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Abstract. In this paper, we consider the small initial data global well-posedness of solutions for the magnetohydrodynamics
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1. Introduction

In this paper, we consider the following three-dimensional incompressible magnetohydrodynamics equa-
tions with Hall and ion-slip effects in R3:

ug +u- Vu — pAu+ Vo = (V x b) x b, (1.1
by —V X (uxb)+ 6V x ((Vxb)xb) —vAb=krV x [bx (bx (V xb))], (1.2
divu = divb =0, (1.3
(u,0)(+,0) = (uo,bo) ("), (14

where u = (u1, ug,uz) is the fluid velocity field, b = (b1, ba, bs) is the magnetic field, and 7 is the pressure,
respectively. The Hall term V x ((V x b) xb) is for the Hall effect, and V x [b x (b x (V x b))] is for the ion-
slip effect. The parameters p, v, 6 and k denote the viscous coefficient, the resistivity coefficient, the Hall
effect coefficient and the ion-slip effect coefficient, respectively. For simplicity, we set y=v =0 =k = 1.

When § = 0 and x = 0, the system (1.1)—(1.4) reduces to the classical magnetohydrodynamics system,
which describes the plasma form a nonlinear system that couples Navier—Stokes equations with Maxwell’s
equations. In addition, if K = 0 and & # 0, the system (1.1)—(1.4) reduces to the Hall-MHD system,
which represents the momentum conservation equation for the plasma fluid. Both magnetohydrodynamics
system and Hall-MHD system have received many studies [1,5,7,9-12,15,16,26,27].

System (1.1)—(1.4) has been studied in [20-22]. Latterly, Fan, Jia, Nakamura and Zhou[13] proved
some blow-up criteria, the local well-posedness of strong solutions, global existence of solutions and
time decay rate of small data for system (1.1)-(1.4). The authors proved that if the H?-norm of the
initial datum is sufficiently small, system (1.1)—(1.4) has a small unique global-in-time strong solution
(u,b) € L*(0,00; H?). Gala and Ragusa[l4] improved Fan et al.’s local well-posedness result to the
critical Besov space. They also established a new blow-up criterion of strong solutions in terms of the
critical Besov space B;O%oo and multiplier spaces.

The first aim of this paper is to improve Fan et. al.[13]’s global well-posedness result, prove the
existence of global solutions for small initial data to system (1.1)—(1.4). More precisely, the result can be
stated as follows.
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Theorem 1.1. Suppose (ug,by) € H*(R?) with s > 2 and divug = divby = 0. There exists a sufficiently
small constant K >0 and any € > 0 such that if [luol| ;1. + [boll ,3+. < K, then there exists a unique
global strong solution (u,b) and satisfy

(u,b) € C(0,T; H*(R*)) N L*(0,T; H*1(R?)).
Remark 1.1. It seems that ¢ in Theorem 1.1 cannot reduce to 0 because of the following Sobolev’s
embedding

=, 3 4 P = | = 1 3
[bllzee < lI0ll 5= IAZTe0]| 27 < [[AZD]| 37 |AZ720]| 27 < [[AZbl L2 + [AZFD| 2.

Remark 1.2. We suspect that Theorem 1.1 may be hold if [[uol| 3 + l|boll 2 is sufficiently small. But,
until now, we cannot find any valid method to get ride of the parameter €. Therefore, we have to leave it
as an open problem to be carried out later.

Remark 1.3. In [13], suppose that (ug,bg) € L' () H? with V - ug = V - by = 0 and there exists a small
constant K such that

luoll g2 + [|boll > < K,

Fan, Jia, Nakamura and Zhou obtained the existence of unique global-in-time strong solution for system
(1.1)—(1.4). Comparing with [13], our theorem can be seen as an improvement of Fan et. al.’s work.

Another purpose of this paper is to obtain the time decay rates in L? x L? and H™ x H™ by using
Fourier splitting method and the properties of decay character r*[2], which measures the “order” of vp(&)
at £ = 0 in frequency space.

