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Abstract. In this work, we consider a two-dimensional dynamical problem of an infinite space with finite linear Mode-I
crack and employ a recently proposed heat conduction model: an exact heat conduction with a single delay term. The
thermoelastic medium is taken to be homogeneous and isotropic. However, the boundary of the crack is subjected to
a prescribed temperature and stress distributions. The Fourier and Laplace transform techniques are used to solve the
problem. Mathematical modeling of the present problem reduces the solution of the problem into the solution of a system
of four dual integral equations. The solution of these equations is equivalent to the solution of the Fredholm’s integral
equation of the first kind which has been solved by using the regularization method. Inverse Laplace transform is carried
out by using the Bellman method, and we obtain the numerical solution for all the physical field variables in the physical
domain. Results are shown graphically, and we highlight the effects of the presence of crack in the behavior of thermoelastic
interactions inside the medium in the present context, and its results are compared with the results of the thermoelasticity
of type-III.
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1. Introduction

The classical coupled dynamical theory of thermoelasticity was developed by Biot [1] by assuming that
the elastic changes have an effect on the temperature and vice versa. However, this theory was based on
Fourier law of heat conduction. Therefore, when this theory was combined with the law of conservation
of energy, a parabolic-type heat conduction equation was obtained and hence predicted an infinite speed
of thermal signal which contradicted the physical fact. In order to resolve this so-called paradox in the
Biot’s theory [1], the topic generalized theory of thermoelasticity has come into existence and attracted
the several researchers during last few decades. The generalized theories were specially formulated to
account the finite speed of propagation of thermal signals which was termed as second sound effect,
and in this respect, we would like to mention here the one of the earliest development of the second
sound theory for thermoelasticity by Fox [2] in which he applied the principles of modern continuum
thermodynamics. Further, the two well-established and well-studied generalized thermoelasticity theories
were also developed by Lord and Shulman [3] and Green and Lindsay [4]. Two thermal relaxation time
parameters were introduced in the theory developed by Green and Lindsay [4], and one relaxation time
was considered in the theory proposed by Lord and Shulman [3]. Later on, Chandrashekhariah [5,6]
and Hetnarski and Ignaczak [7] also reported some review articles. The book by Ignaczak and Ostoja-
Starzewaski [8] also addressed a detailed study of the generalized thermoelasticity theory.

Green and Naghdi [9–11] proposed the new thermoelasticity theory which was considered to be an
alternative formulation of heat propagation during the period 1992–1995, and they included the thermal
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pulse transmission in this theory in very consistently manner. This theory includes three models, and
these are subsequently known as thermoelastic models of type GN-I, GN-II, and GN-III. In this theory,
the temperature gradient and thermal displacement gradient are assumed as the constitutive variables,
and the main concept of its formulation is that an entropy balance law is used in the place of usual
entropy production inequality (see Chandrasekharaiah [6]). Out of these three models, first two models
are the special cases of the GN-III model, whereas GN-I model is closely related to the theory of classical
thermoelasticity theory, and therefore, it suffers from the paradox of infinite heat propagation speed. In
GN-II model, there is no dissipation of thermal energy which is caused by no change in internal energy.
Therefore, it implies that the internal rate of production of entropy is almost zero which is not obtained
in the general case, i.e., GN-III model. The proposed heat conduction law under GN-III theory can be
written as given below:

�q(x, t) = −
[
κ�∇θ(x, t) + κ∗�∇υ(x, t)

]
,

where �q is the heat flux vector. υ is the thermal displacement defined by υ̇ = θ, where θ being the
temperature and κ > 0, κ∗ > 0 are the material parameters which are known as the thermal conductivity
and conductivity rate, respectively.

Tzou [12] developed the two phase-lag model and the microstructural effects in heat transport process.
We must mention a detailed analysis of this model was reported by Quintanilla [13]. Later on, Hetnarski
and Ignaczak [7] had also studied the various models in a survey article by mentioning the theoretical
significance of these models, and the domain of influence theorem was also explained by them for the
Lord–Shulman and Green–Naghdi theories with an initial boundary value problems.

Chandrashekhariah [6] proposed a review article in which he has extended the dual phase-lag heat
conduction model proposed by Tzou [12] to a hyperbolic thermoelastic dual phase-lag model using its
Taylor series expansion. Subsequently, Roychoudhuri [14] introduced an alternative extension of GN-III
model in the frame of dual phase-lag model which is called as three phase-lag model in which three different
phase-lag parameters are introduced in the constitutive variables of the equation of heat conduction under
GN-III model which can be written in following form:

�q(x, t + τq) = −
[
κ�∇θ(x, t + τθ) + κ∗�∇υ(x, t + τυ)

]
,

where τq, τθ and τυ are the material parameters which are known as time relaxation parameters.
Further, Quintanilla and Racke [15] discussed the stability of three phase-lag heat conduction equa-

tion. Dreher et al. [16] gave an analysis on dual phase-lag and three phase-lag heat conduction theories
in which they have found the ill-posed behavior of the problem in Hadamard sense. In order to find the
acceptable results, Quintanilla [17] developed the theory to reformulate the three phase-lag heat conduc-
tion model and proposed an alternative heat conduction model with single delay term. Again, Quintanilla
and Leseduarte [18] re-examined the model proposed by Quintanilla [17], and they discussed the stability
and spatial behavior of the solutions under this model. They assumed τυ > τq = τθ and τ0 = τν − τq, and
the constitutive law of heat conduction equation has been written as

�q(x, t) = −
[
κ�∇θ(x, t) + κ∗�∇υ(x, t + τ0)

]
.

By using the above constitutive equation, they discussed the spatial behavior of the solutions for this
theory. Further, Quintanilla and Leseduarte [18] studied the Taylor series approximation until order l of
the above equation in forward sense which is given in the following form:

�q(x, t) = −
[
κ�∇T (x, t) + κ∗

{
�∇υ(x, t) + τ0�∇υ̇(x, t) + · · · +

τ l
0

l(l − 1) . . . 1
�∇υ(l)(x, t)

}]
.

