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Abstract. An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is pre-
sented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat
flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented
within the framework of Biot’s coupled thermoelasticity formulations. By employing a complete representation for the
displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled ther-
moelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system.
By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively,
and a 6th- and a 2nd-order ordinary differential equation in terms of depth are received, which are solved readily, from
which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regular-
ity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are
numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific
cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on
the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable
from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing
the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and
an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study
is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good
agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and
it may be implemented in the related boundary integral equations.
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List of symbols

Ur, Uθ, Uz Displacement components
ur, uθ, uz Amplitudes of the displacement components
ρ Density of mass
∇ The gradient operator
∇2 The Laplacian operator
β = (2μ + 3λ) α Thermal stress coefficient
α Thermal expansion coefficient
ε = εrr + εθθ + εzz Dilatation
c Specific heat
T = T1 − T0 Temperature increment
T1 Absolute temperature
T0 Reference temperature
k Thermal conductivity
λ, μ Lame’s constants
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π0 Finite region on the surface
[P,Q,R(r, θ, z)] Time-harmonic surface traction components in r-, θ- and z-directions re-

spectively
H (r, θ, z) Time-harmonic heat flux
F, χ Potential functions
c1 = Cd Dilatational wave speed
c2 = Cs Equivoluminal (shear) wave speed
λi, (i = 1 − 4) Radicals appeared in the general solution
ξλi

, (i = 1 − 4) and ξp Branch points and pole in the complex ξ plane
ω Circular frequency of harmonic motion
ω0 Dimensionless frequency
ξ Hankel’s parameter
E Young’s modulus
υ Poisson’s ratio
Jm Bessel function of first kind and mth order
a Radius of circular disc
r, θ, z Radial, angular and vertical coordinates respectively
t Time variable
gi, hi, li, ni, xi, yi, zi Some functions appeared in the general solution
q0 Constant heat flux distributed on a circular patch of radius a
R and P Resultant forces
λ1e, λ2e = ᾱ, β̄ Solutions of the characteristic equation in the case of elastodynamics
λiqs, (i = 1, 2, 3) Solutions of the characteristic equation in the case of quasi-static
σij , (i, j = r, θ, z) Stress components

1. Introduction

The theory of coupled thermoelasticity is a need in investigating many phenomena with the applications
in the fields of engineering and physical sciences such as structural engineering, earthquake engineering,
soil dynamics, aeronautics, astronautics, nuclear reactors, high energy particle accelerator, etc. Thermoe-
lasticity is also a framework, where the stress redistribution in ceramic matrix composites is evaluated on
[1,2]. In the field of structural engineering, scientists use their understanding of thermoelasticity to design
materials and objects that can withstand fluctuations in temperature without breaking [3]. Understand-
ing the principles of coupled thermoelasticity helps engineers design structures in such a way that they
maintain their integrity for a wide range of temperature changes [3]. In the structural engineering, another
example is the application of thermoelasticity for remote inspection of fatigue cracks in the steel bridges
[4]. Thermoelastic stress analysis (TSA) by infrared thermography has been widely used as an effective
full-field experimental stress measurement technique [4]. TSA has been gaining increasing attention as a
nondestructive testing and evaluation method for fatigue cracks in steel structures [4]. TSA is extremely
beneficial not only for crack detection but also for the on-site measurement of stress distributions around
crack tips, which is important for crack propagation analysis [4].

One can mention some applications of investigating half-spaces in the framework of coupled thermoe-
lasticity. Thermoelastic stresses are capable of producing significant lithospheric deflection [5]. A locally
increased heat flow into the base of the lithosphere, produces uplift in two ways, which are vertical and
horizontal heat expansion each of which affects the lithosphere. The vertical heat expansion causes a sim-
ple thickening of the lithosphere plate, while the horizontal expansion induces isostatic uplift. Also, the
uneven heating of the lithosphere plate will produce thermoelastic bending moments which tend to induce
local subsidence rather than uplift. Based on the results of Bills [5], the amount of uplift and subsidence
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produced by a given heat source in the lithosphere of Earth depends on a number of factors including
the strength, duration and lateral extent of the thermal anomaly; and the thickness, density, rigidity and
viscosity of the lithosphere plate [5]. Thermally induced uplift and subsidence are recognized as a major
source of large-scale topographic and structural features in both oceanic and continental regions. In par-
ticular, the gradual subsidence of oceanic plates as they move away from ridges is adequately explained
in terms of conductive heat loss, leading to lithospheric densification and isostatic subsidence [5–8].

Lanzano [9] examined the problem of the thermoelastic deformation of a spherical solid like Earth with
constant elastic parameters heated by a spontaneous decay of radiogenic elements. Based on his research,
the two processes, radioactive cooling through the surface and radiogenic heating at the interior of planets,
must entail certain mechanical consequences. Any change in the temperature profile of planetary masses
must bring about a corresponding contraction or dilatation of the material. Stresses arising from heating
and cooling of the planetary masses are large enough to alter even their sizes [9].

The problem of a surface/buried mechanical load in an elastic half-space (without thermal effect)
has a long and interesting history for the areas of wave propagation and soil dynamics. Some of main
contributions in these problems were made by Lamb [10], Love [11], Ewing et al. [12], Achenbach [13],
Aki and Richards [14] and Pak [15], etc. The mathematical analysis of the problem including coupled
mechanical and thermal effects (i.e. thermoelastodynamic boundary value problem; TEDBVP) would be
more complicated. Because of this, TEDBVPs have received less attention than elastodynamics.

One may find a good history for linear theory of thermoelasticity and its various applications in
physics and engineering in Nowinski [16]. However, we are going to mention a short related history for
the problem investigated in this paper. In the framework of coupled thermoelasticity in either isotropic or
anisotropic media, there exist some researches in the literature and the most important contributions in
this field are probably the works done by Duhamel in 1837 (see Carlson [17]), Biot [18] in 1956, Lessen [19]
in 1957, Deresiewicz [20] in 1958, Zorski [21] in 1958, Novatskii [22] in 1962, Nowacki [23–26], Verruijt
[27] in 1969, Carlson [17] in 1972, Nowinski [16] in 1978, Chandrasekharaiah and Srikantiah [28,29],
Chandrasekharaiah [30–32], Georgiadis et al. [33] in 1999, Ding et al. [34] in 2000, Lykotrafitis et al.
[35] in 2001, Sharma [36] in 2001, Svanadze [37] in 2004, Babaei et al. [38] in 2008, Scalia and Svanadze
[39] in 2009, Sheng and Wang [40] in 2010, Scalia et al. [41] in 2010, Kumar and Panchal [42] in 2011,
Eskandari-Ghadi et al. [43,44], Raoofian-Naeeni et al. [45] in 2013, Youssef and El-Bary [46] in 2014 and
Hayati et al. [47,48].

Duhamel was the first who presented the coupling between deformation and temperature fields of a
body and introduced the partial differential equations of coupled thermoelasticity, which subsequently
developed by Voigt and Jeffrey (see [23]). Although Duhamel presented equations of thermoelasticity
with coupling of field of deformation with field of temperature already in 1837, only papers published 120
years later by Biot [18] of 1956 and Lessen [19] of 1957 gave a new impulse to do research in this area
[49]. However, the comprehensive development in this theory based on the irreversible thermodynamics
was presented in the pioneering paper of Biot, who also formulated the variational theorem of thermoe-
lasticity [18]. In the coupled thermoelasticity theory, the deformation of a body and the distribution of
its temperature are completely coupled. The description of interactions between these two physical fields
can be expressed based on the first and the second laws of thermodynamics, which in the case of elastic
deformations are reduced to the governing equations of coupled thermoelasticity theory [17,23]. By mak-
ing an analogy between thermoelastodynamics and the theory of elasticity of porous materials, Biot [18],
in terms of potential functions, presented a complete general solution for the coupled thermoelasticity in
the absence of heat source and the inertia effect for isotropic media, where the completeness was shown
by Verruijt [27]. Later, Qing and Wang presented a simpler proof for the completeness of Biot’s solution
(see [34]). Deresiewicz [20] and Zorski [21] separately presented a complete solution for thermoelastic-
ity problems in isotropic media. Novatskii [22] investigated many dynamic problems of thermoelasticity.
Nowacki, in his books [23,26], considered many dynamic problems of thermoelasticity and presented solu-
tions of the equations of thermoelasticity and provided a vast discussion on the numerical results, graphs
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and responses. Nowacki [24] determined the Green’s functions for the thermoelastic medium. He also
presented the completeness of stress functions in the thermoelasticity problems [25]. Chandrasekharaiah
and Srikantiah [28] investigated waves of general type propagating in a compressible non-viscous liquid
layer sandwiched in between two different thermoelastic half-spaces. They have found that, unlike in
the case of classical waves (Stoneley-type), the motion is not necessarily two dimensional and that the
particles of the solids and the liquid vibrate in three different planes in general. Chandrasekharaiah and
Srikantiah [29] also investigated the edge waves in a thermoelastic plate. They employed the temperature-
rate-dependent thermoelasticity theory to study waves propagating along the edges of a thin flat plate of
infinite length, which is in a state of plane stress. They also derived the governing equations of the plane
stress problem and have found that the speed of heat waves in their problem is in general less than that
in the plane strain and the general three-dimensional problems.

Chandrasekharaiah [30] formulated the theory of micropolar thermoelasticity which includes heat
flux among the constitutive variables and it has been found that the linearized version of the theory
presented by [30] admits the second-sound effects. Chandrasekharaiah [31] presented a review article in
the field of coupled thermoelasticity. He presented a fairly self-contained bibliographical review of the
thermoelasticity literature. In his review article, novelties involved in the formulations of the theories of
thermoelasticity are emphasized, and concise derivations of the governing equations are presented. By
presenting an exhaustive list of references, Chandrasekharaiah [31] summarized the solutions of related
initial-boundary value problems and illustrated the salient aspects of thermoelasticity theories. Chan-
drasekharaiah [32] studied the one-dimensional wave propagation in a half-space, by employing the linear
theory of thermoelasticity without energy dissipation for homogeneous and isotropic materials. He em-
ployed the Laplace transform to solve the problem and obtained the exact solutions, in closed form, for
the displacement, temperature, strain and stress fields. Georgiadis et al. [33] studied thermoelastody-
namic disturbances in a half-space under the action of a buried thermal/mechanical line source. The
potential functions introduced by Ding et al. [34] for general solution of coupled thermoelastic problems
in the absence of body force and heat source are also worthwhile to be mentioned. Lykotrafitis et al. [35]
studied three-dimensional thermoelastic wave motion under the action of both thermal and mechanical
buried point sources by using the Laplace transform.

