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Abstract. In this paper, we consider the positive solutions of the nonlocal dispersal equation

∫

Ω

J(x, y)[u(y) − u(x)]dy = −λm(x)u(x) + [c(x) + ε]up(x) in Ω̄,

where Ω ⊂ R
N is a bounded domain, λ, ε and p > 1 are positive constants. The dispersal kernel J and the coefficient

c(x) are nonnegative, but c(x) has a degeneracy in some subdomain of Ω. In order to study the influence of heterogeneous
environment on the nonlocal system, we study the sharp spatial patterns of positive solutions as ε → 0. We obtain that the
positive solutions always have blow-up asymptotic profiles in Ω̄. Meanwhile, we find that the profiles in degeneracy domain
are different from the domain without degeneracy.
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1. Introduction and main results

Let J : R
N × R

N → R be a nonnegative continuous function. Recently, there has been considerable
interest in the study of the nonlocal dispersal equation

ut(x, t) =
∫

Ω

J(x, y)[u(y, t) − u(x, t)]dy + f(x, u),

see among other references [1,2,9], here Ω is a subdomain of RN . In fact, nonlocal dispersal equations
have been widely used to model different dispersal phenomena in material science and ecology, see, e.g.,
[3–5,14–16]. As stated in [11], if u(y, t) is thought of as the density at location y at time t, and J(x, y) is
thought of as the probability distribution of jumping from y to x, then

∫
Ω

J(x, y)u(y, t)dy denotes the rate

at which individuals are arriving to location x from all other places and − ∫
Ω

J(y, x)u(x, t)dy is the rate

at which they are leaving location x to all other places. Nonlocal dispersal operator also characterizes the
diffusion of species which may occur between nonadjacent locations.

In this paper, we consider the nonlocal dispersal equation∫

Ω

J(x, y)[u(y) − u(x)]dy = −λm(x)u(x) + c(x)up(x) in Ω̄, (1.1)

where Ω ⊂ R
N is a bounded domain, λ and p > 1 are positive constants. The coefficient c(x) is nonnega-

tive, and m(x) may change sign in Ω. Thus, (1.1) describes the change in the population density u(x) in
heterogeneous environment with nonlocal dispersal and Logistic type growth rate. In (1.1), the dispersal
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takes place only in Ω. The individuals may not enter nor leave Ω. This is called homogeneous Neumann
boundary condition or nonlocal impassable boundary condition [10,13].

Throughout this paper, we make the following assumptions on J , c(x) and m(x):
(A1) J ∈ C(Ω̄ × Ω̄) verifies J(x, y) ≥ 0 and J(x, y) = J(y, x) in Ω̄ × Ω̄; there exist α > 0 and l > 0 such

that J(x, y) > α if x, y ∈ Ω̄ and |x − y| < l.
(A2) c(x) ∈ C(Ω̄) is nontrivial,

c(x) = 0 in Ω0 and c(x) > 0 in Ω̄ \ Ω̄0,

where Ω0 is a subdomain of Ω with a positive measure.
(A3) m(x) ∈ C(Ω̄) and {x ∈ Ω0 : m(x) > 0} has a positive measure.

Since the dispersal kernel function J is symmetric, the existence, uniqueness and stability of positive
solutions of (1.1) are followed by the resent works of Coville [6] and Sun et al. [13,15]. More precisely,
we know that there exist two constants λ∗ and λ∗ satisfying 0 ≤ λ∗ ≤ λ∗ < ∞ such that (1.1) admits
a unique positive solution u ∈ C(Ω̄) if λ∗ < λ < λ∗. Meanwhile, if λ∗ = λ∗ or λ ≥ λ∗ or λ ≤ λ∗ with∫
Ω

m(x)dx < 0, then (1.1) admits no positive solution [13]. The constants λ∗ and λ∗ > 0 can be unique

determined as follows:

λ∗ = inf
u∈H(Ω)

∫
Ω

∫
Ω

J(x, y)(u(x) − u(y))2dxdy

2
∫
Ω

m(x)u2(x)dx
,

λ∗ = inf
u∈H(Ω0)

∫
Ω0

d(x)u2(x)dx − ∫
Ω0

∫
Ω0

J(x, y)u(x)u(y)dxdy

∫
Ω0

m(x)u2(x)dx
,

where d(x) =
∫
Ω

J(x, y)dy and

H(Ω) =

⎧⎨
⎩v ∈ L2(Ω)

∣∣∣
∫

Ω

m(x)v2(x)dx > 0

⎫⎬
⎭ .

