0.

7.2. Electrophoretic mobility results

The expressions for the starting electrophoretic mobility μ(t) of a dielectric spherical particle embedded
in a porous medium due to the application of a step function electric field are given by (4.30) and (5.9)
for the cases of thin (κa/b � 1) and thick (κa/b → 0) double layers, respectively. Note that expressions
(4.30) and (5.9) are normalized with respect to their corresponding steady state. The electrophoretic
mobilities are functions of the dimensionless elapsed time, the mass ratio M/m and the permeability
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Fig. 6. Variation of the normalized electrophoretic acceleration (a2/ν)dμ/dt versus the non-dimensional elapsed time νt/a2

with M/m and α as the parameters. Calculations of a κa/b = 0, b κa/b = 3 and c κa/b → ∞
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parameter. Figure 4a–c shows plots of μ(t) against νt/a2 for the cases (a) κa/b = 0, (b) κa/b = 3, and
(c) κa/b → ∞, respectively, for values of mass ratio ranging from 0 to ∞ and fixed permeability α = 2.
For any combination of κa/b, and finite values of M/m and α, the electrophoretic mobility increases
monotonically with the time from t = 0 to its steady state t → ∞. Also note that the mobility is not
increasing as rapidly as the velocity slip does. For constant values of νt/a2, κa/b and α, the mobility
is monotonically increasing as M/m decreases. We note that for thick and thin double layers and finite
α, a heavier particle has a longer time-dependent duration than a lighter one in the development of the
electrophoretic mobility. In the limiting case of M/m → ∞, the mobility vanishes regardless of the values
of κa/b, α and νt/a2. For any value of the mass ratio, it is interesting to observe that for thick double
layer and a specified value of νt/a2, the mobility function increases with the permeability parameter while
for thin double layer it decreases as the permeability parameter increases. Finally, Fig. 4d exhibits the
variation of the normalized electrophoretic mobility μ versus the permeability parameter α for different
values of νt/a2 and M/m with κa/b = 5. It indicates that the maximum relative values of μ occur in the
Stokes limit. For low permeability in the range of Darcian limit, μ(t) decreases rapidly to zero, regardless
of νt/a2 and M/m. The normalized electrophoretic mobility as a function of the non-dimensional elapsed
time is also plotted for various values of κa/b and α in Fig. 5 for the cases of M/m = 10 and M/m = 0.
For Stokes’ flow (α = 0), and when the double layer is relatively thin, the particle mobility decreases
monotonically with a decrease in κa/b for fixed values of M/m and νt/a2. On the other hand, for
Brinkman flow (α > 0) and for fixed values of M/m and νt/a2, the mobility of the particle may decrease
or increase; it depends strongly on the values of κa/b. Figure 5 illustrates also that for fixed M/m and
κa/b, the time-dependent duration of the particle mobility is greater for the Stokes flow (α = 0) than
that of the Brinkman flow (α > 0). Figure 6 shows plots of the normalized acceleration (a2/ν)dμ/dt of a
spherical particle experiencing unsteady electrophoresis versus the dimensionless elapsed time νt/a2 with
M/m, κa/b and α as parameters. For both the Stokes and Brinkman flows (α ≥ 0) with the limiting case
of κa/b = 0 and for the entire range of M/m, as illustrated in Fig. 6a, the acceleration is a monotonic
decreasing function of νt/a2 and it is finite at the instant the electric field is applied. Again for both the
Stokes and Brinkman flows and for the case with a thin double layer, but finite (κa/b = 3) as indicated in
Fig. 6b, the non-dimensional acceleration first increases with νt/a2 from t = 0 to a maximum at a small
finite value of νt/a2 and then decreases with νt/a2 monotonically. The vanishing of the initial acceleration
in this case is a consequence of the zero velocity slip at the surface of the particle surface at t = 0. Once
more for the cases of Stokes and Brinkman flows (α ≥ 0) and for the limiting case of κa → ∞ as indicated
in Fig. 6c, the acceleration is a monotonic decreasing function of νt/a2 and is infinite at the instant the
electric field is applied. The infinite initial acceleration is a consequence to the finite velocity slip at the
surface of the particle, which develops the movement of the particle, even at the time t = 0. For α ≥ 0
and fixed values of M/m and κa/b, the acceleration of the particle decreases quickly after νt/a2 is equal
to about 0.125 and vanishes when νt/a2 tends to infinity. As M/m → ∞, the normalized acceleration
is zero for the entire range of permeability parameter with all values of κa/b. The acceleration also has
unspecified behaviour for different values of the permeability parameter with fixed values of the mass
density and Debye length parameters.

8. Conclusion

In this article, an expression for apparent velocity slip at the surface of a dielectric plane is first developed.
This velocity slip is employed as a boundary condition to solve the electrophoretic motion of a dielectric
spherical particle embedded in a porous medium under the unsteady Darcy–Brinkman model. Two related
problems are then solved under the time-dependent Darcy–Brinkman equation applicable to the systems
of a particle with a thin but finite double layer and of a particle with a thick double layer. Expressions for
the electrophoretic mobility of the particle as functions of the relevant parameters are obtained for each
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case. The present paper is an extension of the work of Keh and Huang [14] to the case of porous medium
using Darcy’s–Brinkman model for transient flow. Our study is also related to a recent work by Chiang
and Keh [17] in which they used the cell model techniques and considered low values of particle volume
fraction. The advantage of this investigation is to include all values of permeability from Stokes’ clear
fluids to Darcy’s limit. Our results also cover the thin, but finite and thick electrophoretic double layers.
The results indicate that the effect of permeability of the porous medium on the mobility is significant
and interesting. However, our study gives useful understanding into the physical phenomena of the time-
dependent reply of a dielectric particle to a quick action of a uniform electric field. The results show that
the effect of the relaxation time for unsteady electrophoresis in general is negligible, regardless of the
magnitude of the applied field, the value of the scalar zeta potential at the surface of the particle, the
value of double layer thickness and the permeability of the medium. In fact, experimental data of the
apparent velocity slip and the normalized electrophoretic mobility for porous medium would be required
to compare our results.
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