Sharma [36] investigated the propagation of thermoelastic waves in a homogeneous isotropic plate sub-
jected to stress free and rigid insulated and isothermal conditions in the context of conventional coupled
thermoelasticity. He showed that the motion for purely transverse (SH) modes gets decoupled from rest of
the motion and remain unaffected due to thermomechanical coupling and thermal relaxation effects. He
also obtained the phase velocities for SH waves. Svanadze [37] established the fundamental solutions of
the equations of the theory of thermoelasticity with microtemperatures by means of elementary functions.
Babaei et al. [38] studied the coupled thermoelasticity of functionally graded beams. They obtained the
solution of Euler-Bernoulli beams subjected to lateral thermal shock loads under coupled thermoelas-
tic (Biot’s theory) assumption. They solved the the equations of motion and the conventional coupled
energy equation simultaneously to obtain the transverse deflection and temperature distribution in the
beam. Scalia and Svanadze [39] studied the potential method in the linear theory of thermoelasticity with
microtemperatures. They investigated the basic boundary value problems of steady vibrations using the
potential method. They employed the Sommerfeld–Kupradze type radiation conditions and established
the basic problems of thermoelastopotentials. Sheng and Wang [40] studied thermoelastic vibration and
buckling analysis of functionally graded piezoelectric cylindrical shells, where the cylindrical shell is made
from a piezoelectric material having gradient change along the thickness. They solved their problem uti-
lizing Hamilton’s principle and the Maxwell equation and the first-order shear deformation theory, and
taking into account both the direct and the converse piezoelectric effects to investigate the thermoelastic
vibration and buckling analysis of cylindrical shell. Scalia et al. [41] presented the basic theorems in the
linear equilibrium theory of thermoelasticity with microtemperatures. They obtained some basic results of
the classical theories of elasticity and thermoelasticity and proved the uniqueness theorems of the internal
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and external basic boundary value problems. They also presented the basic properties of thermoelastopo-
tentials and singular integral operators. Kumar and Panchal [42] investigated the propagation of axial
symmetric cylindrical surface waves in a cylindrical bore through a homogeneous isotropic thermoelastic
diffusive medium of infinite extent. They used the three different theories of thermoelasticity namely,
Coupled Thermoelasticity (Biot’s theory), Lord and Shulman; and Green and Lindsay theories to study
the problem.

Eskandari-Ghadi et al. [43] presented a complete solution including three scalar potential functions
for the coupled displacement-temperature equations of motion and heat equation in the framework of
Biot’s coupled thermoelasticity theory, where the governing equations for the potential functions are the
wave, heat or a repeated wave-heat equation. They proved the completeness of their theorem based on a
retarded Newtonian potential function; existence of solutions for the repeated wave and heat equation;
and perturbation theory. They proved that if no heat source exists, the number of potential functions is
reduced to two, and in some special conditions, the number of potential functions is reduced to only one,
and the required conditions are discussed. Also, they degenerated their thermoelastodynamic solution
to elastodynamics. Raoofian-Naeeni et al. [45], in the absent of heat source, by using two scalar poten-
tial functions presented by Eskandari-Ghadi et al. [44] for thermoelastodynamic problems, and by using
the correspondence principle, presented an analytical derivation of fundamental Green’s functions for
bi-material half-space composed of a transversely isotropic thermoelastic layer and an isotropic thermo-
viscoelastic half-space affected by finite surface or interfacial sources. Youssef and El-Bary [46] derived the
thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity.
They studied the induced temperature and stress fields in an elastic half-space in the context of classical
coupled thermoelasticity (Biot), and generalized thermoelasticity (Lord–Shulman, Green–Lindsay and
Green–Naghdi) theorems in a unified system of equations.

Hayati et al. [47] with the aid of the complete scalar potential function presented by Eskandari-Ghadi
et al. [43], have presented an analytical formulations for thermoelastodynamic Green’s functions of an
axisymmetric linear elastic isotropic half-space within the Biot’s coupled thermoelasticity theory. By
using the potential function, they uncoupled the governing equations of thermoelasticity into a sixth-
order partial differential equation governed the potential function in cylindrical coordinate system. For
solving their problem, they utilized the Hankel integral transform to suppress the radial variable. Also,
Hayati et al. [48] have investigated the frequency domain analysis of an axisymmetric thermoelastic
transversely isotropic half-space by using a complete scalar potential function which has been presented
by Eskandari-Ghadi et al. [44] for transversely isotropic thermoelastodynamic problems.

Actually, the present study is a sequence of recent studies which have done by Hayati et al. [47] and
[48]. Both of these recent studies have considered the axisymmetric problem with only the vertical traction
and heat boundary conditions, while the present study considers the more general thermoelastodynamic
problem with arbitrary lateral and vertical traction and heat flux boundary conditions. In this paper,
by expressing the displacements and the change of temperature in terms of the potential functions as
have been suggested in Eskandari-Ghadi et al. [43], the equations of motion accompanied with the heat
conduction equation are reduced to two uncoupled partial differential equations, which are a sixth- and
a second-order partial differential equations, governing the potential functions. By employing the Fourier
expansion in terms of angular coordinate and Hankel transforms in terms of radial coordinate in cylindrical
coordinate system, the angular and radial coordinates are suppressed, and thus the governing equations
for potential functions are reduced to two ordinary differential equations in terms of depth, which are
solved readily. Then, the displacement, temperature and stress fields are derived via the relationships
among these functions and the potential functions in the Hankel–Fourier domain. Applying the inverse
theorem for Hankel integral transforms, the coefficients of Fourier series are determined as improper
line integrals. Because of complexity of the integrands involved in these integrals, they are numerically
evaluated in this paper. To this end, a proper quadrature scheme coded in Mathematica software is used.
To illustrate the physical behavior of the solutions, the numerical results are graphically depicted for
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Fig. 1. A half-space subjected to an arbitrary dynamic traction with intensity f (r, θ) ept and a distributed heat flux with
intensity H (r, θ) ept on a finite region π0 at the surface

different three cases of load and heat distributions. To prove the validity of the numerical integrations,
the displacements are numerically evaluated for special elastodynamic case and compared with results
presented by Pak [15], where a very good agreement is achieved. Some points are mentioned about wave
propagation in thermoelastodynamic media and compared with elastodynamics. On the other hand, since
the potential functions used in this paper are applicable from simple elastostatics to the complex problems
of thermoelastodynamics (see [43]), it is shown that the solution derived in this paper could be analytically
degenerated to specific cases reported in the literature. For example in the case of elastodynamic, the
solution is degenerated to the results of Pak [15] for surface excitation and for the case of an axisymmetric
quasi-static thermoelastic problem, the results are reduced to Ding et al. [34].

The general solution given in this paper could be implemented in some engineering applications such
as the explosions happens on the ground surface and applied heat loadings near to the surface. In ad-
dition, this study could be applicable as kernels in the boundary element method or boundary integral
formulations which may be useful in the numerical treatment of more complicated thermoelastodynamic
problems involving half-space geometries.

2. Statement of the boundary value problem

A half-space containing thermoelastic isotropic material defined as z ≥ 0 in a cylindrical coordinate
system (r, θ, z) is considered to be under the effects of an external traction and a specific heat flux at
the free surface z = 0 (see Fig. 1). According to the linear theory of coupled thermoelasticity, the basic
equations of problem ignoring body forces and heat supply could be expressed as follow (see [18,43])

μ∇2U + (λ + μ) ∇ε − β∇T = ρ∂2U/∂t2 (1)
k∇2T = c∂T/∂t + T0β (∂ε/∂t) (2)

where U = (Ur, Uθ, Uz) is the displacement vector; ρ, the mass density; ∇, the gradient operator; ∇2, the
Laplacian differential operator; β = (2μ + 3λ) α, the thermal stress coefficient; α, the thermal expansion
coefficient; ε = εrr +εθθ +εzz the dilatation; c, the specific heat; T = T1−T0, the temperature increment;
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T1, the absolute temperature; T0, the reference temperature; k, the thermal conductivity; and λ and μ
are Lame’s constants. The strain–displacement relationships in the cylindrical coordinate system can be
presented as follows [50]

εrr =
∂Ur

∂r
, εθθ =

1
r

∂Uθ

∂θ
+

Ur

r
, εzz =

∂Uz

∂z
, (3)

Substituting Eq. (3) into Eqs. (1) and (2), four coupled equations of motion and energy equation are
derived in terms of displacement components Ur, Uθ, Uz and temperature T as follows

(2μ + λ)
(

∂2Ur

∂r2
+

∂Ur

r∂r
− Ur

r2

)
+

μ

r2
∂2Ur

∂θ2
+ μ

∂2Ur

∂z2
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(

∂2Uθ

r∂r∂θ
+

∂Uθ

r2∂θ
+
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∂Uθ
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∂r
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,

μ

(
∂2Uθ

∂r2
+

∂Uθ
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r2

)
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+

∂2Uz

r∂θ∂z

)
− β

∂T

r∂θ
= ρ

∂2Uθ

∂t2
,

μ

(
∂2Uz

∂r2
+

∂Uz

r∂r
+

∂2Uz

r2∂θ2

)
+ (2μ + λ)

∂2Uz

∂z2

+ (μ + λ)
(

∂2Ur

∂r∂z
+

∂Ur

r∂z
+

∂2Uθ

r∂θ∂z

)
− β

∂T

∂z
= ρ

∂2Uz

∂t2
,

−βT0
∂

∂t

(
∂Ur

∂r
+

∂Uθ

r∂θ

)
− βT0

∂2Uz

∂z∂t
+
(

k∇2 − c
∂

∂t

)
T = 0 (4)

Assume that an arbitrary time-harmonic traction f (r, θ) ept and a prescribed heat flux H (r, θ) ept (p =
iω) to be applied on a finite patch π0 at z = 0 (see Fig. 1). Thus, the traction and the thermal boundary
conditions may be written as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σrz (r, θ, z = 0) = −P (r, θ) ,