The energy equation which imply heat conduction equation is obtained in the form:

cv θ̇(x, t) = −
[
κ∇2θ(x, t) + κ∗

{
∇2υ(x, t) + τ0∇2θ(x, t) + · · · +

τ l
0

l(l − 1) . . . 1
∇2θ(l−1)(x, t)

}]
,
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Fig. 1. Displacement of Mode-I crack

where cv is the specific heat at constant strain and ∇2 is the Laplacian operator.
Further, Quintanilla [17] has also shown that the solution of the above heat conduction equation is

always stable whenever l ≤ 3. In the case l = 0, the above equation can be written as

cvṪ (x, t) = − [
κ∇2θ(x, t) + κ∗∇2υ(x, t)

]
,

which is the heat conduction equation under GN-III model, and when we take l = 2, we obtain the
following equation of heat conduction which we say new model-I (i.e., Quintanilla-I model):

cv θ̇(x, t) = −
[
κ∇2θ(x, t) + κ∗

{
1 + τ0

∂

∂t
+

τ2
0

2
∂2

∂t2

}
∇2υ(x, t)

]
.

Now if we do not consider the term containing τ2
0 due to very small value of τ0, we obtain the following

equation which we say new model-II (i.e., Quintanilla-II model):

cv θ̇(x, t) = −
[
κ∇2θ(x, t) + κ∗

{
1 + τ0

∂

∂t

}
∇2υ(x, t)

]
.

Recently, many researchers have seriously studied the cracks and failures in solid as it has the wide
applications in the industry, particularly in the fabrication of electronic components, geophysics, earth-
quake engineering, etc. They have considered the two-dimensional Griffith crack problem represented by
a line segment. In reality, it is a long flat ribbon-shaped cavity in a solid which stressed in such a way
that stress patterns remain unaltered while passing in a direction parallel to the direction of the crack.
It is noted that Griffith [19] has firstly studied the theory of the cracks in two-dimensional thermoelastic
medium. The fracture mode of any material shows the separation geometrically. There are three basic
problems of crack corresponding to three different modes, i.e., Mode-I, Mode-II, and Mode-III in terms
of displacement in two-dimensional problems which is very useful to study. A Griffith crack having the
length 2r in a solid medium in the case of Mode-I is shown in Fig 1, under the action of the tension
which is in the direction perpendicular to the line of the crack. Mode-I shows a symmetric opening in
the relative displacements of the medium being normal to the fracture surface which is given in Irwin’s
study [20]. One thing is also noted that the crack growth usually occurs in Mode-I or close to it.

Mallik and Kanoria [21] discussed an understanding of thermally induced stresses in solids which is
necessary for a detailed study of the manufacturing stages. We would also like to mention here that
the thermal stresses have a important role in the building structural elements. The flow-induced ther-
mal stresses in the infinite isotropic solids have been studied by Florence and Goodier [22]. The crack
problems in thermoelastic media are also discussed by Sih [23], Kassir and Bergman [24], Prasad and
Aliabadi [25], Raveendra and Banerjee [26], Elfalaky and Abdel-Halim [27], Hosseini-Teherani and Eslami
[28], Chaudhuri and Ray [29]. Sherief and El-Maghraby [30], Mallik and Kanoria [21], Abdel-Halim and
Elfalaky [31] have also discussed the dynamical problems for an internal penny-shaped crack in an infi-
nite thermoelastic solid. Recently, Sherief and El-Maghraby [32] and Prasad and Mukhopadhyay [33] have
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solved the mode-I crack problem of an infinite thermoelastic medium in the context of Lord–Shulman’s
theory [3] and Green–Naghdi’s theory [34], respectively. However, to the best of authors’ knowledge, the
mode-I crack problem under impact loading in the thermoelasticity theory given by Quntanilla [17] has
not yet been studied by any researcher.

In the present work, we have solved a two-dimensional dynamical problem in an isotropic homoge-
neous elastic medium having Mode-I crack. We have discussed the thermoelastic behavior inside the
medium in the neighborhood of the crack in which we have used the thermoelasticity theory given by
Quintanilla [17], namely Quintanilla-I and Quintanilla-II models and compared all its results with the
results of type-III thermoelasticity theory of Green and Naghdi which is already discussed by Prasad and
Mukhopadhyay [33]. We have formulated the problem in such way that all the three models (new model-I,
II and GN-III model) can be written in a unified way, from which we can obtain every particular model.
Two-dimensional equations of motion are given and constitutive relations are also given to describe the
components of the stresses. Laplace and exponential Fourier transforms are used to solve the problem
and we obtain the solution in the transformed domain. In Sect. 4, the prescribed boundary temperature
and stress distributions are used to find four dual integral equations which are further reduced into two
dual integral equations. These dual integral equations are solved using regularization method which is
explained in “Appendix A.” The method given by Bellman et al. [35] is used to invert the Laplace trans-
form numerically which is also described in “Appendix B.” Therefore, we obtain all the physical fields in
the physical domain and all the numerical values of field variables are represented graphically. In Sect. 6,
we discuss and compare all the findings regarding the behavior of physical fields near the crack region.

2. Formulation of the problem

Two-dimensional dynamical problem is considered in an infinite medium −∞ < x < ∞, −∞ < y < ∞
which has a Mode-I (opening-mode) crack defined by |x| ≤ r, y = 0. The crack surface is subjected to
the known temperature and normal stress distributions. We consider the basic governing equations of
coupled thermoelasticity as follows:

Equations of motion:

(λ + μ)
∂Δ
∂x

+ μ∇2u − β
∂θ

∂x
= ρ

∂2u

∂t2
(1)

(λ + μ)
∂Δ
∂y

+ μ∇2v − β
∂θ

∂y
= ρ

∂2v

∂t2
. (2)

The heat conduction equation under theory of thermoelasticity of type-III due to Green and Naghdi
[34] is given by

(
K∗ + K

∂

∂t

)
∇2θ =

∂2

∂t2
(ρcvθ + βθ0Δ). (3)

We consider the heat conduction equation by Quintanilla [17] as[
K∗

(
1 + τ0

∂

∂t
+

τ2
0

2
∂2

∂t2

)
+ K

∂

∂t

]
∇2θ =

∂2

∂t2
(ρcvθ + βθ0Δ). (4)