Fourier splitting method was introduced by Schonbek in [24,25] to study the algebraic rates for the
asymptotic behavior of solutions to the Navier—Stokes equations. Later, this method was well extended
to investigate the decay for the solutions of PDE from mathematical physics, see, e.g., Brandolese and
Schonbek[4], Dai et. al.[8], Jiu and Yu[17], Weng[28], etc.

Our first theorem on the L2-norm decay rate of solutions read as follows:

Theorem 1.2. (L2-decay) Suppose that (ug,bg) € L*(R?), divug = divby = 0. Let r* = r*(ug) = r*(bg) €
(—=32,400) be the decay character. Then, there exist a positive constant Co = Co(||uol|r2, [|bo]|2), such

that
Julls + [bl2, < Co(1 +¢)~ ™13+ 3} for large ¢. (1.5)

The following is a decay estimate for the higher-order Sobolev norms, whose global-in-time existence
is guaranteed for sufficiently small initial data.

Theorem 1.3. Suppose that m € N, Ky = max{3,m}, (ug,by) € HX(R?) and divug = divhy = 0.

Let r* = r*(up) = r*(by) € [—3%,+00) be the decay character. Then, there exists a positive constant
Cmn = Ci(JJuol| grxos [|bol| gxo ), such that
ID™u|2s + | D™b]22 < Co(1 + )3 473} for large t. (1.6)

Remark 1.4. When r* = 0, we recover the result in Remark 1.1 of [13]. Compared with the classical decay
results of 3D Hall-MHD equations (see[29]), the decay estimates on ||u[|%, + ||b]|2, cannot reach O(t~2)
because of the ion-slip term.

Remark 1.5. At present, we are not able to show that (1.6) still holds true for r* € (—%, —%) The key
reason is that the proof heavily relies on Lemma 3.5. Therefore, we leave it as an open problem to be
carried out later.

The rest of this paper is organized as follows. In the next section, we study the well-posedness of
solutions for system (1.1)—(1.4), i.e., we prove Theorem 1.1. In Sect. 3, we study the time decay rate of
solutions.
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2. Proof of Theorem 1.1

First of all, we introduce the Kato—Ponce inequality which is of great importance in the proof of Theorem
1.1.

Lemma 2.1. ([18,19]) Let 1 < p < 00, s > 0. There exists a positive constant C' such that

14°(f9) = FA%Gller < CUIVFllen 1A gllers + | A° Lz lgllzes) (2.1)
and
IA*(£9)lzr < CIFllon 1A% llzra + 1A Fllan gl o (2.2)
where p1,q1,p2,q2 € (1,00) satisfying % = p% + p% = q% + q%,

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Multiplying(1.1) and (1.2) by w and b, one can get the fundamental energy esti-
mate, for any ¢t > 0,

¢
ullZe + ullZ + / (IVullZ + [IVBl[72 + 1o x (V x b)[1Z2) d7 = [|uo|[72 + [lbol|7- (2:3)
0
Taking A2 to (1.1) and (1.2), multiplying by Az and Azb, we have
Ld
2dt
= _/(A%(u-vu) —u-VA%u)A%udx+/(A%(b-Vb) —b-VAZb)AZudx

1 1 3 3
<||A2u||2L2 " ||A2b|\2L2) + (HAWH%Q + \|Azb||iz)