σθz (r, θ, z = 0) = −Q (r, θ) , (r, θ) ∈ π0

σzz (r, θ, z = 0) = −R (r, θ) ,

∂T (r,θ,z=0)
∂z = H(r,θ)

k

(5)

[σrz = σθz = σzz = ∂T/∂z] (r, θ, z = 0) = 0, (r, θ) /∈ π0 (6)

in which P (r, θ) , Q (r, θ) and R (r, θ) are the components of the traction vector f (r, θ) in r−, θ−, and
z− direction, respectively, and H (r, θ) is the heat flux passing in the z− direction through a circular disc
of radius a. Moreover, the stresses and displacements should satisfy the following regularity conditions

lim
r→∞ σij (r, θ, z) = 0, lim

r→∞ Ui (r, θ, z) = 0,

lim
z→∞ σij (r, θ, z) = 0, lim

z→∞ Ui (r, θ, z) = 0
(7)

3. Solutions for the boundary value problem

A common and convenient way to solve a system of coupled linear partial differential equations like Eqs.
(4) is the method of potential function. Eskandari-Ghadi et al. [43] proposed a set of complete potential
functions to uncouple the coupled equations of motion and energy equation for isotropic thermoelastic
materials in the Cartesian coordinate system. Hayati et al. [47] in their similar problem under surface
mechanical and thermal loading have used the special form of Eskandari-Ghadi et al. [43] potential
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function for axisymmetric problem successfully. According to the Eskandari-Ghadi et al. [43] potential
functions, the displacement- and temperature-potential relationships in the cylindrical coordinate system
are written via the following relations

Ur (r, θ, z, t) = − 1
μ2

(
k (μ + λ) ∇2

T − β2T0
∂

∂t

)
∂2F

∂r∂z
− ∂χ

r∂θ
,

Uθ (r, θ, z, t) = − 1
μ2

(
k (μ + λ) ∇2

T − β2T0
∂

∂t

)
∂2F

r∂θ∂z
+

∂χ

∂r
,

Uz (r, θ, z, t) =
[

k

μ
∇2

T

(
2μ + λ

μ
∇2

rθ +
∂2

∂z2
− ρ0

∂2

∂t2

)
− β2

μ2
T0

∂

∂t
∇2

rθ

]
F,

T (r, θ, z, t) = T0
β

μ

(
∇2 − ρ0

∂2

∂t2

)
∂2F

∂t∂z
, (8)

where

ρ0 =
ρ

μ
,∇2

rθ =
∂2

∂r2
+

∂

r∂r
+

∂2

r2∂θ2
,∇2 = ∇2

rθ +
∂2

∂z2
,∇2

T = ∇2 − ∂

cT ∂t
,

1
cT

=
c

k
. (9)

Substituting Eqs. (8) into (4), two independent sixth- and second-order partial differential equations
governing, respectively, the potential functions Fand χ are obtained as below [43][

k (2μ + λ) �2
T �2

1�2
2 − β2T0∇2 (∂/∂t)

(∇2 − ρ0∂
2/∂t2

)]
F (r, θ, z, t) = 0, (10)

�2
0χ (r, θ, z, t) = 0, (11)

where

�2
i = ∇2 − ∂2

c2i ∂t2
, (i = 0, 1, 2) ,

1
c20

= ρ0,
1
c21

=
ρ

2μ + λ
,

1
c22

= ρ0. (12)

The square operators (�2
i ) are defined in (12) for wave operators with different phase velocities. In

addition, c1 and c2 are the dilatational and shear wave speeds, respectively. In the case of time-harmonic
motion with a time factor ept, one can express the displacements, temperature, stresses and potential
functions in the following form [51]

[U , T,σ, F, χ (r, θ, z, t)] = [u , T,σ, F, χ (r, θ, z)] ept, etc. (13)

where p = iω, ω is the circular frequency of the harmonic motion and i =
√−1. Substituting Eqs. (13)

into (8), one can rewrite the Eq. (8) in the following form

ur (r, θ, z) = − ∂2

∂r∂z

(
�2

3F
)− ∂χ

r∂θ
,

uθ (r, θ, z) = − ∂2

r∂θ∂z

(
�2

3F
)

+
∂χ

∂r
,

uz (r, θ, z) =
[

k

μ
�̂2

T

((
2μ + λ

μ

)
∇2

rθ +
∂2

∂z2
− ρ0p

2

)
− β2T0p

μ2
∇2

rθ

]
F,

T (r, θ, z) =
βT0p

μ

∂

∂z

(∇2 − ρ0p
2
)
F (14)

where

�2
3 =

1
μ2

(
k (μ + λ) �̂2

T − β2T0p
)

,

�̂2
T = ∇2 − (p/cT ) (15)
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and ur, uθ and uz are the amplitudes of the components of displacement vector in r−, θ−, and z−
directions, respectively, and eventually, T is the amplitude of temperature. Also considering Eq. (13), one
can rewrite the governing equations for potential functions F and χ as follow

[
k (2μ + λ) �̂2

T �̂2
1�̂2

2 − β2T0p∇2
(∇2 − ρ0p

2
)]

F̂ (r, θ, z) = 0 (16)

�̂2
0χ (r, θ, z) = 0 (17)

where �̂2
i = ∇2 − (p2/c2i ), (i = 0, 1, 2) and �̂2

T has been defined in Eq. (15). As it can be seen in Eqs.
(8),(10) and (11) or equivalently in (14),(16) and (17), the operators applied on the potential functions
have been introduced in such a way that the Hankel integral transforms to be applied readily. Thus, in
order to solve Eqs. (16) and (17), Fourier expansion as well as Hankel integral transforms is employed to
suppress the angular and radial variables, respectively. It is clear that the Hankel integral transforms of
any functions exist due to the regularity conditions in r-direction given in the relations (7). The complex
Fourier expansion of potential functions F and χ, and the mth coefficients of Fourier expansions of F
and χ, which are Fm and χm, can be defined as follows [52]

[F, χ (r, θ, z)] =
+∞∑

m=−∞
[Fm, χm (r, z)] eimθ,

[Fm, χm (r, z)] =
1
2π

2π∫
0

[F, χ (r, θ, z)]e−imθdθ. (18)

The mth-order Hankel integral transforms of [Fm, χm(r, z)] which denoted as [F̃m
m , χ̃m

m(ξ, z)] and the
inverse Hankel transforms of [F̃m

m , χ̃m
m(ξ, z)] are defined as below [52]

[
F̃m

m , χ̃m
m (ξ, z)

]
=

∞∫
0

rJm (ξr) [Fm, χm (r, z)] dr,

[Fm, χm (r, z)] =

∞∫
0

ξJm (ξr)
[
F̃m

m , χ̃m
m (ξ, z)

]
dξ. (19)

where ξ is the parameter of Hankel integral transform and Jm denotes the Bessel function of the first kind
and mth order. Similar expressions for the displacement, temperature difference and stress components
can be written. With the use of Fourier expansion and the Hankel integral transforms as defined in (18)
and (19), one can write Eqs. (16) and (17) in the form of the following ordinary differential equations
with respect to z

(
∂6 + I3 (ξ) ∂4 + I2 (ξ) ∂2 + I1 (ξ)

)
F̃m

m (ξ, z) = 0 (20)(
∂2 + I0 (ξ)

)
χ̃m

m (ξ, z) = 0 (21)

where ∂n = dn/dzn and

I3 (ξ) = α1 − 3ξ2 − β2T0p/ (k (2μ + λ)) ,

I2 (ξ) = α2 − 2α1ξ
2 + 3ξ4 − β2T0p

(
α3 − 2ξ2

)
/ (k (2μ + λ)) ,

I1 (ξ) = α4 − α2ξ
2 + α1ξ

4 − ξ6 − β2T0p
(
ξ4 − α3ξ

2
)
/ (k (2μ + λ)) ,

I0 (ξ) = − (
ξ2 + ρ0p

2
)
. (22)
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In addition

α1 = −p

(
c

k
+

pρ

μ
+

pρ

2μ + λ

)
,

α2 =
p3ρ [(3μ + λ) c + pρk]

μk (2μ + λ)
,

α3 = −ρ0p
2, α4 =

−p5ρ2c

μk (2μ + λ)
. (23)

The solutions for the Eqs. (20) and (21) are given by

F̃m
m (ξ, z) = Am (ξ) e−λ1z + Bm (ξ) e−λ2z + Cm (ξ) e−λ3z

+Em (ξ) eλ1z + Gm (ξ) eλ2z + Hm (ξ) eλ3z (24)

χ̃m
m (ξ, z) = Dm (ξ) e−λ4z + Lm (ξ) eλ4z (25)

where Am to Lm are some unknown functions to be determined with the use of boundary conditions. In
addition, λ4 =

√
ξ2 + ρ0p2 and ±λi, (i = 1, 2, 3) are the roots of the following polynomial equation which

is the characteristic differential equation of Eq. (20)

λ6 + I3 (ξ) λ4 + I2 (ξ) λ2 + I1 (ξ) = 0 (26)

λi, (i = 1 to 4) are defined in such a way that their real parts to be positive. In addition, λi, (i = 1, 2, 3)
could be expressed as below

λ1 =
√

b1

(
b2 − p

√
b3

)
, λ2 =

√
ξ2 + ρ0p2, λ3 =

√
b1

(
b2 + p

√
b3

)
(27)

where

b1 = 1/ (2k (2μ + λ)) , b2 = (2μ + λ)
(
pc + 2kξ2

)
+ p

(
kpρ + β2T0

)
,

b3 = β4T 2
0 + (c (2μ + λ) − kpρ)2 + 2β2T0 (c (2μ + λ) + kpρ) . (28)

From Eq. (27), it can be seen that the functions λi, (i = 1 − 4) are multi-valued functions [53]. These
functions have some branch points, which may be located on the common path of integration, which is
the positive part of real axis in complex ξ− plane. The branch points ξλi

, (i = 1 − 4) can be determined
by solving equations λi (ξ) = 0, (i = 1 − 4) as follows