In the above equation, if we neglect the effect of higher-order terms containing τ0, then we get[
K∗

(
1 + τ0

∂

∂t

)
+ K

∂

∂t

]
∇2θ =

∂2

∂t2
(ρcvθ + βθ0Δ). (5)

The stress–strain–temperature relations for the present case are given by

τxx = 2μ
∂u

∂x
+ λΔ − β(θ − θ0) (6)
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τyy = 2μ
∂v

∂y
+ λΔ − β(θ − θ0) (7)

τxy = μ

(
∂u

∂y
+

∂v

∂x

)
. (8)

Now, we aim to study the present problem by considering it as a problem of thermoelasticity in the
contexts of three different forms of heat conduction equations as given by Eqs. (3–5). Hence, we combine
them in the following manner:

[
K∗

(
1 + τ0

∂

∂t
+ τ1

∂2

∂t2

)
+ K

∂

∂t

]
∇2θ =

∂2

∂t2
(ρcvθ + βθ0Δ). (9)

From Eq. (9), we can get the different heat conduction equations in the following manner:

1. Quintanilla model (new model-I): τ1 = τ2
0
2 , τ0 �= 0

2. Quintanilla model (new model-II): τ1 = 0, τ0 �= 0
3. GN-III model: τ1 = 0, τ0 = 0

In above Eqs. (1–9), u and v are the displacement components along the x and y directions, respectively,
and t is the time. θ is the absolute temperature, θ0 is the reference temperature, ρ is the density of the
material, K is the thermal conductivity and K∗ is the rate of the thermal conductivity. τij are the stress
components, cv is the specific heat at constant strain or volume, λ and μ are the Lame’s elastic constants
however β is the material constants given by β = (3λ + 2μ)αt, where, αt is the coefficient of linear of
thermal expansion. ∇2 is Laplacian operator and Δ is the dilatation given by

Δ =
(

∂u

∂x
+

∂v

∂y

)
(10)

Now for simplicity, we use the following non-dimensional variables:
x′ = cηx, y′ = cηy,r′ = cηr, u′ = cηu, v′ = cηv, t′ = c2ηt, τ ′

ij = τij
μ , T = θ−θ0

θ0
, τ ′

1 = c4η2τ1,
τ ′
0 = c2ητ0

where, η = ρcv
K , and c =

√
λ+2μ

ρ , where c is the speed of the propagation of longitudinal elastic waves.
Now with the help of the above non-dimensional quantities, Eqs. (1-2), (6), and (7–9) are reduced in

the following non-dimensional forms:

(m2 − 1)
∂Δ
∂x

+ ∇2u − a2
∂T

∂x
= m2 ∂2u

∂t2
(11)

(m2 − 1)
∂Δ
∂y

+ ∇2v − a2
∂T

∂y
= m2 ∂2v

∂t2
(12)

[
a1

(
1 + τ

∂

∂t
+ τ1

∂2

∂t2

)
+

∂

∂t

]
∇2T =

∂2

∂t2
(T + a3e) (13)

τxx = 2
∂u

∂x
+ (m2 − 2)Δ − a2T (14)

τyy = 2
∂v

∂y
+ (m2 − 2)Δ − a2T (15)

τxy =
(

∂u

∂y
+

∂v

∂x

)
, (16)

where a1 = K∗
Kc2η , a2 = ηT0

μ , a3 = β
Kη , m2 = λ+2μ

μ .

Now removing u and v from Eqs. (11–12) using Eq. (10), we obtain
(

∇2 − ∂2

∂t2

)
Δ = a4∇2T (17)
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where, a4 = a2
m2

3. Solution in the Laplace and Fourier transform domain

The Laplace transform of a function g(x, y, t) can be defined as

ḡ(x, y, s) = L[g(x, y, t)] =

∞∫

0

e−stg(x, y, t) dt s > 0,

where s is the Laplace transform parameter.
After taking the Laplace transform to both the sides of Eqs. (10–13) and (17), we obtain the following

Δ̄ =
∂ū

∂x
+

∂v̄

∂y
(18)

(1 − m2)
∂Δ̄
∂x

+ a2
∂T̄

∂x
= (∇2 − m2s2)ū (19)

(1 − m2)
∂Δ̄
∂y

+ a2
∂T̄

∂y
= (∇2 − m2s2)v̄ (20)

[{
a1

(
1 + τ0 s + τ1s

2
)

+ s
}∇2 − s2

]
T̄ = s2a3Δ̄ (21)(∇2 − s2

)
Δ̄ = a4∇2T̄ (22)

Now eliminating Δ̄ from Eqs. (21–22), we obtain the partial differential equation which is satisfied by
T̄ given as (∇2 − k2

1

) (∇2 − k2
2

)
T̄ = 0, (23)

where k2
1 and k2

2 are the roots of the following characteristic equation

k4 − s2
{
1 + a1

(
1 + τ0s + τ1s

2
)

+ s + ε
}

{a1 (1 + τ0s + τ1s2) + s} k2 +
s4

{a1 (1 + τ0s + τ1s2) + s} = 0, (24)

where ε = a3a4.
Now, we can obtain T̄ , the solution of Eq. (23), in the following form:

T̄ = T̄1 + T̄2,

where T̄i is the solution of the equation given as(∇2 − k2
i

)
T̄i = 0, i = 1, 2. (25)

The exponential Fourier transform of a function ḡ(x, y, s) can be defined as

ḡ∗(q, y, s) = F [ḡ (x, y, s)] =
1√
2π

∞∫

−∞
ḡ(x, y, s) e−iqx dx,

where q is the Fourier transform parameters.
The inverse Fourier transform can be defined as

ḡ(x, y, s) = F−1 [ḡ∗(q, y, s)] =
1√
2π

∞∫

−∞
ḡ∗(q, y, s) eiqx dq.

