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Long-time behavior for suspension bridge equations with time delay
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Abstract. In this paper, we consider suspension bridge equations with time delay of the form

utt(x, t) + Δ2u(x, t) + ku+(x, t) + a0ut(x, t) + a1ut(x, t − τ) + f(u(x, t)) = g(x).

Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge
equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay.
In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for
suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the
attractors by establishing energy functionals which are related to the norm of the phase space to our problem.
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1. Introduction

We study the following suspension bride equations with time delay

utt + Δ2u + ku+ + a0ut(x, t) + a1ut(x, t − τ) + f(u) = g in Ω × R
+, (1.1)

u = Δu = 0 on ∂Ω × R
+, (1.2)

u(0) = u0, ut(0) = u1 on Ω, (1.3)
ut(x, t) = j0(x, t) for (x, t) ∈ Ω × (−τ, 0), (1.4)

where Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω, k > 0 is spring constant, u+ = max{u, 0}

is the positive part of u, the term −ku+ models a restoring force due to the cables, which is different
from zero only when they are being stretched. The constants a0 and a1 are real numbers, τ > 0 is time
delay, and f and g are forcing terms.

The suspension bridge equations were introduced by Lazer and McKenna [7] to describe the transverse
deflection of the roadbed in the vertical plane and they were regarded as new problems in the field of
nonlinear analysis. In the absence of delay, that is, when a1 = 0 in (1.1), problem (1.1)–(1.3) was
intensively studied about well-posedness, uniqueness of solutions, and attractors (see, e.g., [1,7,10,11,21]
and references therein). An [1] obtained the existence and uniqueness of a weak solution for k > −1
and showed decay estimates of the solution, and Ma and Zhong [10] investigated the existence of global
attractors in H2

0 (Ω)×L2(Ω). Later, the authors of [21] improved the results of [10] by showing the existence
of strong solutions and global attractors in D(A) × H2

0 (Ω), making use of the norm-to-weak continuous
semigroup scheme developed in [8]. Moreover, we refer [9,15,16] for works of suspension bridge equations.
In this paper, we will study suspension bridge equations with time delay of the form (1.1)–(1.4).

Time delays arise in many applications depending not only on the present state but also on some past
occurrences. The presence of delay may be a source of instability (see, e.g., [4,13]), and hence it affects the
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existence of attractors. Thus, partial differential equations with time delay effects have become an active
area of research (see [12,14,18] and references therein). As regards wave equations with delay, Nicaise
and Pignotti [13] investigated the wave equation with time delay

utt(x, t) − Δu(x, t) + a0ut(x, t) + a1ut(x, t − τ) = 0. (1.5)

They proved that the energy of the problem decays exponentially under the condition 0 < a1 < a0. And
then they extended the result to the time varying delay case in [14]. For the related works of equations
with time delay, we also refer [6,17,20] and references therein.

Based on the above-mentioned research results, we investigate the existence of attractors and finite
dimensionality of the attractors for problem (1.1)–(1.4). It is worth to mention that there are not much
literature on attractors for delayed systems. Furthermore, as far as we are concerned, this is the first
work in the literature that takes into account the global attractors for suspension equations with time
delay. To obtain our desired results, we establish some functionals which are equivalent to the norm of
the phase space to problem (1.1)–(1.4).

The outline of this paper is as follows. In Sect. 2, we give some notations and material needed for
our work. In Sect. 3, we prove the existence of attractors for problem (1.1)–(1.4). Finally, in Sect. 4, we
examine the finite dimensionality of the attractors.

2. Preliminaries

We first review some notations about function spaces and give hypothesis for problem (1.1)–(1.4). For a
Banach space X, we denote the norm of X by || · ||X . As usual, we denote the scalar product in L2(Ω)
by (·, ·) and Lp(Ω) norm by || · ||p, respectively. For brevity, we denote || · ||2 by || · ||.

Let λ be the best constant in the Poincaré-type inequality

λ||u||2 ≤ ||Δu||2 for u ∈ H2(Ω) ∩ H1
0 (Ω).

Let us introduce the phase space

H = (H2(Ω) ∩ H1
0 (Ω)) × L2(Ω) × L2(Ω × (0, 1))

equipped with the norm

||(u, v, z)||2H = ||Δu||2 + ||v||2 + ||z||2L2(Ω×(0,1)).