ξλ1 = ±
√

b1

(
kρω2 + i

(
−b4 + ω

√
ib5 + b6

))
,

ξλ2 = ξλ4 = ±ω
√

ρ/μ,

ξλ3 = ±
√

b1

(
kρω2 + i

(
−b4 − ω

√
ib5 + b6

))
(29)

where

b4 = ω
(
c (2μ + λ) + β2T0

)
,

b5 = 2kρω
(
β2T0 − c (2μ + λ)

)
,

b6 =
(
β2T0 + c (2μ + λ)

)2 − (kρω)2 (30)

In the Hankel integral transforms, the range of integration is ξ ∈ [0,+∞) and thus the path of integration
in the inverse Hankel integral transforms is the positive real line. Therefore, we should pay attention
to those branch points ξλi

, (i = 1 − 4) with the positive real parts, when we need to inverse the Hankel
integral transforms. According to Eq. (29), both branch points ξλ1 and ξλ3 are conjugate complex numbers
and they have non-zero imaginary parts, so they are not located on the path of integration (real axis
in complex ξ-plane), but the branch points ξλ2 = ξλ4 are pure real numbers and thus are located on
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Fig. 2. Common path of integration and branch cuts, branch points and poles

the path of integration. Based on Eq. (29), the branch points ξλ2 and ξλ4 are, respectively, corresponds
to the shear wave numbers horizontally (SH) and vertically (SV ) polarized, while the branch points
ξλ1 and ξλ3 are related to coupled compression (P ) and thermal wave numbers (see [45]). As can be
seen, the shear waves are not affected by thermal coupling, however contrary to elastodynamics, here the
dilatational wave number undergoes some damping and dispersion due to thermomechanical coupling.
To be consistent with the Eqs. (24) and (25), we should define a Riemann surface with two sheets such
that λi, (i = 2, 4) be single valued and analytically continuous from one sheet to another. This can be
obtained by defining the branch cuts for λ2 = λ4 on the complex ξ- plane as shown in Fig. 2 with branch
points emanating from ξλ2 = ξλ4 such that the real parts of λ2 = λ4 are always non-negative (see e. g.
[15,54]). If we assume that the thermal stress coefficient β is very small (it may approach zero), so the
branch points are reduced to ξλ1 = ω/c1 and ξλ2 = ξλ4 = ω/c2 which are the compression and shear
wave numbers in elastodynamics, which reported by Pak [15] and ξλ3 =

√−icω/k which is related to
uncoupled thermal wave number.

Under this choice of the branch cuts, eλiz, (i = 1 − 4) terms become inadmissible due to the radiation
conditions and are thus omitted from Eqs. (24) and (25), which means that Em = Gm = Hm = Lm = 0.
To use the solutions presented in Eqs. (24) and (25), we need to write the traction and heat flux boundary
conditions and also the displacements, stresses and temperature in the Hankel–Fourier space. In addition,
the boundary conditions, and the relations between the potential functions and physical functions namely
displacements, stresses and temperatures should be presented in Fourier–Hankel space. Thus, after some
algebraic manipulations, one may write⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ̃m−1
rzm (ξ, z = 0) − iσ̃m−1

θzm (ξ, z = 0) = −
(
P̃m−1

m (ξ) − iQ̃m−1
m (ξ)

)
, (a)

σ̃m+1
rzm (ξ, z = 0) + iσ̃m+1

θzm (ξ, z = 0) = −
(
P̃m+1

m (ξ) + iQ̃m+1
m (ξ)

)
, (b)

σ̃m
zzm (ξ, z = 0) = −R̃m

m (ξ) , (c)
∂T̃m

m

∂z (ξ, z = 0) = H̃m
m (ξ)
k (d)

(31)

ũm−1
rm − iũm−1

θm = − [
g1∂

3 + h1∂
]
F̃m

m − iξχ̃m
m,

ũm+1
rm + iũm+1

θm =
[
g1∂

3 + h1∂
]
F̃m

m − iξχ̃m
m,

ũm
zm =

[
g2∂

4 + h2∂
2 + l2

]
F̃m

m ,

T̃m
m =

[
g3∂

3 + h3∂
]
F̃m

m (32)
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With the use of the stress-strain-temperature and the strain–displacement relationships, one can derive the
stress components in terms of displacement and temperature components. Then, transferring the resulted
stress components into the Fourier–Hankel transformed domain, we can obtain the stress components in
terms of transformed potential functions F̃m

m and χ̃m
m as below

σ̃m−1
rzm − iσ̃m−1

θzm = − [
g4∂

4 + h4∂
2 + l4

]
F̃m

m + [g6∂] χ̃m
m,

σ̃m+1
rzm + iσ̃m+1

θzm =
[
g4∂

4 + h4∂
2 + l4

]
F̃m

m + [g6∂] χ̃m
m,

σ̃m
zzm =

[
g5∂

5 + h5∂
3 + l5∂

]
F̃m

m (33)

where ũn
im (ξ, z) and σ̃n

izm (ξ, z) for (i = r, θ, z) in Eqs. (32) and (33) are the nth-order Hankel integral
transforms of the mth coefficients of the Fourier series of ui and σiz. In addition, T̃m

m (ξ, z) has the same
definition for T . The functions gi, hi and li in Eqs. (32) and (33) are defined as below

g1 =
ξk (μ + λ)

μ2
, h1 =

−ξ

μ2

[
k (μ + λ)

(
ξ2 +

pc

k

)
+ β2T0p

]
,

g2 =
k

μ
, h2 =

−k

μ

[
ρ0p

2 +
(
ξ2 +

pc

k

)
+ ξ2

(
2μ + λ

μ

)]
,

l2 =
k

μ

(
ξ2 +

pc

k

)(
ξ2
(

2μ + λ

μ

)
+ ρ0p

2

)
+

β2T0pξ2

μ2
,

g3 =
βT0p

μ
, h3 = −g3

(
ξ2 + ρ0p

2
)
, g4 = μ (g1 − ξg2) ,

h4 = μ (h1 − ξh2) , l4 = −μξl2, g5 = (2μ + λ) g2, g6 = −μξi,

h5 = λξg1 + (2μ + λ) h2 − βg3, l5 = λξh1 + (2μ + λ) l2 − βh3 (34)

Substituting the functions F̃m
m and χ̃m

m from Eqs. (24) and (25) into the Eqs. (33) and (32)4 and using
the boundary conditions (31), results in four algebraic equations for the unknown functions Am, Bm, Cm

and Dm, which in the matrix form can be expressed as follows

⎡
⎢⎢⎢⎢⎣

−x1 −x2 −x3 x4

x1 x2 x3 x4

y1 y2 y3 0

z1 z2 z3 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Am

Bm

Cm

Dm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xm

Ym

Zm

Wm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(35)

where in Eq. (35)we have

xi =
[
g4λ

4
i + h4λ

2
i + l4

]
, (i = 1, 2, 3) , x4 = −g6λ4,

yi = − [
g5λ

5
i + h5λ

3
i + l5λi

]
, (i = 1, 2, 3) ,

zi =
[
g3λ

4
i + h3λ

2
i

]
, (i = 1, 2, 3) (36)

and

Xm = −
(
P̃m−1

m − iQ̃m−1
m

)
, Ym = −

(
P̃m+1

m + iQ̃m+1
m

)
, Zm = −R̃m

m,Wm = H̃m
m/k (37)
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Solving the system of linear algebraic equations (35) for unknown functions Am, ...,Dm, these functions
can be obtained as below

Am =
1

h (ξ)
[2Wm (x3y2 − x2y3) + (Xm − Ym) (y2z3 − y3z2) + 2Zm (x2z3 − x3z2)] ,

Bm =
1

h (ξ)
[2Wm (x1y3 − x3y1) + (Xm − Ym) (y3z1 − y1z3) + 2Zm (x3z1 − x1z3)] ,

Cm =
1

h (ξ)
[2Wm (x2y1 − x1y2) + (Xm − Ym) (y1z2 − y2z1) + 2Zm (x1z2 − x2z1)] ,

Dm =
Xm + Ym

2x4
, h (ξ) = 2 [z1 (x3y2 − x2y3) + z2 (x1y3 − x3y1) + z3 (x2y1 − x1y2)] (38)

Substituting Am (ξ) , ...,Dm (ξ) from Eq. (38) into Eqs. (24) and (25), and paying attention to Em = Gm =
Hm = Lm = 0, the functions F̃m

m and χ̃m
m are determined. Replacing these functions into Eqs. (32), the

displacement components and temperature can be obtained in the Fourier-Hankel transformed domain.
Then, using the theorem of inverse Hankel integral transforms, the displacements and temperature are
derived in Fourier space as below

urm (r, z) =
1
2

∞∫
0

{
ξ [Jm+1 (ξr) − Jm−1 (ξr)]

[
g1∂

3 + h1∂
] [

Ame−λ1z + Bme−λ2z + Cme−λ3z
]

− iξ2 [Jm+1 (ξr) + Jm−1 (ξr)]
[
Dme−λ4z

]}
dξ,

uθm (r, z) =
1
2i

∞∫
0

{
ξ [Jm+1 (ξr) + Jm−1 (ξr)]

[
g1∂

3 + h1∂
] [

Ame−λ1z + Bme−λ2z + Cme−λ3z
]

− iξ2 [Jm+1 (ξr) − Jm−1 (ξr)]
[
Dme−λ4z

]}
dξ,

uzm (r, z) =

∞∫
0

ξJm (ξr)
[
g2∂

4 + h2∂
2 + l2

] [
Ame−λ1z + Bme−λ2z + Cme−λ3z

]
dξ,

Tm (r, z) =

∞∫
0

ξJm (ξr)
[
g3∂

3 + h3∂
] [

Ame−λ1z + Bme−λ2z + Cme−λ3z
]
dξ, (39)

With the similar procedure, we can obtain the mth coefficients of Fourier series of stress components
applied on a horizontal plane with the use of the inverse Hankel integral transforms into Eqs. (33) as
follows

σrzm (r, z) =
1
2

∞∫
0

ξ
{
[Jm+1 (ξr) − Jm−1 (ξr)]

[
g4∂

4 + h4∂
2 + l4

] [
Ame−λ1z + Bme−λ2z + Cme−λ3z

]

+ [Jm+1 (ξr) + Jm−1 (ξr)] [g6∂]
[
Dme−λ4z

]}
dξ,

σθzm (r, z) =
1
2i

∞∫
0

ξ
{
[Jm+1 (ξr) + Jm−1 (ξr)]

[
g4∂

4 + h4∂
2 + l4

] [
Ame−λ1z + Bme−λ2z + Cme−λ3z

]

+ [Jm+1 (ξr) − Jm−1 (ξr)] [g6∂]
[
Dme−λ4z

]}
dξ,

σzzm (r, z) =

∞∫
0

ξJm (ξr)
[
g5∂

5 + h5∂
3 + l5∂

] [
Ame−λ1z + Bme−λ2z + Cme−λ3z

]
dξ (40)
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On substituting Eqs. (39) and (40) into the relevant Fourier series with respect to θ, the amplitudes of
displacements, stresses and temperature are obtained as

[uj , σjz, T (r, θ, z)] =
+∞∑

m=−∞
[ujm, σjzm, Tm (r, z)] eimθ, (j = r, θ, z) (41)

These functions can be derived in physical time domain as

[Uj , σjz, T (r, θ, z, t)] = [uj , σjz, T (r, θ, z)] ept, (j = r, θ, z) (42)

4. Results for specific load and heat flux distributions

In the previous sections, the patch π0, the mechanical load and the heat flux have been left arbitrary. In
this section, the attention will be focused on the case where π0 is a circular region and the mechanical
load and the heat flux are uniformly distributed on it. Therefore, the results obtained in previous section
are specified for three different cases, which are (1): a uniform vertical patch load of unit resultant, (2):
a uniform horizontal patch load of unit resultant and (3): a constant heat flux.