R3 R3
_/(A%(u-w) _u-VA%b)A%bdz+/(A%(b-vu) —b-VAZu)Azbdx
R3 R3

_/A%((v « b) x b)A} (V x b)dx+/A%[b x (b x (V x b)JA}(V x b) dz
R3 R3

:Il+IQ+Ig+I4+I5+Iﬁ. (24)
By using Lemma 2.1, the six terms in the right-hand side of (2.4) can be estimated as

|I5| < C||Vb| s | AZb]| o ||AZb]| 12 < C||AZD|[3,

3 1
176l < C (DI 3 IAZBI2 o+ 1101l 2 A3 o, IV,

s A%, o)
€ L 3—2¢

< ClbI2 5. b2 5.
and
11| + 12| + [I3] + | L]
< Cl|A% (u- V) —u- VAR 2| AZul 2 + Cl[AZ (b- Vb) — b VAZb|| 2 | A ul| 2
FC|| A2 (u- V) — u- VA2 12| A2b]| 12 + C||A2 (b- Vu) —u- VA2 12 ]|A2b]| 2
< C(|Vullzs + V0]l o) (1A 2 ull o + [AZb] o) (A2 ul 2 + [|A2D]|2)
< C(IAullgz + [A2D] o) (|AZul3s + [|AZ]3).
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Taking A2+ to (1.1) and (1.2), multiplying by A2y and Az+¢b, we have
1d
2dt

— /(A%“(u -Vu) —u- VA%JFEU)A%JFEU dz

— (A ul7e + [AZ9D]72) + (1A ul 2 + [|A2 D] 72)

R3

+ /(A%+f(b Vb) — b- VAZTED)AZ Ty dn
R3

- /(A%+€(u - Vb) —u- VAT TB)AZTehdn
R3

+ /(A%+E(b V) — b VAT A2 b de
RS

- /A%+€((v % b) x B)ARE(V x b) da
R3

+/A%+E[b x (bx (V x b)]JA2T(V x b) dz
R3

= +Jeo+J3+Js+ s+ Js. (2.5)

Now, we estimate J; — Jgs as follows
|J1| + |J2| + |J3] + | J4]
< C||ATHe(u- V) — u- VAT | 2] | A2 5ul| 2
+C|| At (b Vb) — b VAZTD| 2| A2 w2
+C|| A=t (- Vb) — u- VA2 2 ||AZHD|| 2
FO|AZTE(b - V) — u - VAZTHD|| 12 ||AZ D[ 2
< C(|[Vull s + IV0] o) (1A>F2ul| o + [|AZ b 1) (| A2 =0l g2 + [ A>F2D|| )
< C(IAbullgz + 1830 22) (A <ullfe + AR <B)2. ) |
[J5| < CIIVbl| s [ A2 90 o | AZ D] 12 < ClIAZD] 2| A2 <07
and
5] < C (1813 A3 0l132 + [l oo [ V0] o llA3 <0l o | AT 4D 12)
< C (1013« IAF2b]22 + bll = [ AZbl| 2 [AF ] )
Taking A2+ to (1.2), multiplying by A2+€b, we have

2+e S4e )
S SIATFEDE, + AT

T T
:f/A%“(wVb)A%“bdqu/A%+5(b~Vu)A%+5bdx
0

T
/A%+€ ((V x b) x b)A2T5(V x b) dz
0
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T
+/A%+€[b x (bx (V x b)]JA2T(V x b) d
0
=K+ Ky + K3+ K,4. (26)

Applying Lemma 2.1, the four terms in the right-hand side of (2.6) can be estimated as
|K1| < C(IVBl| o | AZF=u 12 [ATT2b] o + | Vuul| ol AZ+ED] 12 AZF2b] 16 )
< C(IARblle + A3 bl 1) (AT ullfe + AR FulZ + A3 90)3:)
T
1y = /A%+6(b-u)A%+EVbdx
0
< C(|Ibl| e [IAZFSul| g2 [ AZF2D] L2 + [Jull ps A2+ Lo | A2+ 12)
< C(IARull e+ [6llz=) (AR =ullfe + A3 =) 32 + AT 20| ),
|K3| < O V]| s ]| A2 b 1o | AZ+eb] 12 < Ol A% 2 | AZ+20]|2,
and
| Ky < O[3 [AFT20]|22 + [|b] oo ||V 23 | AZH20] 1o AT F2D]| 2)
< C (1613 A3 <bl3 + 1Bl oo AR b2 |23 <B)32)
Summing up, we derive that