With regard to problem (1.1)–(1.4), we impose the following assumptions:
(H1) f : R → R satisfy

|f(u) − f(ũ)| ≤ l(1 + |u|p + |ũ|p)|u − ũ| for u, ũ ∈ R, (2.1)
−l0 ≤ F (u) ≤ f(u)u for u ∈ R, (2.2)

here l > 0, l0 > 0, F (u) =
u∫

0

f(s)ds, and p > 0.

(H2) g ∈ L2(Ω), j0 ∈ L2(Ω × (−τ, 0))
(H3) The coefficients a0 and a1 satisfy

0 < |a1| < a0.

As in [13], we introduce the function

z(x, ρ, t) = ut(x, t − ρτ) for (x, ρ, t) ∈ Ω × (0, 1) × (0,∞). (2.3)

Then problem (1.1)–(1.4) is equivalent to

utt + Δ2u + ku+ + a0ut + a1z(x, 1, t) + f(u) = g on Ω × R
+, (2.4)

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 for (x, ρ, t) ∈ Ω × (0, 1) × (0,∞), (2.5)

u(x, t) = Δu(x, t) = 0 for (x, t) ∈ ∂Ω × R
+, (2.6)
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u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω, (2.7)
z(x, ρ, 0) = j0(x,−ρτ) := z0(x, ρ) for (x, ρ) ∈ Ω × (0, 1). (2.8)

To obtain the global attractor of problem (2.4)–(2.8), we state the existence result:

Theorem 2.1. Assume that (H1) and (H2) hold. Then we have:
(i) For every (u0, u1, z0) ∈ H and T > 0, there exists a weak solution (u, ut, z) of problem (2.4)–(2.8)

in the class

u ∈ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)), ut ∈ L∞(0, T ;L2(Ω)), z ∈ L∞(0, T ;L2(Ω × (0, 1)))

satisfying (u, ut, z) ∈ C([0, T ];H).
Moreover, the solution is unique and depends continuously on the initial data (u0, u1, z0) ∈ H and
g ∈ L2(Ω).

(ii) Let (u, ut, z) and (ũ, ũt, z̃) be two weak solutions of problem (2.4)–(2.8) corresponding to initial data
(u0, u1, z0) and (ũ0, ũ1, z̃0), respectively. Then one gets

||(u, ut, z) − (ũ, ũt, z̃)||H ≤ ect||(u0, u1, z0) − (ũ0, ũ1, z̃0))||H for some c > 0.

Proof. The proof can be established by combining arguments of [1,6,20,21]. �
The aim of this paper is to prove the existence of attractors for problem (1.1)–(1.4) and examine the

finite dimensionality of the attractors. For this purpose, we present some basic concepts and abstract
results on dynamical systems by following the Chueshov and Lasiecka’s book [3] (or see, e.g., [2,5,19]).

Let F be a Banach space and B be a bounded subset of F . We call a function φ(·, ·) which defined
on F × F is a contractive function on B × B if for any sequence {xn}∞

n=1 ⊂ B, there is a subsequence
{xnk

}∞
k=1 ⊂ {xn}∞

n=1 such that

lim inf
k→∞

lim inf
l→∞

φ(xnk
, xnl

) = 0.

Lemma 2.1. Let {S(t)}t≥0 be a semigroup on a Banach space (F , || · ||F ) and have a bounded absorbing
set B0. Assume that for any ε > 0 there exist T = T (B0, ε) and a contractive function φT (·, ·) on B0 ×B0

such that
||S(T )x − S(T )y||F ≤ ε + φT (x, y) for all x, y ∈ B0,

where φT depends on T. Then S(t) is asymptotically smooth in F .

Lemma 2.2. A dissipative dynamical system (S(t),F) has a compact global attractor if and only if it is
asymptotically smooth.

Let X,Y,Z be three reflexive Banach spaces with X compactly embedded in Y, F = X × Y × Z, and
(S(t),F) a dynamical system given by an evolution operator

S(t)x = (u(t), ut(t), z(t)) for x = (u0, u1, z0) ∈ F , (2.9)

where the functions u and z have regularity

u ∈ C(R+;X) ∩ C(R+;Y ), z ∈ C(R+;Z). (2.10)

We call the dynamical system (S(t),F) is quasi-stable on B ⊂ F if there exists a compact seminorm nX

on X and nonnegative scalar function a(t) and c(t), locally bounded in [0,∞), and b(t) ∈ L1(R+) with
limt→∞ b(t) = 0 such that

||S(t)x − S(t)y||2F ≤ a(t)||x − y||2F (2.11)
and

||S(t)x − S(t)y||2F ≤ b(t)||x − y||2F + c(t) sup
0<s<t

[nX(u(s) − ũ(s))]2, (2.12)

where S(t)x = (u(t), ut(t), z(t)), S(t)y = (ũ(t), ũt(t), z̃(t)) and x, y ∈ B.