Now, we apply the exponential Fourier transform to both sides of Eq. (25) which can be written as
(

∂2

∂y2
− k2

i + q2
)

T̄ ∗
i = 0, i = 1, 2. (26)
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The solution of Eq. (26) is bounded at infinity which can be found in the following form:

T̄ ∗
i = Bi(q, s)(k2

i − s2)e−qi|y| i = 1, 2,

where qi =
√

q2 + m2
i and Bi(q, s) is the parameter which depends upon q and s only for i = 1, 2.

Due to symmetry of the problem, we take the case y > 0 only. Then the above equation can be written
as

T̄ ∗
i = Bi(q, s)(k2

i − s2)e−qiy, i = 1, 2. (27)

In a similar manner, now eliminating T̄ from Eqs. (21) and (22), we obtain Δ̄∗ = Δ̄∗
1 + Δ̄∗

2, where,
�̄∗

i , i = 1, 2 can be written as

Δ̄∗
i = B′

i(q, s)(k2
i − s2)e−qiy, i = 1, 2, (28)

where B′
i(q, s), i = 1, 2 are also which depend only on q and s.

Now, substituting Eqs. (27) and (28) into Eq.(22), we obtain the equation which relates the parameters
Bi(q, s) and B′

i(q, s) for i = 1, 2 in the following form:

B′
i(q, s) = a4k

2
i Bi(q, s), i = 1, 2 (29)

Therefore, using Eq.(29) and (28), we find

Δ̄∗
i = ca4kBi(q, s) (k2

i − s2)e−qiy, i = 1, 2 (30)

Now, we take the exponential Fourier transform of Eqs. (19) and (20), we get
(

∂2

∂y2
− q2 − m2s2

)
ū∗ =

(
1 − m2

)
i q Δ̄∗ + i q a2 T̄ ∗ (31)

(
∂2

∂y2
− q2 − m2s2

)
v̄∗ =

(
1 − m2

) ∂

∂y
Δ̄∗ + a2

∂

∂y
T̄ ∗ (32)

Using Eqs. (27) and (30), Eqs. (31–32) are rewritten as

(
∂2

∂y2
− q2 − m2s2

)
ū∗ = i q a4

2∑
i=1

(
k

2

i − m2s2
)

Bi(q, s) e−qis (33)

(
∂2

∂y2
− q2 − m2s2

)
v̄∗ = −a4

2∑
i=1

(
k

2

i − m2s2
)

Bi(q, s) qi e−qis (34)

The solution ū∗ of Eq. (33) can be written as

ū∗ = i q a4

(
2∑

i=1

Bi(q, s)e−qiy + H1e
−δy

)
. (35)

where δ =
√

q2 + m2s2 and H1 = H1(q, s) is a parameter which also depends on q and s only.
The exponential Fourier transform of Eq. (18) with respect to x can be written as

∂v̄∗

∂y
= Δ̄∗ − i q ū∗. (36)

Now, with the help of Eqs. (30) and (35) along with the integration with respect to y, Eq. (36) is
rewritten as given below
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v̄∗ = −a4

(
2∑

i=1

Bi(q, s) qie
−qis +

q2H1(q, s)
δ

e−δy

)
. (37)

Now, taking the Laplace and exponential Fourier transforms to the both sides of Eqs. (14–16) and
using the results of Eqs. (27), (30), (35), (37), we can write the components of the stress tensor in the
Laplace and Fourier transform domain in the following form:

τ̄∗
xx = a4

[
B1

(
m2s2 − 2 q21

)
e−q1y + B2

(
m2s2 − 2q22

)
e−q2y − 2H1q

2e−δy
]

(38)

τ̄∗
yy = a4

[(
m2s2 + 2 q2

) (
B1e

−q1y + B2e
−q2y

)
+ 2H1q

2e−δy
]

(39)

τ̄∗
xy = −ia4q

[
2
(
B1q1e

−q1y + B2q2e
−q2y

)
+

q2 + δ2

δ
H1e

−δy

]
(40)

Now, taking the inverse Fourier transform of Eqs. (27), (30), (35), and (38–40), we find the solution
in the Laplace transform domain as given below

T̄ =
1√
2π

∞∫

−∞

[
a2(k2

1 − s2)e−q1y + G2(k2
2 − s2)e−q2y

]
eiqx dq (41)

Δ̄ =
a4√
2π

∞∫

−∞

[
B1k

2
1e

−q1y + B2k
2
2e

−q2y
]
eiqx dq (42)

ū =
ia4√
2π

∞∫

−∞

[
B1e

−q1y + B2e
−q2y + H1e

−δy
]
q eiqx dq (43)

v̄ =
−a4√

2π

∞∫

−∞

[
B1q1e

−q1y + B2q2e
−q2y +

H1q
2

δ
e−δy

]
eiqx dq (44)

τ̄xx =
a4√
2π

∞∫

−∞

[
B1

(
m2s2 − 2 q21

)
e−q1y + B2

(
m2s2 − 2q22

)
e−q2y − 2H1q

2e−δy
]
eiqx dq (45)

τ̄yy =
a4√
2π

∞∫

−∞

[(
m2s2 + 2 q2

) (
B1e

−q1y + B2e
−q2y

)
+ 2H1q

2e−δy
]
eiqx dq (46)

τ̄xy =
−ia4√

2π

∞∫

−∞

[
2
(
B1q1e

−q1y + B2q2e
−q2y

)
+

q2 + δ2

δ
H1e

−δy

]
qeiqx dq (47)

4. Boundary conditions and dual integral equations formulation

We assume the following boundary conditions at y = 0

∂T

∂y
= 0, |x| > r (48)

v = 0, |x| > r (49)
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T = H(t), |x| < r (50)
τyy = −H(t), |x| < r (51)
τxy = 0. − ∞ < x < ∞ (52)

where H(.) is the Heaviside unit step function.
Now, using the boundary conditions given by Eqs. (48) and (50), Eq. (41) is rewritten as

∞∫

−∞

[
B1(k2

1 − s2) + B2(k2
2 − s2)

]
eiqx dq =

√
2π

s
, |x| < r (53)

∞∫

−∞

[
B1q1(k2

1 − s2) + B2q2(k2
2 − s2)