1d
537 (IA3ulZa + 43072 + AT +2ulZa + A3 =b] 3 + A3 +<b3 )

AR ulF + AZbE + ATl + [AFFBE. + AT D)2,

< C (Jbllz= + 1ol3~ + IAFullz + 1A3] 2 + [AZbl 12 + AR <D 32 + A3 <b)2)
% (AR ulZ + IAZ0E + AT =ulF + A0 F. + A5 F2b]2.)

< C (JIadbllge + AR bz + AR ull e + [AF03 + IARFD)3: )

x (IAZulZ + IAZbE + AT ulF + [AFFbF. + [ATF2B]2.).

where we have used the Gagliardo—Nirenberg inequality:

bl < B IARF<BIIEET < A20IFE7 AR T 5 < A%0]l5e + AT+ 1o,
IAZ0l| e < S0 FE [AFB ¥ < IAb1e + AT D] s

and

1AE=2b]2 < [IABIIE AR 4B 57 < AT0. + A3 +<b 3.

Choosing K so small that

1
(||A250||L2 + [AZFbo| 12 + |AZugl| 2 + [AZbol|22 + ||A2+6b0|\L2) 2’
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then, ||A%u||%2 + ||A%b|\2L2 + \|A%+8u||2L2 + HA%-S-EI)H?L2 + ||A%‘*‘5b||2L2 is decreasing. So, for any 0 < T' < oo,
we have

d
= (IA5ale + 1A]3a + A3 2wl + IAFF=bl13 + AT+, )

AT w20+ AZB]2 + [AZTEu2e 4+ AZTTED| 2, + [|AZFED]|2, < 0,

which implies

we L®(0,T; H21) N L2(0,T; H2 ), (2.7)
be L=(0,T; H2°) N L2(0,T; H?°). (2.8)
The high-order estimations can be obtained by the blow-up criteria [13,14] and (2.7), (2.8). So, we omit
the details. O

3. Proof of Theorems 1.2 and 1.3

The first definition of decay character r* can be traced back to Bjorland and Schonbek|[2]. In [3,23], the
authors found the sharp decay estimates for solutions to the heat equation

ot — Au =0, v(x,0) = vy(z), (3.1)
in terms of r*.

Definition 3.1. ([3,23]) Suppose that vy € L2(R"), A = (—A)2 and

P(un) = limp > [ eIl Pdg, 5 20,
B(p)

exists, for r € (=5 + s,00) and B(p) the ball at the origin with radius p. Then, P?(vo) is the s-decay
indicator corresponding to Avyg.

Definition 3.2. ([23]) The decay character of A®vg denoted by 7} = r(vg) is the unique r € (=5 + s,00)
such that 0 < P?(vg) < oo, provided that this number exists. If such P?(vg) does not exist, set r; = — 5 +s,
when P?(vg) = oo for all r € (=4 + 5,00) or 7} = oo, if P(vg) = 0 for all 7 € (=% + s,00).

The following lemma describes the L? decay characterization of solutions to the heat equation (3.1)
in terms of the decay character r* = r*(v).

Lemma 3.1. ([23]) Suppose that vo € L*(R™) have decay character r* = r*(vo). Let v(t) be a solution to
(53.1) with data vy. Then

o if =% <r* < oo, then there exist two positive constants C1 and Cz such that
Cu(1+8)" ) < a(t)7. < G+~ (),
o ifr* = —3, then there exists a positive constant C = C(g) such that
IB(®)[72 = CA+1)75, Ve >0,

which means the decay of ||0(t)||2. is slower than any uniform algebraic rate;
o ifr* = o0, then there exists a positive constant C' such that

[o(®)|2. <C+8)"™, VYm >0,
which means the decay of v(t)||3. is faster than any algebraic rate.