Lemma 2.3. Let (S(t),F) be given by (2.9) and satisfy (2.10). If (S(t),F) has a compact global attractor
A and is quasi-stable on A, then the attractor A has finite fractional dimension.
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3. Existence of attractors

In this section, we prove the existence of global attractors for problem (1.1)–(1.4) adapting Lemma 2.2.
To do this, we define a map S(t) : H → H by

S(t)(u0, u1, z0) = (u(t), ut(t), z(t)), (3.1)

where (u(t), ut(t), z(t)) is the unique weak solution of system (2.4)–(2.8) corresponding to initial data
(u0, u1, z0). Then, by Theorem 2.1, {S(t)}t≥0 is a C0-semigroup on H.

Inspired by [14], let us define the energy of problem (2.4)–(2.8) by

E(t) =
1
2
||ut||2 +

1
2
||Δu||2 +

k

2
||u+||2 +

∫

Ω

F (u)dx − (g, u) +
ξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds, (3.2)

where

|a1| < ξ < 2a0 − |a1| and 0 < θ <
1
τ

ln
ξ

|a1| . (3.3)

Using integration by substitution s = t − ρτ , we find

ξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds = −ξτ

2

0∫

1

∫

Ω

e−θρτu2
t (x, t − ρτ)dxdρ

=
ξτ

2

1∫

0

∫

Ω

e−θρτz2(x, ρ, t)dxdρ. (3.4)

From (2.2), we get
∫

Ω

F (u)dx − (g, u) ≥ −l0|Ω| − 1
4
||Δu||2 − ||g||2

λ
. (3.5)

Applying these to (3.2), one sees that

E(t) ≥ 1
2
||ut||2 +

1
4
||Δu||2 +

k

2
||u+||2 − l0|Ω| − ||g||2

λ
+

ξτ

2

1∫

0

∫

Ω

e−θτρz2(x, ρ, t)dxdρ

≥ 1
2
||ut||2 +

1
4
||Δu||2 +

k

2
||u+||2 − l0|Ω| − ||g||2

λ
+

ξτe−θτ

2

1∫

0

∫

Ω

z2(x, ρ, t)dxdρ

≥ 1
c0

(||ut||2 + ||Δu||2 +

1∫

0

∫

Ω

z2(x, ρ, t)dxdρ) − l0|Ω| − ||g||2
λ

, (3.6)

where
1
c0

:= min
{

1
4
,
ξτe−θτ

2

}

. (3.7)

This yields that

||(u, ut, z)||2H ≤ c0

(
E(t) + l0|Ω| +

||g||2
λ

)
. (3.8)
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Lemma 3.1. Assume that (H1), (H2), and (H3) hold. Then there exists positive constants c1 and c2

satisfying

E′(t) ≤ −c1||ut(t)||2 − c2||z(1, t)||2 − θξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds.

Proof. Multiplying ut in (2.4), we have

d
dt

⎧
⎨

⎩
E(t) − ξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds

⎫
⎬

⎭
= −a0||ut(t)||2 − a1(z(1, t), ut(t)).

Thus, by direct calculation and Young’s inequality, we get

E′(t) = − a0||ut(t)||2 − a1(z(1, t), ut(t)) − θξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds

+
ξ

2
||ut(t)||2 − ξe−θτ

2
||ut(t − τ)||2

≤ −
(
a0 − |a1|

2
− ξ

2

)
||ut(t)||2 −

(ξe−θτ

2
− |a1|

2

)
||z(1, t)||2

− θξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds. (3.9)

From (3.3), the coefficients a0 − |a1|
2 − ξ

2 := c1 and ξe−θτ

2 − |a1|
2 := c2 are positive. This completes the

proof. �

Next, let us define the perturbed functional by

L(t) = E(t) + εΨ(t),

where Ψ(t) = (ut, u).