]
eiqx dq = 0, |x| > r (54)

and using the boundary conditions given by Eqs. (49), (51) and (52), Eqs. (44), (46), and (47) are written
as

∞∫

−∞

[
B1q1 + B2q2 +

H1q
2

δ

]
eiqx dq = 0, |x| > r (55)

∞∫

−∞

[(
m2s2 + 2 q2

)
(B1 + B2) + 2H1q

2
]
eiqx dq = −

√
2π

s a4
, |x| < r (56)

∞∫

−∞

[
2 (B1q1 + B2q2) +

q2 + δ2

δ
H1

]
qeiqx dq = 0, −∞ < x < ∞ (57)

From Eq. (57), we have

H1 = −2δ (B1q1 + B2q2)
q2 + δ2

(58)

Using Eq. (58) and the symmetry of the problem to consider x only in the intervals [0, r] and [r, ∞]
(see Ref. [32]), Eqs. (53–56) are rewritten as

2∑
i=1

(k2
i − s2)

∞∫

0

Bi cos(qx) dq =
√

π

2
1
s
, 0 < x < r (59)

2∑
i=1

(k2
i − s2)

∞∫

0

Bi q cos(qx) dq = 0, x > r (60)

2∑
i=1

∞∫

0

Biqi

m2s2 + 2q2
cos(qx) dq = 0, x > r (61)

2∑
i=1

∞∫

0

Bi

[(
m2s2 + 2q2

)2 − 4q2qiδ

m2s2 + 2q2

]
cos(qx) dq = −

√
π

2
1

s a4
, 0 < x < r (62)

Equations (59–62) form a set of four dual integral equations. From these equations, we can obtain
the unknown parameters B1 and B2, and in order to solve these dual integral equations, we follow the
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Sherief and El-Maghraby [32], from which we assume the following:

Bi(q, s) =

r∫

0

hi(v, s)J0(q v) dv, (63)

where, hi, i = 1, 2 is the function of v and s only and J0(.) is the Bessel function of the first kind of order
zero.

Now substituting the value of Bi from Eq. (63) into the Eq. (59) and after changing the order of
integration, we obtain the following

2∑
i=1

(k2
i − s2)

a∫

0

hi(v, s) dv

∞∫

0

cos(qx)J0(qv) dq =
√

π

2
1
s
, 0 < x < r. (64)

The integral relation of Bessel function from Refs. [36,37] is given below

∞∫

0

cos(qx)J0(qv) dq =

{
1√

v2−x2 , x < v

0, x > v
(65)

Using above substitution, Eq. (64) is written as given below

2∑
i=1

(k2
i − s2)

∞∫

x

hi(u, s)√
u2 − s2

du =
√

π

2
1
s
, 0 < x < r

Multiply the above equation with x√
x2−v2 and integrate with respect to x from v to r. After changing

the order of integration and differentiating the resultant equation, we have the following

(k2
1 − s2)h1(v, s) + (k2

2 − s2)h2(v, s) = −N(v)
s

, 0 < x < r, (66)

where

N(v) = −
√

2
π

v√
r2 − v2

(67)

Now, multiplying both sides of Eq. (66) by J0(qv) and integrating with respect to v from 0 to r, we
obtain

B2 = − 1
k2
2 − s2

[
J(q)

s
+
(
k2
1 − s2

)
B1

]
, 0 < x < r (68)

where

J(q) =

r∫

0

N(v)J0(qv) dv (69)

For obtaining the similar relation to Eq. (68) between B1 and B2 for the case x > r, we take the
following

Bi(q, s) =
1
qi

∞∫

r

hi(v, s)J0(qv) dv, x > r, 1 = 1, 2 (70)
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Using the relation (65) into Eq. (60) and after changing the order of integration, we obtain the
following

2∑
i=1

(k2
i − s2)

∞∫

x

hi(u, s)√
u2 − x2

du = 0, x > r

Now, multiply both sides of the above relation by x√
x2−v2 and integrate with respect to x from v to

∞. After changing the order of integration with the help of relation (70), we have the following

B2 = −
(
k2
1 − s2

)
q1

(k2
2 − s2) q2

B1, x > r (71)

Now, substituting from Eq. (68) into Eq. (62), we have the following

∞∫

0

B1q1L1(q, s)
m2s2 + 2q2

cos(qx) dq = L̄2(x, s), x < r (72)

where

L1(q, s) = −
(
k2
2 − k2

1

) (
m2s2 + 2q2

)2 − 4q2δ
[
q1
(
k2
2 − s2

)− q2
(
k2
1 − s2

)]
q1

L̄2(x, s) = −
√

2
π

(
k2
2 − s2

)
s a4

+
1
s

∞∫

0

J(q)

[(
m2s2 + 2q2

)2 − 4q2δ q2

(m2s2 + 2q2)

]
cos(qx) dq, x < r (73)

Now substituting from Eq. (71) into Eq. (61), we obtain

∞∫

0

B1q1cos(qx)
(m2s2 + 2q2)

dq = 0, x > r (74)

In this way, the original four dual integral Eqs. (59–62) having the parameters B1 and B2 are now
changed into two dual integral Eqs. (72) and (74) in the single parameter B1 only.

5. Solution of the dual integral equations

For solving the above two integral Eqs. (72) and (74), we assume the following substitution [32]:

B1(q, s) =

(
m2s2 + 2q2

)
q1

φ(q, s). (75)

Therefore, Eqs. (72) and (74) are reduced into the following forms:
∞∫

0

L1(q, s)φ(q, s) cos(qx) dq = L̄2(x, s), 0 < x < r (76)

∞∫

0

φ(q, s) cos(qx) dq = 0, x > r (77)
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In order to define for all the values of x, we are now extending the definition of the integral which is
in Eq. (77) in the following manner:

∞∫

0

φ(q, s) cos(qx) dq =

{√
2π d

dx

[
x
∫ r

x
ϕ(z, s) dz√

z2−x2

]
, 0 < x < r

0, x > r
(78)

where ϕ(z, s) is a function which has to be determined.
We see that the left side of Eq. (78) is just the Fourier cosine transform of φ(q, s). Therefore, by using

the inverse Fourier cosine transform [32,38,39], we have the following

φ(q, p) =

r∫

0

d
dx

⎡
⎣x

r∫

x

ϕ(z, s) dz√
z2 − x2

⎤
⎦ cos(qx) dx (79)