Case (i): A uniform vertical patch load of unit resultant. For the case of a uniform vertical patch load
of unit resultant applied on a circular patch of radius a, which is an axisymmetric case, the components
of traction and heat flux are as follows{

[P,Q,R,H] (r, θ, t) =
[
0, 0, 1

πa2 , 0
]
ept, (r, θ) ∈ π0,

π0 = {(r, θ, z) |0 ≤ θ < 2π, 0 ≤ r ≤ a, z = 0} (43)

So the Fourier expansion coefficients for traction and heat flux are as follows⎧⎪⎨
⎪⎩

Pm(r) = Qm(r) = Hm(r) = 0 ∀ m,

R0(r) = 1/(πa2), for r ≤ a,R0(r) = 0, for r > a

Rm(r) = 0. for m 	= 0

(44)

and Xm, Ym, Zm and Wm are determined from (37) as⎧⎨
⎩

Xm = Ym = Wm = 0 ∀m,

Zm=0 = −J1(ξa)
πaξ , Zm �=0 = 0

(45)

Substituting Eqs. (45) into (38) results in

A0(vl) (ξ) =
−2J1 (ξa)
πaξ × h (ξ)

(x2z3 − x3z2) ,

B0(vl) (ξ) =
−2J1 (ξa)
πaξ × h (ξ)

(x3z1 − x1z3) ,

C0(vl) (ξ) =
−2J1 (ξa)
πaξ × h (ξ)

(x1z2 − x2z1) ,

Am = Bm = Cm = 0 for m 	= 0,

Dm = 0 ∀m (46)

In Eq. (46), the subscript vl is used for the Case (i), where a vertical load is applied on the surface of
the half-space. Substituting Eq. (46) into Eqs. (39) and (40) and replacing the results into Eq. (41), the
following displacements, temperature and normal stress are resulted as
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ur(vl) (r, θ, z) =

∞∫
0

ξJ1 (ξr)
[
g1∂

3 + h1∂
] [

A0(vl)e
−λ1z + B0(vl)e

−λ2z + C0(vl)e
−λ3z

]
dξ,

uθ(vl) (r, θ, z) = 0,

uz(vl) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g2∂

4 + h2∂
2 + l2

] [
A0(vl)e

−λ1z + B0(vl)e
−λ2z + C0(vl)e

−λ3z
]
dξ,

T(vl) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g3∂

3 + h3∂
] [

A0(vl)e
−λ1z + B0(vl)e

−λ2z + C0(vl)e
−λ3z

]
dξ,

σzz(vl) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g5∂

5 + h5∂
3 + l5∂

] [
A0(vl)e

−λ1z + B0(vl)e
−λ2z + C0(vl)e

−λ3z
]
dξ (47)

Case (ii): A uniform horizontal patch load of unit resultant. The components of surface traction and heat
flux for the case of a uniform lateral patch load of unit resultant applied on a circular disc of radius a
acting in the x-direction, which is an asymmetric case, are as follows{

[P,Q,R,H (r, θ, t)] =
(
cos θ
πa2 , − sin θ

πa2 , 0, 0
)
ept, (r, θ) ∈ π0,

π0 = {(r, θ, z) |0 ≤ θ < 2π, r ≤ a, z = 0} (48)

Thus, the Fourier expansion coefficients for traction and heat flux are as follows⎧⎪⎪⎨
⎪⎪⎩

P1 (r) = P−1 (r) = 1/(2πa2), r ≤ a;

P1 (r) = P−1 (r) = 0, r > a;

Pm (r) = 0, for m 	= ±1;⎧⎪⎪⎨
⎪⎪⎩

Q1 (r) = −Q−1 (r) = i/(2πa2), r ≤ a;

Q1 (r) = Q−1 (r) = 0, r > a;

Qm (r) = 0, for m 	= ±1;

Rm (r) = Hm (r) = 0, ∀m

(49)

In addition, Xm, Ym, Zm and Wm are determined as

Xm=1 = −J1(ξa)
πaξ , Xm �=1 = 0,

Ym=−1 = −J1(ξa)
πaξ , Ym �=−1 = 0,

Zm = Wm = 0, ∀m

(50)

Substituting Eqs. (50) into (38) results in

A1(hl) (ξ) =
−J1 (ξa)

πaξ × h (ξ)
(y2z3 − y3z2) ,

B1(hl) (ξ) =
−J1 (ξa)

πaξ × h (ξ)
(y3z1 − y1z3) ,

C1(hl) (ξ) =
−J1 (ξa)

πaξ × h (ξ)
(y1z2 − y2z1) ,

D1(hl) (ξ) =
−J1 (ξa)

πaξ × (2x4)
,

A−1 = −A1, B−1 = −B1, C−1 = −C1, D−1 = D1,

Am = Bm = Cm = Dm = 0 for m 	= ±1 (51)
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where in Eq. (51) the subscript hl is used for the case of a horizontal load applied on the surface of the
half-space. Substituting Eq. (51) into Eqs. (39) and (40) and replacing the results into Eq. (41), results
in the following displacements, temperature and shear stress

ur(hl) (r, θ, z) = cos θ

∞∫
0

{
ξ [J2 (ξr) − J0 (ξr)]

[
g1∂

3 + h1∂
]

× [
A1(hl)e

−λ1z + B1(hl)e
−λ2z + C1(hl)e

−λ3z
] −iξ2 [J2 (ξr) + J0 (ξr)]

[
D1(hl)e

−λ4z
]}

dξ,

uθ(hl) (r, θ, z) = sin θ

∞∫
0

{
ξ [J2 (ξr) + J0 (ξr)]

[
g1∂

3 + h1∂
]

× [
A1(hl)e

−λ1z + B1(hl)e
−λ2z + C1(hl)e

−λ3z
] −iξ2 [J2 (ξr) − J0 (ξr)]

[
D1(hl)e

−λ4z
]}

dξ,

uz(hl) (r, θ, z) = 2 cos θ

∞∫
0

ξJ1 (ξr)
[
g2∂

4 + h2∂
2 + l2

] [
A1(hl)e

−λ1z + B1(hl)e
−λ2z + C1(hl)e

−λ3z
]
dξ,

T(hl) (r, θ, z) = 2 cos θ

∞∫
0

ξJ1 (ξr)
[
g3∂

3 + h3∂
] [

A1(hl)e
−λ1z + B1(hl)e

−λ2z + C1(hl)e
−λ3z

]
dξ,

σrz(hl) (r, θ, z) = cos θ

∞∫
0

ξ
{
[J2 (ξr) − J0 (ξr)]

[
g4∂

4 + h4∂
2 + l4

]

× [
A1(hl)e

−λ1z + B1(hl)e
−λ2z + C1(hl)e

−λ3z
]

+ [J2 (ξr) + J0 (ξr)] [g6∂]
[
D1(hl)e

−λ4z
]}

dξ (52)

Case (iii): A constant heat flux. For the case of a constant heat flux (q0) passing through a circular patch
of radius a, one may write

[P,Q,R,H (r, θ, t)] = (0, 0, 0, q0) ept, (r, θ) ∈ π0 (53)

which results in ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pm (r) = Qm (r) = Rm (r) = 0 ∀m,

H0 (r) = q0, r ≤ a;

H0 (r) = 0, r > a;

Hm �=0 (r) = 0

(54)

And Xm, Ym, Zm and Wm are determined as

Xm = Ym = Zm = 0, ∀m

Wm=0 = aq0J1(ξa)
kξ , Wm �=0 = 0

(55)

Substituting Eqs. (55) into (38) results in

A0(hf) (ξ) =
2aq0J1 (ξa)
kξ × h (ξ)

(x3y2 − x2y3) ,

B0(hf) (ξ) =
2aq0J1 (ξa)
kξ × h (ξ)

(x1y3 − x3y1) ,

C0(hf) (ξ) =
2aq0J1 (ξa)
kξ × h (ξ)

(x2y1 − x1y2) ,

Am = Bm = Cm = 0 for m 	= 0,

Dm = 0 ∀m (56)
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where in Eq. (56) the subscript hf is used for the case of a heat flux applied on the surface of the half-
space. Substituting Eq. (56) into Eqs. (39) and (40) and replacing the results into Eq. (41), results in the
following displacements, temperature and normal stress

ur(hf) (r, θ, z) =

∞∫
0

ξJ1 (ξr)
[
g1∂

3 + h1∂
] [

A0(hf)e
−λ1z + B0(hf)e

−λ2z + C0(hf)e
−λ3z

]
dξ,

uθ(hf) (r, θ, z) = 0,

uz(hf) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g2∂

4 + h2∂
2 + l2

] [
A0(hf)e

−λ1z + B0(hf)e
−λ2z + C0(hf)e

−λ3z
]
dξ,

T(hf) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g3∂

3 + h3∂
] [

A0(hf)e
−λ1z + B0(hf)e

−λ2z + C0(hf)e
−λ3z

]
dξ,

σzz(hf) (r, θ, z) =

∞∫
0

ξJ0 (ξr)
[
g5∂

5 + h5∂
3 + l5∂

] [
A0(hf)e

−λ1z + B0(hf)e
−λ2z + C0(hf)e

−λ3z
]
dξ (57)

One may write the solutions for the case of all vertical and horizontal loads and the heat flux by adding
the solutions given in Eqs. (47), (52) and (57), term by term. This case may define an arbitrary load
applied on a circular patch. We can make differences among the radii of vertical load, horizontal load and
heat flux, to have more complex case of external excitations.