Lemma 3.2. Let the conditions of Lemma 3.1 hold. Then, for ε > 0 small enough there exist αi > 0,
i = 1, 2, and c3 > 0 such that

α1E(t) − c3

(
l0|Ω| +

||g||2
λ

)
≤ L(t) ≤ α2E(t) + c3

(
l0|Ω| +

||g||2
λ

)
for t ≥ 0. (3.10)

Proof. Young’s inequality and (3.8) give that

|Ψ(t)| ≤ 1
2
||ut||2 +

1
2λ

||Δu||2 ≤ c0 max
{

1
2
,

1
2λ

}(

E(t) + l0|Ω| +
||g||2

λ

)

.

Thus, we obtain

|L(t) − E(t)| ≤ εc0 max
{

1
2
,

1
2λ

} (
E(t) + l0|Ω| +

||g||2
λ

)
.

Choosing ε > 0 small and letting α1 = 1−εc0 max
{

1
2 , 1

2λ

}
, α2 = 1+εc0 max{ 1

2 , 1
2λ}, c3 = εc0 max{ 1

2 , 1
2λ},

we complete the proof. �

Lemma 3.3. Let the conditions of Lemma 3.1 hold. Then, there exist positive constants c4 and c5 satisfying

Ψ′(t) ≤ c4||ut(t)||2 − 1
2
||Δu(t)||2 − k||u+(t)||2 + c5||z(1, t)||2 −

∫

Ω

F (u)dx + (g, u(t)).
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Proof. Using (2.4), we have

Ψ′(t) = ||ut(t)||2 − ||Δu(t)||2 − k(u(t), u+(t)) − a0(u(t), ut(t))
− a1(u(t), z(1, t)) − (f(u(t)), u(t)) + (g, u(t)). (3.11)

Thanks to

− k(u(t), u+(t)) = −k||u+(t)||2,
− a0(u(t), ut(t)) ≤ 1

4
||Δu(t)||2 +

a2
0

λ
||ut(t)||2,

− a1(u(t), z(1, t)) ≤ 1
4
||Δu(t)||2 +

a2
1

λ
||z(1, t)||2,

− (f(u(t)), u(t)) ≤ −
∫

Ω

F (u)dx,

we have from (3.11) that

Ψ′(t) ≤
(
1 +

a2
0

λ

)
||ut(t)||2 − 1

2
||Δu(t)||2 − k||u+(t)||2

+
a2
1

λ
||z(1, t)||2 −

∫

Ω

F (u)dx + (g, u(t)).

Putting c4 = 1 + a2
0

λ and c5 = a2
1

λ , we complete the proof. �
Lemma 3.4. Under the conditions of Lemma 3.1, the semigroup {S(t)}t≥0 defined by (2.1) has a bounded
absorbing set in H.

Proof. From Lemmas 3.1 and 3.3, we see that

L′(t) ≤ − c1||ut(t)||2 − c2||z(1, t)||2 − θξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds

+ εc4||ut(t)||2 − ε

2
||Δu(t)||2 − εk||u+(t)||2

+ εc5||z(1, t)||2 − ε

∫

Ω

F (u)dx + ε(g, u(t))

= − (c1 − εc4)||ut(t)||2 − ε

2
||Δu(t)||2 − εk||u+(t)||2 − ε

∫

Ω

F (u)dx + ε(g, u(t))

− θξ

2

t∫

t−τ

eθ(s−t)||ut(s)||2ds − (c2 − εc5)||z(1, t)||2. (3.12)

Choosing ε > 0 small enough such that c1 − εc4 > 0, c2 − εc5 > 0, we deduce that

L′(t) ≤ −α3E(t) for some α3 > 0.

From this and (3.10), we have

L′(t) ≤ −α3

α2
L(t) +

α3c3

α2

(
l0|Ω| +

||g||2
λ

)
,

and hence

L(t) ≤
{

L(0) − c3

(

l0|Ω| +
||g||2

λ

)}

e− α3t
α2 + c3

(

l0|Ω| +
||g||2

λ

)

. (3.13)
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Applying (3.10) to (3.13), we deduce that

E(t) ≤ α2

α1
E(0)e− α3t

α2 + 2c3

(
l0|Ω| +

||g||2
λ

)
. (3.14)

Consequently, we conclude from (3.8) and (3.14) that

||(u(t), ut(t), z)||2H ≤ c0α2

α1
E(0)e− α3t

α2 + c0(2c3 + 1)
(
l0|Ω| +

||g||2
λ

)
.