Now using integration by parts and followed by the changing the order of integration to solve the
above equation, we have

ϕ(q, p) = q

r∫

0

φ(z, s) dz

z∫

0

x sin(qx) dx√
z2 − x2

(80)

By using the formula from [36,37], we have

z∫

0

x sin(qx) dx√
z2 − x2

=
π

2
zJ1(qz)

Therefore, Eq. (80) is rewritten in the following form:

φ(q, s) =
π

2
q

r∫

0

z ϕ(z, s)J1(qz)dz, (81)

Now putting the value of φ(q, s) from Eq. (81) into Eq. (76), we have the following

r∫

0

L̄1(z, x, s)ϕ(z, s) dz = L̄2(x, s), 0 < x < r (82)

where

L̄1(z, x, s) =
πz

2

∞∫

0

q L1(q, s)J1(qz) cos(qx) dq

We see that Eq. (82) is the Fredholm’s integral equation of the first kind in the unknown parameter
function ϕ(z, s) which can be obtained by solving numerically and then φ(q, s) can be obtained from
Eq. (81). Therefore, using the value of φ(q, s) into Eq. (75), we can get the value of B1. In this way, the
expression for B2 can be obtained using the value of B1 for the case x < r and x > r with the help of
Eqs. (68) and (71), respectively.
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Fig. 2. Temperature distributions at the vertical distance 0.2

6. Numerical results and discussion

In order to obtain the final solution of the present problem in space-time domain, we proceed as follows.
The method (see Delves and Mohammed [40]) described in “Appendix A” is used to solve the dual integral
equations. However, the inversion of Laplace transform is carried out using the Bellman et al. [35] which
is described in “Appendix B”. In order to see the behavior of all the physical fields near the crack region,
we have considered the copper material having the Mode-I crack with unit length. The material constants
are taken as follows (see Sherief and El-Maghraby [32]):

m = 2, αt = 1.78(10−5)K−1, c = 4.158(103)ms−1, a4 = 0.01, ρ = 8954 kgm−3, η = 8886 sm−2,
r = 1m, ce = 383.1 JKkg−1, λ = 7.76(1010)Nm−2, μ = 3.86(1010)Nm−2, T0 = 293K, a2 = 0.042,
τ0 = 0.02, τ1 = τ2

0
2 .

We carry out programming by using the software Mathematica-7 to find out the non-dimensional
numerical values of all the different physical fields like temperature, vertical and horizontal stresses,
vertical and horizontal displacements for different values of vertical distance y. We make an attempt
to compare the predictions by all three models, namely new model-I, new model-II and GN-III model,
and the graphical representation of our results is carried out for each physical field with respect to the
horizontal distance, x. Due to symmetricity of the problem, we show the results for half length (x ≥ 0)
only. We specially observe the behavior of the physical fields in the vicinity of crack. Each physical field
under all models is plotted for different values of y at non-dimensional time 1.2. Figures 2, 4, 6, 8, and
10 show the nature of the different physical fields at the non-dimensional vertical distance 0.2, whereas
Figs. 3, 5, 7, 9, and 11 are showing the nature of different physical fields under all three models for
non-dimensional vertical distance 0.3.

The temperature distribution is shown in Figs. 2 and 3 for non-dimensional vertical distances, 0.2 and
0.3, respectively. From Figs. 2 and 3, we note that the maximum value of temperature distribution under
all three models is occurred at the beginning of the crack for both the vertical distances 0.2 and 0.3, and
it decreases very slowly up to the middle of the crack region. Thereafter the decreasing rate increases.
Further, at the end of the crack edge, it suddenly decreases which becomes zero after some distance. We
further observe that the value of the temperature for lower vertical distance 0.2 at the beginning of the
crack is more as compared to the values for the non-dimensional distance 0.3 under all three models.
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Fig. 3. Temperature distributions at the vertical distance 0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x

V
er

tic
al

 s
tr

es
s

New model-II

New model-I

GN-III model

Fig. 4. Vertical stress distributions at the vertical distance 0.2

However, the values under GN-III model and new model-II are almost the same for both the vertical
distances 0.2 and 0.3 which is significantly different from the values under new model-I.

The vertical stress distribution is shown in Figs. 4 and 5 for different non-dimensional vertical distances.
We find that at the start of the crack, the values under all three models are maximum which are started to
decrease up to middle of the crack. Then two local minima and one local maximum are occurred before
the end of the crack edge. From there, it increases which becomes zero after some distance. We also
find that the values under all three models for the non-dimensional vertical distance 0.2 is greater than
the values for non-dimensional vertical distance 0.3. However, the values under GN-III model and new
model-II are almost the same which are significantly different from the values obtained under the new
model-I. Furthermore, we note that the value under new model-I is larger up to the middle of the crack
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Fig. 5. Vertical stress distributions at the vertical distance 0.3
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Fig. 6. Horizontal stress distributions at the vertical distance 0.2

edge as compared to the values under other two models for both the vertical distances 0.2 and 0.3. The
nature of the vertical stress is oscillatory in nature near the end of the crack and it is more pronounced
for lower vertical distance and for the GN-III model and new model-II.

Figures 6 and 7 show the behavior of the horizontal stress for the non-dimensional vertical distances
0.2 and 0.3, respectively. It is indicated that the value under the new model-I is significantly different
from the values under new model-II and GN-III model at the beginning of the crack edge. However, under
all models the horizontal stress increases when we move toward the end of the middle edge, and this field
yields a maximum value at a point near the middle of the crack edge which is the same under all three
models. Further, the values decrease up to the end of the crack edge, and from there, it again starts
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Fig. 7. Horizontal stress distributions at the vertical distance 0.3
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Fig. 8. Vertical displacement distributions at the vertical distance 0.2

to increase which finally become zero after some distance. Therefore, one local maximum and one local
minimum are occurred for this field inside the crack edge. Furthermore, it is noted that near the middle of
the crack edge, the value under the new model-I is significantly different with the values occurred under
the GN-III model and new model-II. We further observe that the values under all three models are more
for the vertical distance 0.2 as compared to the values found for the vertical distance 0.3. This implies
that the horizontal stress decreases with the increase in vertical distance.