5. Special problems

In the previous sections, the analytical results have been presented for general time-harmonic thermoe-
lastic problem. In this section, two specific problems are considered to verify the formulations which
are: (I) an elastodynamic problem without heat flux; and (II) an axisymmetric quasi-static thermoelastic
problem.

Problem (I): An elastodynamic problem without heat flux:
It can be shown that if the thermal stress coefficient β is set to be zero, then the thermoelastody-

namic problem can be degenerated to the elastodynamic one. If β = 0, then the operator in Eq. (20) is
decomposed into two separate parts as(

∂6 + I3e (ξ) ∂4 + I2e (ξ) ∂2 + I1e (ξ)
)
F̃m

m (ξ, z) =
(
∂4 + d1∂

2 + d2
) (

∂2 + d3
)
F̃m

m (ξ, z) = 0 (58)

where in Eq. (58) and the later equations, the subscript e denotes the case of elastodynamics. In addition

d1 =
− (3μ + λ)
(2μ + λ)

ρ0p
2 − 2ξ2, d2 =

(
ρ0p

2 + ξ2
)( μρ0p

2

(2μ + λ)
+ ξ2

)
, d3 = −

(
ξ2 +

pc

k

)
(59)

Denoting
(
∂2 + d3

)
F̃m

m (ξ, z) by F̃m
me (ξ, z), one may eliminate the thermal effect and get the equa-

tion
(
∂4 + d1∂

2 + d2
)
F̃m

me (ξ, z) = 0, which considering the radiation conditions results in F̃m
me (ξ, z) =

Ame (ξ) e−λ1ez + Bme (ξ) e−λ2ez, where λ2
ie, (i = 1, 2) are the roots for the characteristic equation λ4

e +
d1λ

2
e + d2 = 0, whose solutions are λ1e = ᾱ =

√
ξ2 − k2

d and λ2e = β̄ =
√

ξ2 − k2
s , with kd = ω/Cd, ks =

ω/Cs, Cd =
√

(2μ + λ) /ρ and Cs =
√

μ/ρ. Moreover, Eq. (21) remains unchanged in the case of elasto-
dynamics, and its solution may be considered as χ̃m

me (ξ, z) = Cme (ξ) e−λ3ez, where one may readily show
that λ3e = λ2e = β̄. The displacements and stresses in the Fourier–Hankel transformed domain,ũn

ime and
σ̃n

izme; (i = r, θ, z), are determined in terms of F̃m
me and χ̃m

me, respectively, based on Eqs. (32) and (33)
when β = 0. For example, the stresses σ̃n

izme; (i = r, θ, z) are written in terms of F̃m
me and χ̃m

me as
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σ̃m−1
rzme − iσ̃m−1

θzme = − [
g4∂

2 + h4e

]
F̃m

me + [g6∂] χ̃m
me,

σ̃m+1
rzme + iσ̃m+1

θzme =
[
g4∂

2 + h4e

]
F̃m

me + [g6∂] χ̃m
me,

σ̃m
zzme =

[
g5∂

3 + h5e∂
]
F̃m

me (60)

where

h4e = ξk

[
2μ + λ

μ
ξ2 − k2

s

]
, h5e =

k

μ

[
(2μ + λ) k2

s − (4μ + 3λ) ξ2
]

(61)

Also it can be shown that if β = 0, according to Eq. (34), g3e = h3e = 0 and considering Eq. (32), the
change of temperature that is coupled with the displacements is determined to be zero.

By virtue of Eq. (60) and the stress boundary conditions Eqs. (31)a,b,c, one may obtain a 3×3 system
of linear algebraic equations to be solved for Ame, Bme and Cme, whose solution is

Ame = [y2e (Xm − Ym) + 2x2eZm] /he (ξ) ,

Bme = − [y1e (Xm − Ym) + 2x1eZm] /he (ξ) ,

Cme =
Xm + Ym

2x3e
, he (ξ) = 2 (x2ey1e − x1ey2e) (62)

where

xie =
[
g4λ

2
ie + h4e

]
, (i = 1, 2) , x3e = − [g6] λ3e,

yie = − [
g5λ

3
ie + h5eλie

]
, (i = 1, 2) (63)

Using Eq. (62), F̃m
me and χ̃m

me are completely obtained, which may be used for determining the transformed
displacements ũn

ime (ξ, z) that via the use of the Hankel inverse theorem results in the displacements as

urme (r, z) =
1
2

∞∫
0

ξ
{
[Jm+1 (ξr) − Jm−1 (ξr)] [g1∂]

[
Amee

−λ1ez + Bmee
−λ2ez

]

− iξ [Jm+1 (ξr) + Jm−1 (ξr)]
[
Cmee

−λ3ez
]}

dξ,

uθme (r, z) =
1
2i

∞∫
0

ξ
{
[Jm+1 (ξr) + Jm−1 (ξr)] [g1∂]

[
Amee

−λ1ez + Bmee
−λ2ez

]

− iξ [Jm+1 (ξr) − Jm−1 (ξr)]
[
Cmee

−λ3ez
]}

dξ,

uzme (r, z) =

∞∫
0

ξJm (ξr)
[
g2∂

2 − h4e

ξμ

] [
Amee

−λ1ez + Bmee
−λ2ez

]
dξ (64)

For a uniformly distributed vertical load of unit resultant applied on a circular disc of radius a acting
in the z-direction, the Fourier series have only one term for m = 0, and thus one may simplified the
displacements of Eq. (64) as follows

ure (r, z) =
−1
πμa

∞∫
0

γ3 (z, ξ)J1 (ξr) J1 (ξa) dξ,

uθe (r, z) = 0,

uze (r, z) =
1

πaμ

∞∫
0

Ω2 (z, ξ)J0 (ξr) J1 (ξa) dξ, (65)
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Similarly, for a uniformly distributed lateral load of unit resultant applied on a circular disc of radius a
acting in the x-direction, the displacements of Eq. (64) are simplified as

ure (r, θ, z) =
cosθ

2πμa

⎧⎨
⎩

∞∫
0

γ1 (z, ξ) J1 (ξa) [J0 (ξr) − J2 (ξr)] dξ

+

∞∫
0

γ2 (z, ξ) J1 (ξa) [J0 (ξr) + J2 (ξr)] dξ

⎫⎬
⎭ ,

uθe (r, θ, z) =
−sinθ

2πμa

⎧⎨
⎩

∞∫
0

γ1 (z, ξ) J1 (ξa) [J0 (ξr) + J2 (ξr)] dξ

+

∞∫
0

γ2 (z, ξ) J1 (ξa) [J0 (ξr) − J2 (ξr)] dξ

⎫⎬
⎭ ,

uze (r, θ, z) =
cosθ

πμa

∞∫
0

Ω1 (z, ξ) J1 (ξa)J1 (ξr) dξ, (66)

The displacements given in Eqs. (65) and (66) are exactly the same as the results presented in Pak [15] for
surface excitation. γ1, γ2, γ3,Ω1 and Ω2 in Eqs. (65) and (66) are those intermediate parameters presented
in Pak [15] for surface excitation (s=0). It should be noted that ᾱ and β̄ in this paper are, respectively,
equivalent to α and β in the notation of Pak [15].

Problem (II): An axisymmetric quasi-static thermoelastic problem:
This is the case considered by Ding et al. [34]. It can be shown that in the case of axisymmetric

problem, the potential function χ is omitted and the displacements and temperature are expressed in
terms of only the scalar potential function F [43]. In this case, the Fourier expansion of any function
has only one component, which is for m = 0. In addition, in the quasi-static problem, the density is
set to be zero (ρ = 0). So considering axisymmetric as well as the quasi-static problem, one may find
λ1qs = λ2qs = ξ and λ3qs =

√
ξ2 + p/k0, where k0 = k (2μ + λ) /

(
c (2μ + λ) + β2T0

)
and the subscript

qs denotes the quasi-static problem. Because of the existence of repeated roots λ1qs = λ2qs = ξ, the Eq.
(24) for m = 0 is written as

F̃ 0
0qs (ξ, z) = A0qs (ξ) e−ξz + zB0qs (ξ) e−ξz + C0qs (ξ) e−λ3qsz. (67)

By assuming the traction free surface, all the components of the external traction are set to zero, which
results in X0 = Y0 = Z0 = 0. Thus, the non-zero boundary condition is T̃ 0

0qs (ξ, z = 0) = H̃0
0 (ξ) = W0.

Satisfying both the homogeneous and non-homogeneous boundary conditions, as done in previous sections,
the functions A0qs, B0qs and C0qs are determined, and then same as the procedure we did before, the
none-zero displacements and the temperature are obtained as the following improper line integrals

urqs (r, z) =

∞∫
0

ξJ1 (ξr)
[
D1e

−ξz + D2e
−λ3qsz + (λ3qs − ξ) D2ze−ξz

]
dξ,

uzqs (r, z) =

∞∫
0

ξJ0 (ξr)
[
D3e

−ξz +
λ3qs

ξ
D2e

−λ3qsz + (λ3qs − ξ) D2ze−ξz

]
dξ,

Tqs (r, z) =

∞∫
0

ξJ0 (ξr)
[
D4e

−ξz + D5e
−λ3qsz

]
dξ (68)
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where

D1 =
βk

((
β2T0 + (2μ + λ) c

)
λ3qs − μcξ

)
W0

ψ
,D2 =

−βkξ
(
β2T0 + (μ + λ) c

)
W0

ψ
,

D3 =
βk

((
β2T0 + (2μ + λ) c

)
ξ − μcλ3qs

)
W0

ψ
,D4 =

2β2T0kξμ (ξ − λ3qs) W0

ψ
,

D5 =
p
(
β2T0 + (μ + λ) c

) (
β2T0 + (2μ + λ) c

)
W0

ψ
,

ψ = β4T 2
0 p +

(
λ2 + 3λμ + 2μ2

)
pc2 + β2T0 ((3μ + 2λ) pc + 2kξμ (ξ − λ3qs)) . (69)

Equation (68) should be the same as the results presented by Ding et al. [34]. However, there are some
mistyping in Eq. (31) of Ding et al. [34], where the first two equations of Eq. (31) in their paper must be
changed as follows

2ρc1 + 2ρc2 + Bc3 = 0,

2ρc1 + 2
(√

ρ2 + p/K0

)
c2 + (B − 2) c3 = 0 (70)

ξ, uz, T and W0 in this paper are, respectively, equivalent to ρ,w, θ and f0 in the notation of Ding et al.
[34].