In order to prove the decay estimate (1.5), we prepare
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Lemma 3.2. Let (ug,by) € L*(R?) x L%(R3) with divug = divby = 0. Suppose that (u,b) is the solution

of system (1.1)—(1.4) with initial value (ug,bgy). Then

A, 1) < C e 26 ap(6) + € (/ (lu)lZ2 + b(t)lliz)dS)
0

and
t

b ) < C [ 2 bo(€)2 + 1 + ¢ (/ (lu(®)lIZ> + [b®)1Z) ds

0

Proof. Taking the Fourier transform for (1.1), we derive that

D&, 1) + |E2A(E, 1) = H(&,t) = —u- Val€, 1) — Vr(&,8) — (V x b) X b(&, £).

Integrating in time from 0 to ¢, we get
t

@maw:e%W%@r+/€“m““H@JM&
0

Therefore,
t

e, ) < e GO + [ I (E 9l
0
Applying the same calculations as the proof of Lemma 7 in [29], we obtain

[H (&, 6)] < Cle] (lu®)lIZ2 + b)IZ:) -
By (3.6) and (3.7), we obtain (3.2). Taking the Fourier transform for (1.2), we get

Qb(E, )] + [€7B(E,8) = G(E, 1)

L —

= b Vu(&,t) —u- Vb(E,t) — V x ((V x b) x b)(E, s)

-

+V x(bx(bx(VxDb))E,s).

Integrating in time from 0 to ¢, we deduce that

t
W@mseﬁm%@ﬂ+/éﬁﬁ“ﬂa@ﬁm&
0

Note that . -
[b- V(g t)] + [u- Vb(E, )| < Clelllull 2|6l 2,
and

3
IV 5 (b (VX D)(E D) <16 x Y &bib(&, 1) < CIEPIb]1Z--
i=1
We also have

IV 5 (b x (bx (V x ))& D] < []Bl]21lb x (V x )|z < Cle] (Ibl22 + [|bx (V x b)[[32) -

Summing up, we have
G(&,1) < ClE] (lullz + [1bl1Z2 + (16 x (V x b)[|72 + [€]][B]|72) -

(3.6)

(3.7)

(3.10)

By the energy inequality, we obtain fg 6% (V xb)||2,ds < C. Combining (3.9)—(3.10) together, we obtain

(3.3). This completes the proof.

O
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Proof of Theorem 1.2. Testing (1.1) by u, and (1.2) by b, respectively, we get

1d

2dt
R3

(ful* + [p*)da + [[Vul[Z + [|VBII72 + [I(V % b) x ][> = 0. (3.11)

Applying the Plancherel’s theorem to (3.11), we deduce that

jt/n (&0 + 5, d5+2/\5| a6, + b, ) <0, Ve 0. (312)
Set
5= {ee®ler < = LN, 5=\ B0

where g(t) is a differentiable function of ¢ satisfying
g(0) =1, ¢'(t) > 0 and 2g(t) > ¢'(t), Vt > 0.

Multiplying (3.12) by g(t), on the basis of the definitions of B(t) and B¢(t), we derive that

ddt(gu) / [|a<§,t>|2+|é<§,t>21de) <) [ (1a(€.0F + e, 07) e (3.13)
R3 B(t)
Hence
o) / la(e,0)* + [b(e, £) e
R3
< c+c/g’(s) / e 21E% (i ()2 + |b5(g)|2)dgds+c/ / déds (3.14)
0 B(s) 0 B(s) .
e / d(s) / € ( / (lu()]2s + ||b<t>|%z>ds) dgdt.
0 B(s) 0
Note that