We know from [13] that the constant λ∗ > 0, but λ∗ may be zero. In fact, the integral
∫
Ω

m(x)dx plays

important roles on the sign of λ∗ and λ∗ > 0 (λ∗ = 0) if
∫
Ω

m(x)dx < 0 (
∫
Ω

m(x)dx ≥ 0). We are interested

in the positive solutions of (1.1), so we always assume that λ∗ < λ∗ in the rest of the paper.
In (1.1), the coefficient c(x) has a spatial degeneracy and the sign of m(x) may change. We want to

know the influence of heterogeneous environment on the nonlocal dispersal system (1.1). To this end, we
shall consider the sharp spatial patterns of positive solutions. We study the perturbed nonlocal dispersal
equation ∫

Ω

J(x, y)[u(y) − u(x)]dy = −λm(x)u(x) + [c(x) + ε]up(x) in Ω̄, (1.2)

where ε > 0 is a positive parameter. In this case, the sufficiently large constant is an upper solution of
(1.2). On the other hand, we can construct a lower solution by the argument in [6,14]. Thus, we know
that (1.2) admits a unique positive solution uε ∈ C(Ω̄) for every λ > λ∗, see [13].

Now we are ready to state the main results. We first consider the asymptotic profiles for positive
solutions of (1.2) as ε → 0.

Theorem 1.1. Assume that λ > λ∗ and ε > 0. Let uε(x) be the positive solution of (1.2), then we know
that

uε1(x) ≥ uε2(x) in Ω̄
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for ε2 ≥ ε1 > 0. Moreover, we have the following asymptotic behavior.

(i) If λ∗ < λ < λ∗, then

lim
ε→0+

uε(x) = u(x) uniformly in Ω̄,

where u(x) is the unique positive solution of (1.1).
(ii) If λ > λ∗, then

lim
ε→0+

uε(x) = ∞ uniformly in Ω̄.

Theorem 1.1 gives the asymptotic profiles of positive solutions to (1.2). As ε → 0+, the unique positive
solution uε(x) → ∞ in Ω̄. This is different from the classical problems. Let vε(x) be the positive solution
of reaction-diffusion equation

{
Δu = −λm(x)u + [c(x) + ε]up(x) in Ω,
∂u
∂ν = 0 on ∂Ω,

here we assume further that Ω is smooth and ν is the unit outward normal to ∂Ω. It follows from [7,8]
that under some assumptions on λ, vε(x) tends to infinity only in Ω0 and is still bounded in Ω̄ \ Ω̄0 as
ε → 0+.

To reveal the complex influence of heterogeneous environment on the nonlocal dispersal systems, we
will further investigate the sharp spatial patterns of positive solutions.

Theorem 1.2. Assume that uε(x) is the positive solution of (1.2) for λ > λ∗ and ε > 0. Set vε(x) =
ε

1
p−1 uε(x) and ωε(x) = ε

1
p(p−1) uε(x), we have the following results.

(i) If λ∗ < λ < λ∗, then

lim
ε→0+

vε(x) = lim
ε→0+

ωε(x) = 0 uniformly in Ω̄.

(ii) If λ > λ∗, then

lim
ε→0+

vε(x) = θ(x)uniformly inΩ̄0 (1.3)

and

lim
ε→0+

ωε(x) =

⎡
⎢⎣

∫
Ω0

J(x, y)θ(y)dy

c(x)

⎤
⎥⎦

1
p

locally uniformly in Ω̄ \ Ω̄0,

where θ ∈ C(Ω̄0) satisfies θ(x) > 0 in Ω̄0 and
∫

Ω0

J(x, y)θ(y)dy − d(x)θ(x) = −λm(x)θ(x) + θp(x) in Ω̄0. (1.4)

We know that the positive solutions of (1.2) always tend to ∞ in Ω̄ as ε → 0. From Theorem 1.2,
we obtain that the asymptotic profiles in degeneracy domain are different from the domain without
degeneracy. The results are different from the case of classical diffusion problems, see [7].