6. Numerical integration and results discussion

As we have shown in the previous sections, the asymmetric responses of the thermoelastodynamic problem
in an isotropic half-space such as displacement components, temperature difference and stress compo-
nents have been presented in the forms of some semi-infinite line integrals due to applying arbitrary
time-harmonic mechanical force field and heat flux. Because of complexities in the integrand functions
due to existence of multi-valued functions (radical functions), exponential and Bessel functions, the in-
tegrals cannot be given in closed form and thus a numerical procedure is needed. The integrands also
contain some branch points due to existence of multi-valued functions and pole, which needs some special
attentions, when one implements a numerical procedure. As mentioned earlier, the thermoelastodynamic
problem under consideration have four branch points ξλi

, (i = 1 − 4), where neither ξλ1 nor ξλ3 is located
on the path of integration, but ξλ2 = ξλ4 are pure real numbers and they are thus located on the path of
integration. Also, the integrand functions have a singular point which is related to Rayleigh wave number.
In the case of elastodynamics, ξp =

√
3 +

√
3
√

ρ/μω/2 is the pole, which corresponds to the Rayleigh
waves (see e. g., Pak [15]). In this paper, the Rayleigh pole can be calculated by solving the equation
h (ξ) = 0. It is notable that due to thermomechanical coupling, the roots for equation h (ξ) = 0 are
conjugate complex numbers in the complex ξ-plane. Therefore, the Rayleigh pole of integrand functions
has an imaginary part, although it is small. Thus, the Rayleigh pole of the integrand functions dose
not located on the path of integration, which is the positive real axis in the complex ξ-plane; however,
the integrand is nearly singular on the real axis close to the above-mentioned pole. In the process of
numerical integration, we should pay special attention to the branch points ξλ2 = ξλ4 which are located
on the path of integration. Moreover, the numerical evaluation of integrals needs careful consideration
because of the oscillatory behavior of the integrands involving product of the Bessel functions. Because
of the highly oscillatory nature of integrands, they tends to zero slowly when ξ approaches infinity. It
makes the integrals to be converged too slowly. Considering the points mentioned here and for weakly
singular behavior of the integrands near the Rayleigh pole ξp and branch points ξλ2 = ξλ4 , the “Global-
Adaptive”, “MaxErrorIncreases”, “MaxRecursion”, “MinRecursion” and “WorkingPrecision” features in
the Mathematica Software are used for numerical evaluations of whole integrals involved in this paper.
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Table 1. Elastic coefficients and thermal properties of materials

Material no. E
(
Nm−2

)
υ β

1 5 × 1010 0.25 1
2 5 × 1010 0.25 7.04 × 106

3 5 × 1010 0.25 7.04 × 108

Table 2. Numerical values of pole and branch points for ω0 = 0.5

Material no. ξλ1 ξλ2 = ξλ4 ξλ3 ξp

1 (β = 1) ± (0.2886 + 2.6078 × 10−12i) ± 0.5 ± (48.2451 − 48.2451i) (0.5438 − 4.1926 × 10−17i)

2 (β = 7.04 × 106) ± (0.012 − 1.632 × 10−8i) ± 0.5 ±(1159.37 − 1159.37i) (0.5234 − 2.3355 × 10−9i)
3 (β = 7.04 × 108) ± (0.00155 + 0.00155i) ± 0.5 ±(115836 − 115836i) (0.5233 − 2.2932 × 10−13i)

Table 3. Numerical values of pole and branch points for ω0 = 3

Material no. ξλ1 ξλ2 = ξλ4 ξλ3 ξp

1 (β = 1) ± (1.732 + 1.738 × 10−12i) ±3 ± (118.176 − 118.176i) (3.2629 − 1.2157 × 10−15i)
2 (β = 7.04 × 106) ± (0.072 + 1.3056 × 10−7i) ± 3 ±(2839.86 − 2839.85i) (3.1404 − 8.2397 × 10−8i)
3 (β = 7.04 × 108) ± (0.0079 − 0.0079i) ± 3 ± (283740 − 283740i) (3.1403 − 8.2554 × 10−12i)

To illustrate some results, several isotropic materials with different properties are considered as given
in Table 1. All of these three thermoelastic materials have the same Poisson ratio (υ = 0.25) and elastic
modulus (E = 5 ×1010 (Nm−2)), while the thermal stress coefficients of these materials are different. Ma-
terial 1, Material 2 and Material 3 are defined by β = 1, β = 7.04 × 106 and β = 7.04 × 108 (Nm−2 deg−1),
respectively. The thermal properties of Cobalt in SI units which have been presented in Das et al. [55] as
k = 69Wm−1 deg−1, ρ = 8836 kgm−3, c = 427 Jkg−1 deg−1 and T0 = 298◦ K are used for all materials
in this paper.

With the use of Mathematica software, the numerical values of pole and branch points for the selected
materials are listed in Tables 2 and 3. To show the accuracy of the numerical evaluations, the radial
displacement ur for the case of elastodynamics, β = 0, is evaluated and compared with the solution
presented in Pak [15]. Since β appears in the denominator of some fractions in the formulation of the
problem, we cannot set it identically zero in the numerical evaluations. Therefore, for numerical evaluation
in the case of elastodynamics, a sufficiently small value for β is required. Here, 10−10 has been selected.
Figure 5 compares the normalized radial displacement ur(r = 0, z) of this study with the results of Pak
[15] for a dimensionless frequency ω0 = aω

√
ρ/μ = 0.5 and λ/μ = 1, due to a lateral load of unit resultant

applied on a circular disc of radius a. The displacement is normalized as 4πμaur(r = 0, z)/P where P = 1
is the magnitude of lateral load. It can be seen in the figure that the agreement between two results is
excellent.

Table 4 compares the branch points and poles for thermoelastodynamic problem with those of elasto-
dynamics. As we mentioned before and as it is clear from Eq. (29)b, the branch points ξλ2 and ξλ4 are,
respectively, corresponds to the shear wave numbers horizontally (SH) and vertically (SV ) polarized,
while the branch points ξλ1 and ξλ3 are corresponding to coupled compression (P ) and thermal wave
numbers (see [45]). This correspondence is remedy discovered by detailed investigations of Eqs. (29)a,c

and Eqs. (30). Also, ξp is corresponding to the Rayleigh (Ray) wave number. As can be inferred from
Table 4, contrary to elastodynamics, in thermoelastodynamics, the coupled dilatational and thermal; and
the Rayleigh wave numbers are affected by thermomechanical coupling and undergoes some damping and
dispersion. However, this damping for coupled dilatational and thermal wave number is significant but
for Rayleigh wave number is negligible. Based on these points, the coupled dilatational and thermal; and
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Table 4. Comparison of branch points and poles for thermoelastodynamic and elastodynamic cases

Problem type ω0 = 0.5 ω0 = 3

ξλ1 ξλ2 = ξλ4 ξλ3 ξp ξλ1 ξλ2 = ξλ4 ξλ3 ξp

Thermoelastodynamic
material no. 2.

± (0.012 −
1.632 ×
10−8i)

± 0.5 ±(1159.37−
1159.37i)

(0.5234 −
2.3355 ×
10−9i)

± (0.072 +
1.3056 ×
10−7i)

± 3.0 ± (2839.86−
2839.85i)

(3.1404 −
8.2397 ×
10−8i)

Elastodynamic β = 0

material no. 2.

± 0.28867 ± 0.5 – 0.543832 ± 1.7320 ± 3.0 - 3.26299

Table 5. Numerical values of normalized temperature T (r = 0, z = 0) with respect to different amounts of β under
applying a uniform vertical dynamic load of resultant R on a circular disc of radius a with ω0 = 0.5

β β = 10 β = 102 β = 103 β = 104 β = 2.5 × 104 β = 5 × 104 β = 105

µa2T
RT0

0.0039 − 0.00025i 0.039 − 0.0025i 0.39 − 0.025i 3.903 − 0.251i 9.667 − 0.6191i 18.715 − 1.181i 33.175 − 1.992i

β β = 2.5 × 105 β = 5 × 105 β = 106 β = 5 × 106 β = 107 β = 5 × 107 β = 108

µa2T
RT0

46.203 − 2.329i 35.841 − 1.611i 20.815 − 0.916i 4.396 − 0.198i 2.202 − 0.1i 0.44 − 0.02i 0.22 − 0.01i

Fig. 3. Real and imaginary parts of integrand function of normal stress σzz subjected to unit temperature applied on a
disc of radius a with ω0 = 0.5. The half-space is filled by material No. 2 (P = coupled dilatational and thermal wave; S =
shear wave; and R = Rayleigh wave)

the Rayleigh wave speeds for thermoelastodynamic problem are larger than those of elastodynamics and
these two waves arrive sooner in the thermoelastic material than elastic. Also it can be seen that both
horizontal and vertical shear waves (SH and SV ) are not affected by thermomechanical coupling and
these two waves travel with the same velocities in the isotropic media.

Table 5 shows the numerical values of normalized temperature T (r = 0, z = 0) with respect to different
amounts of β under a uniform vertical dynamic load of resultant R on a circular disc of radius a with
ω0 = 0.5. Also, Fig. 7 depicts the normalized temperature μa2T/(RT0) versus logarithm of β(Log10β)
based on the information presented in Table 5.