B(s)

t
<c [d@ U + s < g6+ as
0 0

where % and b are the solutions of the heat equation, which is the linear part of (1.1)and (1.3). We also

have
t
C[g(s) [ deds<C )(1+5)"2ds. (3.16)
oo [ ooz o

B(s)

c/ / =21EPt (1 (€)2 + [0 €)[?)deds
t (3.15)
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For the last term of the right hand of (3.14), after integrating in polar coordinates in B(t), we get
2

c / ) [ 16l | [l +1oizas | asar

B® 0 (3.17)
t

<C /g’(S)pst /HW)H%z +Ib(t)][72)ds
0

0

For a fixed r*, we can choose g(t) = (1+t)™ with m > max{%, 2-+r*}. It is easy to see that p(t) = (14t)"z.
It then follows from (3.14)—(3.17) and the a priori estimate |[ul|?, + [|b]|2, < C that

[ullZ2 + 1167
-m —(§+7'*) —1 -3
<c(@+n™+a+0 Gy @t a4n?) (3.18)
<O+t mn{z+3

Using this first preliminary decay, we bootstrap to find sharper estimates. Assume that min{% +r*, % =
S 4%, for g(t) = (1+t)~™ with m > max{3 + r*, 3}, we get p(t) = C(1 + )=2 and

c / J(t) / e / ()22 + [b(6)]22) ds | dear
0 B(t) 0

t t 2

<C / "(5)p°ds /1+s -(3+7") g5 (3.19)

0

SC/ 1+s -(3 +2’“*))013.

It then follows from (3.14)—(3.16) and (3.19) that
[ullZ= + [1b]I7
<c(@+™+ @+ G b (14752 4 (1407 (3.20)
<c+1t) G+,

the decay is still the slower one, there is no improvement for the decay rate. Suppose that mln{ +7r*

) 2 -
;7 we have
¢ t t
C /g’(s)p5ds /(1—|—3 “ids| <C / 1+ s) 2ds. (3.21)
0 0 0
By (3.14)—(3.16) and (3.21), we derive that
lal3e + 183 < € (4™ + 1+~ G ) w47+ (14078
(3.22)

< O(1 4 ¢)~min{5+r3

If we bootstrap once again, the decay rate is also the same as before, there is no improvement. Hence,
we complete the proof. O
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We observe the following fact.

Lemma 3.3. Let (ug,bg) € H™(R3) x H™(R?) with divug = divby = 0. Then, for all |¢| < 1 and for all
JeN,

[DIu(E, t)] + [DIb(E, )] < [b(€, )]+ [b(E, 1)1, (3.23)
where C' = C(||uol| L2, ||bollL2) is a positive constant.

Proof. Since || < 1, we have

Diu(€,t)] + [Dib(e, )| < € (Ja(, 1)] + [b(e, 1)) < [a(e, )] + [bE, B)].
Then, we complete the proof. O
The following are decay estimates for high-order Sobolev norms.
Lemma 3.4. Let (ug,by) € H™(R?) x H™(R3) with divug = divby = 0. Suppose that m € N and m > 3.
Then, that
ul|2pm 4 [|B]|2m < C(1 + t)fmin{%ﬂ”*’%}, for large t, (3.24)

[bo|lgm) is a positive constant.

where C' = C(||uol| grm,

Proof. On the basis of Theorem 1.1, we easily obtain

3 (ullzze 4 10l7) + llullFres + 1Bl 42 <0, (3.25)
provided that HUOHH%-FE + ||bo||H 3. is sufficiently small. The Fourier transform of (3.25) can be written

as
d A~ —_—
= [ e D12 + D™, 0l + (&, I + [D7b(g. 1)2] de
R3

<- / €12 [[a(e, O + D™ (€ DI + [b(&, )1 + D&, 1)) de.
R3

In a similar fashion as the proof of Theorem 1.2, we have

d o~ ~ ~ —
5300 [ [0 + 1pmae. o + e 0 +157b(e ] de
R3
<g/) [ [[ae0P +1Dmae 0 + e, 0 + 57 0] e
B(t)

Applying the results of Lemma 3.3, there exists a Ty > 0, such that for any ¢ > T, we have

5 90 [ [0 + 1Dmae, o + e 0 + 1570 ] de
R3
<y [ [l + e o] de
B(b)

Arguing as for proving Theorem 1.2, we obtain
el + 012 < O+ )~ ™25+ 3} ) for any ¢ > Ty,
Then, the proof is completed. U

Next lemma is a typical case of Lemma 2.4 of [6].
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Lemma 3.5. Suppose that m € N and
| D™ |2, + | D™ 0|2, < Cpuo1 (1 +8)"Pm=2 ) for large t.