This shows that any closed ball B0 = B(0, R) with R >

√

c0(2c3 + 1)
(
l0|Ω| + ||g||2

λ

)
is a bounded

absorbing set of (S(t),H). �
Lemma 3.5. Assume the conditions (H1)–(H3) hold and 0 < k < λ. Let B0 be a bounded absorbing
set obtained in Lemma 3.4; S(t)y0 = (u, ut, z) and S(t)ỹ0 = (ũ, ũt, z̃) be two weak solutions of problem
(2.4)–(2.8) corresponding to initial data y0 = (u0, u1, z0) ∈ B0 and ỹ0 = (ũ0, ũ1, z̃0) ∈ B0, respectively.
Then,

||S(t)y0 − S(t)ỹ0||2H ≤ ce−ωt||y0 − ỹ0||2H + C(B0)

t∫

0

e−ω(t−s)||u(s) − ũ(s)||22(p+1)ds, (3.15)

where c > 0, ω > 0, and C(B0) is a constant depending on the size of B0.

Proof.
Step 1. Let w(t) = u(t) − ũ(t), q(x, ρ, t) = z(x, ρ, t) − z̃(x, ρ, t). Then from (2.4)–(2.8), w and q satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wtt + Δ2w + k(u+ − ũ+) + a0wt + a1q(x, 1, t) + f(u) − f(ũ) = 0 on Ω × R
+,

τqt(x, ρ, t) + q(x, ρ, t) = 0 for (x, ρ, t) ∈ Ω × (0, 1) × (0,∞),
w = Δw = 0 on ∂Ω × R

+,
w(0) = u0 − ũ0, wt(0) = u1 − ũ1 on Ω,
q(x, ρ, 0) = z0(x, ρ) − z̃0(x, ρ) := q0 for (x, ρ) ∈ Ω × (0, 1).

(3.16)

Adapting the same arguments used to get (3.9), we can easily see that

E′
w(t) ≤ −

(
a0 − |a1|

2
− ξ

2

)
||wt(t)||2 −

(ξe−θτ

2
− |a1|

2

)
||q(1, t)||2 (3.17)

− θξ

2

t∫

t−τ

eθ(s−t)||wt(s)||2ds − k(u+ − ũ+, wt) − (f(u) − f(ũ), wt),

where

Ew(t) =
1
2
||wt(t)||2 +

1
2
||Δw(t)||2 +

ξ

2

t∫

t−τ

eθ(s−t)||wt(s)||2ds,

here θ and ξ are as given in (3.3).
Observing that |u+ − ũ+| ≤ |u − ũ| and ||w||2 ≤ λ̃||w||22(p+1), where λ̃ is the embedding

constant, we have

− k(u+ − ũ+, wt) ≤ λ̃k2

η
||w(t)||22(p+1) +

η

4
||wt||2.

Also, we have from (2.1) that

− (f(u) − f(ũ), wt) ≤ lC(p)(|Ω| p
2(p+1) + ||u||p2(p+1) + ||ũ||p2(p+1))||w||2(p+1)||wt||

≤ C(B0)||w||2(p+1)||wt||



45 Page 8 of 12 S.-H. Park ZAMP

≤ C(B0)
η

||w||22(p+1) +
η

4
||wt||2,

here and after C(·) denotes a generic constant, which depends on the variable, different from line
to line or even in the same line.

Substituting these into (3.17), we find that

E′
w(t) ≤ −

(
a0 − |a1|

2
− ξ

2
− η

2

)
||wt(t)||2 −

(ξe−θτ

2
− |a1|

2

)
||q(1, t)||2

− θξ

2

t∫

t−τ

eθ(s−t)||wt(s)||2ds +
( λ̃k2

η
+

C(B0)
η

)
||w||22(p+1). (3.18)

On the other hand, it can be observed that Ew is equivalent to ||(w,wt, q)||2H, that is, there exist
positive constants α4 and α5 such that

α4Ew(t) ≤ ||(w,wt, q)||2H ≤ α5Ew(t). (3.19)