The nature of the vertical displacement distribution near the crack edge for the vertical distance 0.2
and 0.3 can be seen from the Figs. 8 and 9, respectively. We observe that the values are significantly
different under all three models near the crack edge for both the vertical distances which is maintained
up to the end of the crack edge. Further, we have also seen that one local maximum is occurred near the
middle of the crack edge and showing a decreasing trend thereafter up to the end of crack edge. However,
it again starts increasing after the end of the crack edge which finally vanishes after some distance. The
values for the vertical distance 0.3 are smaller as compared to the values for the vertical distance 0.2
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Fig. 9. Vertical displacement distributions at the vertical distance 0.3
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Fig. 10. Horizontal displacement distributions at the vertical distance 0.2

under all three models. The behavior of this physical field is same under all three models: new model-I,
new model-II, and GN-III model in the case of both the vertical distances 0.2 and 0.3.

The horizontal displacement distribution is shown in Figs. 10 and 11. We see that the values are same
at the beginning of the crack edge under all three models and decrease with vertical distance. There is
a significant difference up to the middle of the crack edge for both the vertical distances. The value up
to end of the crack edge under the new model-I shows a prominent difference with the values predicted
by other two models. After the end of the crack, the horizontal displacement suddenly decreases to a
local minimum value and increases thereafter. Finally, it becomes zero after some distance. It is also seen



21 Page 18 of 23 S. Kant et al. ZAMP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

H
or

iz
on

ta
l d

is
pl

ac
em

en
t

New model-II

New model-I

GN-III model

Fig. 11. Horizontal displacement distributions at the vertical distance 0.3

that within the crack edge, two local minima and one local maximum are occurred for both the vertical
distances. It is also observed that the values of horizontal displacement for the vertical distance 0.2 are
larger than the values obtained for the vertical distance 0.3 under all three models.

Therefore, it is clear from above discussion that all the physical fields under all three models: new
model-I, new model-II, and GN-III model vanish after some distance from the end of the crack edge. There
is a prominent difference in the predictions of different models for each field, and it is more prominent in
the crack region. The vertical distance also plays a role in the behavior of each physical field. The value
of each physical field decreases with the increase of the vertical distance in the crack region under each
thermoelasticity theory.

7. Conclusion

In this paper, we have investigated a dynamical problem of an infinite two-dimensional elastic medium
with a crack of Mode-I type in the contexts of thermoelasticity theories, namely, Quintanilla’s theory
[17] and Green–Naghdi theory [34]. The temperature and impact loading are considered at the boundary
of the crack inside the medium. Laplace and exponential Fourier transform techniques are used to solve
the problem. We obtain four dual integral equations which are further reduced into two dual integral
equations. These dual integral equations are solved by using regularization method and a numerical
method is used to invert the Laplace transform numerically to obtain the final solution of the problem.
In order to compare the results under different models, we carry out computational work for finding the
numerical values of all the physical field variables for different vertical distances. We observe the behavior
of all the physical fields in the vicinity of the crack and concluded that under all models, each physical
field shows the same nature throughout the domain which vanishes after some distance from the end
edge of the crack. However, the value of each physical field decreases with the increase in the vertical
distance from the end of the crack region under each thermoelasticity theory. The results under different
models differ significantly, although the new model-II and GN-III model predict more similar results as
compared to new model-I. This implies that there is a significant effect of single delay time parameter
for the present crack problem.
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Appendix A

The numerical method which is used to solve the Fredholm’s integral equation of the first kind [40]

In this appendix, we are going to describe the method which is used to solve the Fredholm’s integral
equation of first kind. We assume an integral equation in the following form (see Delves and Mohammed
[40], Sherief and El-Maghraby [32]):

r2∫

r1

L̄1(z, x, s)ϕ(z, s)dz = L̄2(x, s) (A.1)

We can write the above equation briefly in the following form:

L̄1ϕ = L̄2 (A.2)

Here, L̄2(x, s) will have some finite accuracy k. Hence, we try to obtain ||L̄1ϕ − L̄2|| ≤ k. From all
functions ϕ which satisfy this relation, we use only the smoothest function in the sense that for some
linear operator L, ||Lϕ|| has the minimum value which produce the constrained minimization problem as
given below:

minimizeϕ||Lϕ|| (A.3)

subject to ||L̄1ϕ − L̄2|| ≤ k.

The above minimizing problem can be solved in any given norm which is comparatively difficult to do
so (see Delves and Mohammed [40]). Therefore, Eqs. (A.1)–(A.2) cannot be solved analytically in the easy
way, but can be easily solved numerically in (see Delves and Mohammed [40], Sherief and El-Maghraby
[32]).

We know that the value of objective function ||Lϕ|| decreases with the increase in the value of k which
means, as the constraint weaken. Therefore at the minimum of (A.1)–(A.2), the constraint will be binding
that is ||L̄1ϕ − L̄2|| = k. Now if we solve the unconstrained problem for any fixed α as given below

minimizeϕ||L̄1ϕ − L̄2||2 + α ||Lϕ||2 (A.4)

Now we will have to obtain the some minimum value β of ||L̄1ϕ − L̄2||. If we take α → 0, β → 0
provided that the solution of (A.1)–(A.2) exists, and for some value of α, β = k. The solution of the
problem (A.4) is identical to the solution of the original problem (A.1)–(A.2) (see Delves and Mohammed
[40]). We know that (A.4) is an unconstrained problem, it is easier to solve than (A.1)–(A.2). This problem
is referred as the regularization problem and the method which is based on a numerical solution of (A.4)
is known as the regularization method (see Delves and Mohammed [40]).

The most common possibility for the operator L can be taken as L = 1; d
dx ; d2

dx2 . L = 1 and the
natural norm L2 have been taken for the computational work.