Assume that

d m m - m m m
3 (D™ ullZe + [D™b]72) < Co(l+ ) HID™bl[Z2 = (D™ a7z + [ D™ b]72)
Then, for ppm =1+ pm—1, we have

| D™ ul|2: + | D™b||25 < Cpo(1+)"Pm for large t.

Proof of Theorem 1.3. Operating D™ on (1.1) and (1.2), multiplying them by D™wu and D™b, respec-
tively, integrating by part, we deduce that

1d

S (ID™ullZ2 + ID™b][72) + | D™ ullf2 + | D™ b]|7
=— / (u - Vu)D*™udx + / (b- Vb)D*™udz — / (u - Vb)D*"bdx
R3 R3 R3
+ /(b - Vu)D*"bdx — /v x ((V x b) x b)D*"™bdx (3.26)
R3 R3
+ /v x [bx (bx (V x b)) D*™bdx
R3

=N+ Jo+Js+Jy+ J5+ Js.

Note that V-u =V - b= 0. We have

3 3
Ji < YD a2 | D™ (wiw)llze < Y 1Dl gz | D™ ul| o flul| s (3.27)

i=1 i=1

From Nirenberg’s inequality and (3.24) that

5 1 . *
lullzs < Cllulls, [ D3|, < C(1 +¢)~ {3 +5r3}, (3.28)

Combining (3.27) and (3.28) together gives

1,.% 5 1,.% 5

Ty < O+ Dy | D™l s < (14 )R D2, (3.29)
Similarly, we have
Jo+ Js + Jy < C(1 4 )~ ™mLi+30 3} (D)2, + |ID™H0)12,) - (3.30)
We also have
J5 < C[ D™ b 12| D™ (b - V)| 2
< Clfbl| < [|D™1bl|3 + C|Vbl| oo | D™ b 2| D™+ )] 2
< CID*B| 2Bl 71 D™ 01132 + Cl D3| fa [bl = | D™l 2 | D™ b .2 (3:31)

< C(1 + )~ min{E+3m 5} (1 D)2, 4 |D™b 2 | Db o
L

1 ; « 5
< SID™ b 4+ O+ &) MET DT, for large .
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For Jg, we have the estimate
Js < /Dm(b x (b x (V x b)) - D™ bdx
3

< C(ID™b]|L2lb x (V x b)|[Loe + D™ (b x (V x b)|[ 2[b] e ) [ D™ ] 2
< C(IbllLo=IVOll o [D™bl| 2| D™ bl 2 + [[D| Zoe [| D™+ |72 (3.32)
+[[bllpoe [ Vbl poe | D™l 2| D™ 0] 2)

IN

1 m m
SID™ b 72 + ClbI L Vbl Zoe | D™ BIIZ:

IN

1 : x
LD, + O(1L 4 1)~ 3 g2,
Combining (3.26)—(3.32) together, we know that there exists a T, such that for t > T},

d m m m m
3 (D™ lZz + [D™b]1Z2) + [ID™ Hul|Za + [| D™ bIIZ: (3.33)
<C(1 —|—t)7min{%“*’%}||Dmb||%27 for large t.

Applying Lemma 3.5 directly, we obtain the conclusion of the theorem for r* > —%. In addition, the case
m = 1,2 can be obtained by Sobolev’s embedding theorem. The proof of Theorem 1.3 is completed. [
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