Indeed, integration by substitution s = t − ρτ gives

Ew(t) =
1
2
||wt(t)||2 +

1
2
||Δw(t)||2 +

ξτ

2

1∫

0

e−θρτ ||wt(t − ρτ)||2dρ

≥ 1
2
||wt(t)||2 +

1
2
||Δw(t)||2 +

ξτe−θτ

2

1∫

0

∫

Ω

q2(x, ρ, t)dxdρ

≥ min
{

1
2
,
ξτe−θτ

2

}

||(w,wt, q)||2H. (3.20)

Moreover it holds that

Ew(t) =
1
2
||wt(t)||2 +

1
2
||Δw(t)||2 +

ξτ

2

1∫

0

∫

Ω

e−θρτq2(x, ρ, t)dxdρ

≤ 1
2
||wt(t)||2 +

1
2
||Δw(t)||2 +

ξτ

2

1∫

0

∫

Ω

q2(x, ρ, t)dxdρ

= max
{

1
2
,
ξτ

2

}

||(w,wt, q)||2H. (3.21)

Step 2. Now, let us define
Lw(t) = Ew(t) + εψ(t),

where ψ(t) = (wt(t), w(t)). It can be easily shown that for appropriately small ε > 0 there exist
positive constants α6 and α7 satisfying

α6Ew(t) ≤ Lw(t) ≤ α7Ew(t). (3.22)

From (3.16), it follows

ψ′(t) = ||wt||2 − ||Δw||2 − k(u+ − ũ+, w) − a0(wt, w)
− a1(q(1, t), w) − (f(u) − f(ũ), w). (3.23)

Since

− k(u+ − ũ+, w) ≤ k||w||2 ≤ k

λ
||Δw||2,
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− a0(wt, w) ≤ η

4
||Δw||2 +

a2
0

ηλ
||wt||2,

− a1(q(1, t), w) ≤ η

4
||Δw||2 +

a2
1

ηλ
||q(1, t)||2,

and

−(f(u) − f(ũ), w) ≤ C(B0)||w||2(p+1)||w|| ≤ η

4
||Δw||2 +

C(B0)
ηλ

||w||22(p+1),

we get from (3.23) that

ψ′(t) ≤
(
1 +

a2
0

ηλ

)
||wt(t)||2 −

(
1 − k

λ
− 3η

4

)
||Δw||2

+
a2
1

ηλ
||q(1, t)||2 +

C(B0)
ηλ

||w||22(p+1). (3.24)

Combining (3.18) and (3.24), we have

L′
w(t) ≤ −

{
a0 − |a1|

2
− ξ

2
− η

2
− ε

(
1 +

a2
0

ηλ

)}
||wt(t)||2

− ε
(
1 − k

λ
− 3η

4

)
||Δw||2 − θξ

2

t∫

t−τ

eθ(s−t)||wt(s)||2ds

−
(ξe−θτ

2
− |a1|

2
− ε

a2
1

ηλ

)
||q(1, t)||2 +

(εC(B0)
ηλ

+
λ̃k2

η
+

C(B0)
η

)
||w||22(p+1). (3.25)

Taking η > 0 and ε > 0 sufficiently small, we arrive at

L′
w(t) ≤ −c6Ew(t) + C(B0)||w||22(p+1) for some c6 > 0.

We have from this and (3.22) that

L′
w(t) ≤ −ωLw(t) + C(B0)||w||22(p+1) for some ω > 0.

This and (3.22) ensure that

Ew(t) ≤ c7e
−ωtEw(0) + C(B0)

t∫

0

e−ω(t−s)||w(s)||22(p+1)ds for some c7 > 0.

This and (3.19) complete the proof.
�

Lemma 3.6. Assume (H1)–(H3) hold and 0 < k < λ. Then, the semigroup {S(t)}t≥0 defined by (2.1) is
asymptotically smooth in H.

Proof. We apply Lemmas 3.5 and 2.2. Let B0 be a bounded absorbing set obtained in Lemma 3.4, and
S(t)y0 = (u, ut, z) and S(t)ỹ0 = (ũ, ũt, z̃) be two weak solutions of problem (2.4)–(2.8) corresponding to
initial data y0 = (u0, u1, z0) ∈ B0 and ỹ0 = (ũ0, ũ1, z̃0) ∈ B0, respectively. Let ε > 0. Then, from (3.15),
for every ε > 0 there exists T = T (B0, ε) > 0 such that

||S(T )y0 − S(T )ỹ0||H ≤ ε + C(B0)

⎛

⎝
T∫

0

||u(s) − ũ(s)||22(p+1)ds

⎞

⎠

1
2

. (3.26)

Gagliardo–Nirenberg inequality implies that

||u(s) − ũ(s)||2(p+1) ≤ c||Δu(s) − Δũ(s)||σ||u(s) − ũ(s)||1−σ ≤ C(B0)||u(s) − ũ(s)||1−σ,
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where c > 0 and σ = p
2(p+1) .