Now Eq. (A.4) is written as

minimizeϕ Z(ϕ) =< L̄1ϕ − L̄2, L̄1ϕ − L̄2 > +α < ϕ, ϕ > (A.5)

where < . > is the scalar product in L2 norm.
After simplifying the above Eq. (A.5), we obtain the following

Z(ϕ) =< ϕ,
{
L̄+
1 L̄1 + αI

}
ϕ > − < ϕ, L̄+

1 L̄2 > − < L̄+
1 L̄2, ϕ > + < L̄2, L̄2 >

where L̄+
1 is the Hermitian conjugate of L̄1.
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Now we know that the following condition will be satisfied for the minimum value of Z at the point
ϕ for any function g

∂Z(ϕ + kg)
∂k

|k=0= 0

using the above equation, we find that ϕ is a minimum point if the following is satisfied
{
L̄+
1 L̄1 + αI

}
ϕ = L̄+

1 L̄2 (A.6)

Now simplify the above equation, we find
r2∫

r1

ˆ̄L1(z, x, s)ϕ(z, s)dz + αϕ(x, s) = ˆ̄L2(x, s) (A.7)

where

ˆ̄L1(z, x, s) =

r2∫

r1

L̄∗
1(z, r, s) L̄1(z, r, s) dr

ˆ̄L2(x, s) =

r2∫

r1

L̄∗
1(z, x, s) L̄2(z, s) dz

where the asterisk notation represents the complex conjugation and Eq. (A.7) is a Fredholm’s integral
equation of the second kind with iterated kernels and the parameter α can be chosen to be equal to 10−5

(see Sherief and El-Maghraby [32]).
We are now going to introduce the method which is used to solve the Fredholm’s integral equation

of the second kind. For this, we take an integral equation given below (see Delves and Mohammed [40],
Sherief and El-Maghraby [32]):

w(u, s) +

r2∫

r1

L̄1(u, v, s)w(v, s) dv = L̄2(u, s) (A.8)

The above equation can be approximated in the following form:

w(u, s) +
n∑

i=0

diL̄1(u, vi, s)w(vi, s) ≈ L̄2(u, s) (A.9)

where the points vi (i = 0, 1, 2, 3, . . . , n) are the equally spaced points in the interval [r1, r2] and di’s
are the corresponding weights. We know that two sides of the any equation must be equal at all the
points of the domain. Therefore, from Eq. (A.9), we have the system of n + 1 linear equations for
j = 0, 1, 2, 3, . . . , n which can be written as

w(vj , s) +
n∑

i=0

diL̄(vj , vi, s)w(vi, s) ≈ L̄2(vj , s) (A.10)

The above equation is having the n+1 unknowns, w(v0, s), . . . , w(vn, s), that denote the approximate
values of the unknown function w(v, s) at the n + 1 chosen points. We now introduce the following
notations for simplification:

wj = w(vj , s), L̄2j = L̄1(vj , s), L̄1ji = L̄(vj , vi, s); j, i = 0, 1, 2, . . . , n

Therefore, Eq. (A.1) is written in the following form:
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wj +
n∑

i=0

diL̄1ji wi ≈ L̄2j , j = 0, 1, 2, 3, . . . , n (A.11)

Now if we assume the variables, wj and L̄2j are the components of the w and L̄2 , respectively, and
define the matrix L̄1 =

[
L̄1jk

]
, then the system of Eq. (A.11) is written as

w + L̄1 dw = L̄2

where d = [djδji] is a diagonal matrix containing successive weighting coefficients. Therefore, the above
set of equations can be written as

(
I + L̄1 d

)
w = L̄2 (A.12)

where, I is the identity matrix of order n + 1.
Now we have used the Simpson’s rule of integration, for computing the numerical values of all the

integration, and we take the following weights:

d0 = dn =
w

3
; d2j−1 =

4w

3
, j = 12, 3, . . . ,

n

2
; d2j =

2w

3
, j = 1, 2, 3, . . . , n − 1.

Appendix B

Inversion of Laplace Transform (Bellman et al. [35])

The Laplace transform of a function u(t) can be defined in the following form:

ū(s) =

∞∫

0

u(t) e−stdt, s > 0 (B.1)

where u(t) is sufficiently smooth such that it can be approximated.
Now we assume x = e−t in Eq. (B.1), we obtain

ū(s) =

∞∫

0

xs−1v(x) dx, (B.2)

where v(x) = u(−ln(x)).
By using the Gaussian quadrature formula to Eq. (B.2), we obtain

N∑
i=1

wix
s−1
i v(xi) = ū(s), (B.3)

where, xi (i = 1, 2, 3 . . . N) are the roots of the shifted Legendre polynomial PN (x) = 0 and wi(i =
1, 2 , 3 . . . , N) are the respective weights.

Equation (B.3) is written as

w1x
s−1
1 v(x1) + w2x

s−1
2 v(x2) + w3x

s−1
3 v(x3) + · · · + wNxs−1

N v(xN ) = ū(s), (B.4)

Now putting s = 1, 2, 3, . . . , N in Eq. (B.4) is written as a system of equations in the following form:
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w1v(x1) + w2v(x2) + w3v(x3) + · · · + wNv(xN ) = ū(1),
w1x1v(x1) + w2x2v(x2) + w3x3v(x3) + · · · + wNxNv(xN ) = ū(2),

........................................................................

w1x
N−1
1 v(x1) + w2x

N−1
2 v(x2) + w3x

N−1
3 v(x3) + · · · + wNxN−1

N v(xN ) = ū(N)

Hence, from the system as expressed above, we obtain v(xi) in the terms as given below

⎡
⎢⎢⎣

v(x1)
v(x2)
. . .

v(xN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1 w2 . . . wN

w1x1 w2x2 . . . wNxN

. . . . . . . . . . . .

w1x
N−1
1 w2x

N−1
2 . . . wNxN−1

N

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

ū(1)
ū(2)
. . .

ū(N)

⎤
⎥⎥⎦ (B.5)

Using Eq. (B.5), we find the discrete values of v(xi), which is u(ti), and thereafter, by using interpo-
lation method, we find the function u(ti).
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