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries. In Sect. 3, we
prove the main results.
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2. Preliminaries

In this section, we give some preliminaries, which will be used in the proof of the main theorems. To do
this, we consider the nonlocal dispersal equation∫

Ω

J(x, y)[u(y) − u(x)]dy = −λm(x)u(x) + up(x) in Ω̄. (2.1)

In (2.1), there is no spatial degeneracy appears. It follows from [13] that there exists a unique continuous
positive solution û(x) for λ > λ∗.

We first give an upper estimate for vε(x) = ε
1

p−1 uε(x). Since uε ∈ C(Ω̄) is the positive solution of
(1.2), we have ∫

Ω

J(x, y)[vε(y) − vε(x)]dy = −λm(x)vε(x) +
[
c(x)
ε

+ 1
]

vp
ε (x) in Ω̄. (2.2)

Lemma 2.1. Let û(x) be the positive solution of (2.1) for λ > λ∗, then we have

0 < vε(x) ≤ û(x) in Ω̄ (2.3)

for ε > 0.

Proof. Note that∫

Ω

J(x, y)[vε(y) − vε(x)]dy + λm(x)vε(x) − vp
ε (x) =

c(x)
ε

vp
ε (x) ≥ 0 in Ω̄,

we have vε(x) is a lower solution to (2.1). By the uniqueness of positive solutions and upper-lower solutions
argument, we know that (2.3) holds. �

Consider the nonlocal dispersal equation∫

Ω0

J(x, y)u(y)dy − d(x)u(x) = −λm(x)u(x) + up(x) in Ω̄0, (2.4)

where d(x) =
∫
Ω

J(x − y)dy. We know that (2.4) admits a unique continuous positive solution ū(x) for

λ > λ∗, see [13]. It is similar to Lemma 2.1 that the following result holds.

Lemma 2.2. Let ū(x) be the positive solution of (2.4) for λ > λ∗, then we have

vε(x) ≥ ū(x) > 0 in Ω̄0 (2.5)

for ε > 0.

Proposition 2.3. Assume that λ > λ∗. Then, there exists δ > 0 which is independent of ε such that

d(x) − λm(x) + vp−1
ε (x) ≥ δ in Ω̄0

for ε > 0.

Proof. We know from (2.2) that∫

Ω0

J(x, y)vε(y)dy ≤
∫

Ω

J(x, y)vε(y)dy = [d(x) − λm(x) + vp−1
ε (x)]vε(x) in Ω̄0

and so
d(x) − λm(x) + vp−1

ε (x) ≥ 0 in Ω̄0.
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Then, it follows from Lemmas 2.1–2.2 that∫

Ω0

J(x, y)ū(y)dy ≤ [d(x) − λm(x) + vp−1
ε (x)]û(x) in Ω̄0.

Since û(x) > 0 and ū(x) > 0 in Ω̄0, we complete the proof. �

3. Proof of Theorems 1.1–1.2

In this section, we will prove the main theorems. We first prove claim (i) of Theorem 1.1. Since there exists
a unique positive solution to (1.2), a simple upper-lower solutions argument shows that uε1(x) ≥ uε2(x)
in Ω̄ provided ε2 ≥ ε1 > 0. Thus, there exists 0 < u1(x) ≤ u(x) such that

lim
ε→0+

uε(x) = u1(x)

for any given x ∈ Ω̄. Applying dominated convergence theorem, we know that∫

Ω

J(x, y)[u1(y) − u1(x)]dy = −λm(x)u1(x) + c(x)up
1(x). (3.1)

But (1.1) admits a unique positive solution u(x) for λ∗ < λ < λ∗. In view of (1.1) and (3.1), we know
that u1(x) = u(x) in Ω̄. Then, it follows from Dini’s theorem that

lim
ε→0+

uε(x) = u(x) uniformly in Ω̄.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (i) Since λ∗ < λ < λ∗, the conclusion is followed by (i) of Theorem 1.1.
(ii) Set

h(x) = d(x) − λm(x) + vp−1
ε (x),

we know from Proposition 2.3 that h(x) ≥ δ in Ω̄0 for ε > 0. Take x1, x2 ∈ Ω̄0, without loss of generality,
we assume that vε(x1) ≥ vε(x2). Then, by (2.2), we get∫