Figures 3 and 4 depict the variation of the integrand function of normal stress σzz with respect to
ξ subjected to a unit temperature (θ0 = 1K◦) distributed on a circular disc of radius a for frequencies
ω0 = 0.5 and 3.0 and material No. 2. As can be seen from these figures, ξλ1 and ξλ3 , ξλ2 = ξλ4 and ξp which
are given in Tables 2 and 3 for thermoelastodynamic problem are, respectively, corresponds to coupled



ZAMP Three-dimensional coupled thermoelastodynamic stress Page 23 of 32 18

Fig. 4. Real and imaginary parts of integrand function of normal stress σzz subjected to unit temperature applied on a
disc of radius a with ω0 = 3. The half-space is filled by material No. 2 (P = coupled dilatational and thermal wave; S =
shear wave; and R = Rayleigh wave)

Fig. 5. Comparison of displacement in radial direction ur(r = 0, z) along z axis subjected to a uniform lateral load applied
on a disc of radius a acting with frequency ω0 = 0.5 in elastic and thermoelastic half-spaces

dilatational and thermal (P ), shear (S) and Rayleigh (Ray) wave numbers. Also, it can be inferred from
these figures that the wave numbers are completely dependent on the frequency of excitation.

Three cases are defined to illustrate the numerical results. These cases are (1) a uniform vertical load
of resultant R = 1N applied on a circular patch of radius a, (2) a uniform horizontal load of resultant
P = 1N applied on a circular patch of radius a and (3) a uniform constant heat flux with intensity H = q0
passing through a circular disc of radius a(see Fig. 1). The results are prepared in such a way to show the
effect of different frequency of excitation and thermal properties of materials. To illustrate the numerical
results graphically, some dimensionless parameters are defined. In the Case (1), we show the dimensionless
displacement and stress as πμauz/R and πa2σzz/R, respectively, and the dimensionless temperature as
μa2T/(RT0). In the case (2), πμaur/P and μa2T/(PT0) are used as dimensionless displacement and
temperature, respectively, and in the Case (3), kT0σzz/(aμq0) is used as dimensionless stress. In the first
two cases, R and P are the resultant forces. In addition, ω0 = aω

√
ρ/μ is used as the dimensionless
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Fig. 6. Real part of normal stress σzz along r axis (i.e. z = 0) for materials number 1, 2 and 3 subjected to a uniform
vertical dynamic load applied on a disc of radius a with ω0 = 0.5

Fig. 7. Real and imaginary parts of normalized temperature T (r = 0, z = 0) with respect to logarithm of β, under applying
a uniform vertical dynamic load of resultant R on a circular disc of radius a with ω0 = 0.5

frequency. It is worthwhile to be mentioned that all dimensionless parameters for applying vertical and
horizontal dynamic load and heat flux are defined such that these dimensionless functions be independent
of thermal stress coefficient β. This selection makes it possible to track the direct effects of thermal-stress
coefficient β on the responses; because all three materials defined in Table 1 have different thermal-stress
coefficient β.

Figure 6 indicates that the normal stress (σzz) for r ≤ a is equal to the amount of traction applied on
the surface of the medium, which shows the validity of the boundary conditions. Figure 7 depicted the
real and imaginary parts of normalized temperature μa2T/(RT0) versus logarithm of β(Log10β) based
on the information presented in Table 5. As can be seen from Fig. 7, by increasing β, the normalized
temperature μa2T/(RT0) has been increased at first and then this function has been decreased until
its amplitude tend to zero at very large amounts of β. This means that there is nonlinear relationship
between the thermal-stress coefficient β and the displacement, temperature and stress responses. As can
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Fig. 8. Real and imaginary parts of normalized temperature T (r = 0, z) subjected to a uniform vertical dynamic load
applied on a disc of radius a with ω0 = 0.5

Fig. 9. Real and imaginary parts of normalized temperature T (r = 0, z) subjected to a uniform vertical dynamic load
applied on a disc of radius a with ω0 = 3

be seen from this figure, the curve of normalized temperature versus logarithm of β is very similar to the
normal or Gaussian distribution (bell curve) in the probability theory.

Figures 8 and 9 illustrate the real and imaginary parts of normalized temperature T (r = 0, z) sub-
jected to uniform vertical dynamic load applied on a circular disc of radius a with ω0 = 0.5 and ω0 = 3
respectively. As can be seen from these two figures, the amplitudes of real and imaginary parts of normal-
ized temperature for material number 2 in Table 1 are more than other two materials. The reason is that
based on Table 5 and Fig. 7, for very small and very large amounts of thermal-stress coefficient β, the am-
plitude of normalized temperature is very small and therefore for material number 2 with β = 7.04 × 106

the amplitude of normalized temperature is greater than other two materials.
In Figs. 10 and 11, the real and imaginary parts of normalized vertical displacement πμauz(r = 0, z)/R

subjected to uniform vertical dynamic load with resultant R applied on a circular disc of radius a with
ω0 = 0.5 and ω0 = 3 are displayed, respectively. As can be seen in these figures, the higher the thermal
stress coefficient (β), the lower the vertical displacement is, when the Poisson’s ratio and other engineering



18 Page 26 of 32 Y. Hayati and M. Eskandari-Ghadi ZAMP

Fig. 10. Real and imaginary parts of normalized vertical displacement uz(r = 0, z) subjected to a uniform vertical dynamic
load with resultant R applied on a disc of radius a with ω0 = 0.5

Fig. 11. Real and imaginary parts of normalized vertical displacement uz(r = 0, z) subjected to uniform vertical dynamic
load with resultant R applied on disc of radius a with ω0 = 3

properties are kept constants. This happens because of thermoelastic damping which is due to the effect
of change of temperature in the thermoelastic media. This is the fact that Biot [18] also pointed out for
the effect of damping on the change of temperature in the thermoelastic material. Because of the existence
of damping, a small part of energy is dissipated and the response occurs due to the remaining energy.
Moreover, it can be seen from these figures that the responses are absolutely affected by the frequency
of excitation. As frequency increases, the responses have shown more oscillatory behavior.

Figure 12 depicted the real and imaginary parts of normalized temperature μa2T (r = a, z)/(PT0)
subjected to uniform horizontal dynamic load with resultant P applied on a circular disc of radius a with
ω0 = 3. As can be seen from this figure, also the amplitudes of real and imaginary parts of normalized
temperature for material number 2 are more than other two materials.

Figure 13 depicted the real and imaginary parts of normalized radial displacement πμaur(r = 0, z)/P
subjected to uniform horizontal dynamic load with resultant P applied on a circular disc of radius a
with ω0 = 0.5. As can be seen from Fig. 13, the higher the thermal stress coefficient (β), the lower
the radial displacement is, when the Poisson’s ratio and other engineering properties are kept constants.
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Fig. 12. Real and imaginary parts of normalized temperature T along z axis at r = a subjected to a uniform horizontal
dynamic load with resultant P applied on a disc of radius a with ω0 = 3

Fig. 13. Real and imaginary parts of normalized radial displacement ur(r = 0, z) subjected to uniform horizontal dynamic
load with resultant P applied on disc of radius a with ω0 = 0.5

This happens because of thermoelastic damping which is due to the effect of change of temperature in
the thermoelastic media. Figures 14, 15 and 16 illustrated the real and imaginary parts of normalized
normal stress kT0σzz/(aμq0) in a different radial or depth for frequencies ω0 = 0.5 and ω0 = 3 subjected
to a constant heat flux q0 passing through a circular disc of radius a. As can be seen, the amplitudes
of real and imaginary parts of normalized normal stress for material number 2 are more than other two
materials. This behavior is similar to behavior of normalized temperature under applying uniform vertical
and horizontal dynamic load (Figs. 8, 9 and 12).

Figures 17 and 18, respectively depicted the real and imaginary parts of normalized vertical displace-
ment and normal stress functions subjected to a uniform vertical dynamic load applied on a disc of radius
a, versus the dimensionless frequency ω0. Figure 17 shows that by increasing the dimensionless frequency
ω0, the amplitudes of both real and imaginary parts of normalized displacement have been decreased,
while Fig. 18 shows that by increasing ω0, the amplitudes of both real and imaginary parts of normalized
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Fig. 14. Real and imaginary parts of normalized normal stress σzz(r, z = a) subjected to a constant heat flux q0 passing
through a circular disc of radius a with ω0 = 0.5

Fig. 15. Real and imaginary parts of normalized normal stress σzz(r = 0, z) subjected to a constant heat flux q0 passing
through a circular disc of radius a with ω0 = 0.5

Fig. 16. Real and imaginary parts of normalized normal stress σzz(r, z = a) of a half-space subjected to a constant heat
flux q0 passing through a circular disc of radius a with ω0 = 3
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Fig. 17. Real and imaginary parts of normalized vertical displacement uz(r = 0, z = 0) of a half-space subjected to a
uniform vertical dynamic load with resultant R applied on a disc of radius a; versus the dimensionless frequency ω0

Fig. 18. Real and imaginary parts of normalized normal stress σzz(r = 0, z = 1) of a half-space subjected to a uniform
vertical dynamic load with resultant R applied on a disc of radius a; versus the dimensionless frequency ω0

normal stress are increased slightly. In addition, based on these two figures, by increasing the dimen-
sionless frequency ω0, both displacement and stress functions have shown more oscillatory behavior at a
special point within the domain.

7. Conclusion

A half-space containing linear thermoelastic material has been analytically investigated for the displace-
ments, stresses and temperature induced by arbitrary surface traction and heat flux boundary conditions.
Two scalar potential functions have been utilized for uncoupling the set of equations of motion and en-
ergy equation within Biot’s coupled thermoelasticity. The governing partial differential equations for the
potential functions have been solved using the Fourier expansion and Hankel integral transforms in a
cylindrical coordinate system. The unknown functions in the solutions for the potential functions have
been numerically evaluated by satisfying the boundary conditions for three specific cases of vertical and
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horizontal time-harmonic circular patch traction and a constant heat flux on the same circular patch.
Based on the numerical results for change of temperature and normal stress, we conclude that there is
nonlinear relationship between the thermal-stress coefficient β and the amplitude of temperature and
stress responses. The solution may be used as the kernels in the integral methods such as boundary
integral equations. Some points are mentioned about wave propagation in thermoelastodynamics and
compared with elastodynamics. It is shown that, although the dilatational and Rayleigh wave speeds in
thermoelastodynamic case are more than elastodynamics, the shear wave speeds in both cases are the
same.
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