This and (3.26), we observe that

||S(T )y0 − S(T )ỹ0||2H ≤ ε + φT (y0, ỹ0), (3.27)

where

φT (y0, ỹ0) = C(B0)

⎛

⎝
T∫

0

||u(s) − ũ(s)||2(1−σ)ds

⎞

⎠

1
2

. (3.28)

Now, it remains to show that φT defined in (3.28) is a contractive function on B0 × B0. Let (un, un
t , zn)

be the corresponding solution for the initial data yn
0 = (un

0 , un
1 , zn

0 ) ∈ B0, n = 1, 2, . . . . Since B0 is a
bounded positively invariant set in H with respect to S(t), without loss of generality, we assume that

un → u weakly star in L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)), (3.29)

un
t → ut weakly star in L∞(0, T ;L2(Ω)), (3.30)

zn → z weakly star in L∞(0, T ;L2(Ω × (0, 1))). (3.31)

These and Aubin–Lions lemma give that

un → u stongly in L2(1−σ)(0, T ;L2(Ω)). (3.32)

This implies that

lim
n→∞ lim

m→∞ φT (yn
0 , ym

0 ) = C(B0) lim
n→∞ lim

m→∞

T∫

0

||un(s) − um(s)||2(1−σ)ds = 0.

Hence, φT is a contractive function on B0 × B0. From Lemma 2.1, the proof is finished. �

Our main result of this section reads as:

Theorem 3.1. Under the condition of Lemma 3.6, the semigroup {S(t)}t≥0 corresponding to problem
(2.4)–(2.8) has a global attractor in H.

Proof. Lemmas 3.4, 3.6, and 2.2 ensure the existence of a global attractor. �

4. Finite-dimensional attractor

In this section, we prove the finite dimensionality of the attractors given in Theorem 3.1 making use of
Lemma 2.3.

Lemma 4.1. Let the conditions of Theorem 3.1 hold. Then, the dynamical system (S(t),H) defined by
(2.1) is quasi-stable on any bounded positively invariant set B ⊂ H.

Proof. Theorem 2.1 (i) ensures that the dynamical system (S(t),H) satisfies (2.9) and (2.10) by consider-
ing X = H2(Ω)∩H1

0 (Ω), Y = L2(Ω), and Z = L2(Ω× (0, 1)). Furthermore, we observe from Theorem 2.1
(ii) that (S(t),H) satisfies (2.11). Now, it remains to show that (S(t),H) satisfies (2.12). Let B0 ⊂ H be
a bounded set positively invariant with respect to S(t). Let S(t)y0 = (u, ut, z) and S(t)ỹ0 = (ũ, ũt, z̃) for
y0 ∈ B0 and ỹ0 ∈ B0, respectively. Define the seminorm

nX(u) = ||u||2(p+1),

then nX(·) is a compact seminorm on X = H2(Ω) ∩ H1
0 (Ω) because the embedding H2(Ω) ∩ H1

0 (Ω) ↪→
L2(p+1)(Ω) is compact. Hence, (3.15) can be rewritten as

||S(t)y0 − S(t)ỹ0||2H ≤ b(t)||y0 − ỹ0||2H + c(t) sup
0<s<t

(nX(u(s) − ũ(s)))2,
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where b(t) = ce−ωt and c(t) = C(B0)
t∫

0

e−ω(t−s)ds. Moreover we see that b ∈ L1(R+), limt→∞ b(t) = 0,

and c(t) is locally bounded on [0,∞) because B0 is bounded. �

Our desired result of this section is following:

Theorem 4.1. Let the conditions of Theorem 3.1 hold. Then, the global attractor A given in Theorem 3.1
has finite fractal dimension.

Proof. Since the global attractor A given in Theorem 3.1 is a bounded positively invariant set of H,
Lemma 4.1 yields that the dynamical system (S(t),H) defined (2.1) is quasi-stable on A. Thus, Lemma 2.3
implies that A has finite fractal dimension. �
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