Ω

[J(x1, y) − J(x2, y)]vε(y)dy

= [d(x1) − λm(x1) + pv̂p−1][vε(x1) − vε(x2)]

+ [(d(x1) − λm(x1)) − (d(x2) − λm(x2))]vε(x2)

≥ [d(x1) − λm(x1) + vp−1
ε (x2)][vε(x1) − vε(x2)]

+ [(d(x1) − λm(x1)) − (d(x2) − λm(x2))]vε(x2)

≥ δ[vε(x1) − vε(x2)] + [(d(x1) − λm(x1)) − (d(x2) − λm(x2))]vε(x2),

where v̂ is between vε(x1) and vε(x2). In view of Lemma 2.1, there holds

|vε(x1) − vε(x2)|

≤1
δ

∫

Ω

|J(x1, y) − J(x2, y)|û(y)dy

+
maxΩ̄0

û(x)
δ

[|d(x1) − d(x2)| + λ|m(x1) − m(x2)|]
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for any x1, x2 ∈ Ω̄0. It follows from (2.3) and (2.5) that vε(x) is uniformly bounded in Ω̄0. Subject to a
subsequence, a simple compactness argument gives that there exists v1 ∈ C(Ω̄0) such that v1(x) > 0 in
Ω̄0 and

lim
ε→0+

vε(x) = v1(x) uniformly in Ω̄0. (3.2)

On the other hand, since∫

Ω

J(x, y)vε(y)dy − d(x)vε(x) + λm(x)vε(x) =
[
c(x)
ε

+ 1
]

vp
ε (x) in Ω̄,

we know from (2.3) that[
c(x)
ε

+ 1
]

vp
ε (x) ≤

∫

Ω

J(x, y)û(y)dy + d(x)û(x) + λ|m(x)|û(x)

≤
∫

Ω

J(x, y)û(y)dy + d(x)û(x) + λ|m(x)|û(x)

≤
[
2max

Ω̄
d(x) + λ max

Ω̄
|m(x)|

]
max

Ω̄
û(x).

Thus, we have

vε(x) ≤
[

[2maxΩ̄ d(x) + λ maxΩ̄ |m(x)|]maxΩ̄ û(x)
c(x)

ε + 1

] 1
p

and
lim

ε→0+
vε(x) = 0 locally uniformly in Ω̄ \ Ω̄0. (3.3)

In view of (3.2) and (3.3), by dominated convergence theorem, we know that∫

Ω0

J(x, y)v1(y)dy − d(x)v1(x) = −λm(x)v1(x) + vp
1(x) in Ω̄0. (3.4)

But (3.4) admits a unique continuous positive solution for λ > λ∗, and we necessarily have

v1(x) = θ(x) in Ω̄0,

where θ(x) is the unique positive solution of (1.4). This also implies that (1.3) holds for the entire original
sequences.

On the other hand, we can see that ωε(x) = ε
1

p(p−1) uε(x) satisfies∫

Ω

J(x, y)[ωε(y) − ωε(x)]dy = −λm(x)ωε(x) + [c(x) + ε]
ωp

ε (x)
ε1/p

in Ω̄

and so ∫

Ω

J(x, y)[vε(y) − vε(x)]dy = −λm(x)vε(x) + [c(x) + ε]ωp
ε (x) in Ω̄.

Then, we get

ωε(x) =

⎡
⎣

∫
Ω

J(x, y)[vε(y) − vε(x)]dy + λm(x)vε(x)

c(x) + ε

⎤
⎦

1
p

.
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Again by (3.2)–(3.3), we have

lim
ε→0+

ωε(x) =

⎡
⎢⎣

∫
Ω0

J(x − y)θ(y)dy

c(x)

⎤
⎥⎦

1
p

locally uniformly in Ω̄ \ Ω̄0. (3.5)

�

If λ > λ∗, by (3.2) and (3.5), we know that

lim
ε→0+

uε(x) = ∞ uniformly in Ω̄0.

and
lim

ε→0+
uε(x) = ∞ locally uniformly in Ω̄ \ Ω̄0.

Note that ∫

Ω0

J(x, y)uε(y)dy ≤
∫

Ω

J(x, y)uε(y)dy

= [d(x) − λm(x) + [c(x) + ε]up−1
ε (x)]uε(x) in Ω̄,

we can see that
lim

ε→0+
uε(x) = ∞ uniformly in Ω̄.

This completes the proof of Theorem 1.1.
In this paper, we study the sharp spatial patterns of positive solutions for nonlocal dispersal equations

if c(x) has a spatial degeneracy. Similarly, if c(x) > 0 in Ω̄, we have the following result.

Theorem 3.1. Assume that (A1) and (A3) hold. Assume further that c(x) > 0 in Ω̄. Let uε(x) be the
positive solution of (1.2), then we know that

uε1(x) ≥ uε2(x) in Ω̄

for ε2 ≥ ε1 > 0. Moreover, we have

lim
ε→0+

uε(x) = u(x) uniformly in Ω̄,

where u(x) is the unique positive solution of (1.1).

At the end of this section, we consider the nonlocal dispersal equations⎧⎨
⎩

∫
RN

J(x, y)u(y)dy − u(x) = −λm(x)u(x) + c(x)up(x), x ∈ Ω̄,

u(x) = 0, x ∈ R
N \ Ω̄.

(3.6)

and ⎧⎨
⎩

∫
RN

J(x, y)u(y)dy − u(x) = −λm(x)u(x) + [c(x) + ε]up(x), x ∈ Ω̄,

u(x) = 0, x ∈ R
N \ Ω̄.

(3.7)

In (3.6) and (3.7), we assume that the kernel function J satisfies∫

Ω

J(x, y)dy ≤ 1and
∫

Ω

J(x, y)dy �≡ 1inΩ̄. (3.8)

Then, we can see that the dispersal takes place in R
N , but we impose that u(x) vanishes outside Ω̄, which

is called homogeneous nonlocal Dirichlet boundary condition [3]. For heterogeneous nonlocal dispersal
(1.1) and (3.6), m(x) may change sign and the precisely upper bound of λ∗ is unknown. The study of
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sharp spatial patterns and asymptotic profiles is different from the case that m(x) is constant, see [10,12].
Let us define

λ̂∗ = inf
u∈H(Ω)

∫
Ω

u2(x)dx − ∫
Ω

∫
Ω

J(x, y)u(x)u(y)dxdy

∫
Ω

m(x)u2(x)dx
,

λ̂∗ = inf
u∈H(Ω0)

∫
Ω0

u2(x)dx − ∫
Ω0

∫
Ω0

J(x, y)u(x)u(y)dxdy

∫
Ω0

m(x)u2(x)dx
,

where

H(Ω) =

⎧⎨
⎩v ∈ L2(Ω)

∣∣∣
∫

Ω

m(x)v2(x)dx > 0

⎫⎬
⎭ .

We know from [14] that λ̂∗ ≥ λ̂∗ > 0.
The techniques and ideas of (1.1)–(1.2) in [13,15] can be modified to treat (3.6). We have the following

existence and uniqueness theorems.

Theorem 3.2. Assume that (3.8) holds. Then, (3.6) admits a unique positive solution if and only if
λ̂∗ < λ < λ̂∗.

Theorem 3.3. Assume that (3.8) holds. Then, (3.7) admits a unique positive solution if and only if λ > λ̂∗.

Similarly to Theorem 1.2, we can obtain the sharp patterns of positive solution to (3.7).

Theorem 3.4. Assume that (3.8) holds. Let uε(x) be the positive solution of (3.7) for λ > λ∗ and ε > 0.
Set vε(x) = ε

1
p−1 uε(x) and ωε(x) = ε

1
p(p−1) uε(x), we have the following results.

(i) If λ̂∗ < λ < λ̂∗, then

lim
ε→0+

vε(x) = lim
ε→0+

ωε(x) = 0 uniformly in Ω̄.

(ii) If λ > λ̂∗, then

lim
ε→0+

vε(x) = θ̂(x) uniformly in Ω̄0

and

lim
ε→0+

ωε(x) =

⎡
⎢⎣

∫
Ω0

J(x, y)θ̂(y)dy

c(x)

⎤
⎥⎦

1
p

locally uniformly in Ω̄ \ Ω̄0,

where θ̂ ∈ C(Ω̄0) satisfies θ̂(x) > 0 in Ω̄0 and∫

Ω0

J(x, y)θ̂(y)dy − θ̂(x) = −λm(x)θ̂(x) + θ̂p(x) in Ω̄0.
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