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Abstract. We consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely
isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary.
The set of governing integral equations is derived for the most general conditions, namely the presence of both normal
and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of
the derivations, two different methods were used to obtain governing integral equations: generalized method of images and
utilization of the reciprocal theorem. Both methods gave the same results. Axisymmetric coaxial case of interaction between
a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of
the final results are presented in terms of elementary functions.
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1. Introduction

Mechanical characteristics of solids and surfaces are relevant in multiple areas of science and engineering
applications ranging from structural mechanics to bioengineering to corrosion. The need to probe mechan-
ical behavior of surfaces have spurred the development of multiple characterization techniques ranging
from micro- and nanoindentation [1] to scanning probe microscopies including atomic force acoustic mi-
croscopy [2–11] and frequency tracking [12] and band excitation [13–17] dynamic probes. Measured in
these methods are the tip-surface forces as a function of indentation depth (nanoindentation), or resonance
frequency shifts (AFAM) directly related to the tip-surface stiffness.

Interpretation of these data in terms of materials functionalities requires the known functional rela-
tionships between the force acting on the probe and measured displacement or resonant frequency shift,
i.e., relevant contact mechanics model.

Voluminous and significant research has been published by the authors (with other co-authors) [2,18–
27], where the results of theoretical and experimental investigations were presented on validation of
Hertzian type solutions for the cases of nanoindentation and their practical applications to various types
of scanning probe microscopy and piezoresponse force microscopy. A variety of materials were studied
both inorganic and biological [18,19]. The theoretical basis for the research is given [25], where the exact
solution in terms of elementary functions was obtained for an arbitrary point force and point source acting
on the boundary of a piezoelectric transversely isotropic half-space. Nanoindentation of flat, conical and
spherical indenters [24,26] was studied in the cases of normal as well as tangential (frictional) contact.
The more complicated case of flat and non-flat indenters of arbitrary planform is presented [27]. The
investigation of the weak and strong indentations and their applications to piezoresponse force microscopy
can be found in [22].

However, these analyses are limited to the surfaces of uniform materials of various symmetries and
dissimilar piezoelectric or thermal properties and generally allow only for the certain deviations of surface
geometry from planar. The effect of this topographic cross talk on SPM imaging is well explored [28].
At the same time, realistic materials can contain below-surface imperfections such as cracks, voids, and
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inclusions. A number of studies have visualized such below-surface objects [29–36]; however, the general
analytical theory for these imaging modes is generally missing and the studies are limited to finite element
models [34,37,38].

The next section is devoted to formulation of the problem. It is based on fundamental results [39],
namely the main potential functions for a general contact problem and the main potential functions for
a crack, located inside a transversely isotropic elastic half-space in a plane, parallel to the boundary. We
also use the Green’s function due to the action of an arbitrary point force, acting on the boundary of the
half-space.

The third section provides the derivation of the governing integral equations of the problem. The
procedure is executed in two different ways: the method of images and the use of reciprocal theorem.
Both derivations give the same results, which proves their correctness. In the general case of a punch
interacting with a crack, we need to solve four integral equations, two of them real and the other two in
complex form. In the case of the general punch interacting with an inclusion, the problem reduces to two
integral equations.

The last section provides the simplest example: an axisymmetric problem of a flat smooth circular
punch interacting with a circular inclusion of different radius. This case is chosen because here we need
to solve just one equation, which is solvable exactly and in terms of elementary functions. The integrals
involved are very non-trivial, so the necessary details of integration are presented in “Appendix.”

2. Formulation of the problem

We consider a transversely isotropic elastic half-space z ≥ 0 with plane of isotropy being parallel to the
boundary z = 0. A rigid punch of general shape is pressed against the boundary, creating the domain of
contact S, which might be known in advance or unknown and be defined from the condition that stresses
vanish at the boundary of S. In general case, the punch might exert both normal σ and tangential τ
stresses on the boundary of the half-space.

Further, there exists an arbitrary flat crack Sc in the plane z = c. The crack faces might be subjected
to arbitrary normal tractions σc, symmetric with respect to the plane of the crack, as well as tangential
tractions τc, which act antisymmetrically with respect to the plane of the crack, namely in opposite
directions on the crack faces. In the case of a rigid inclusion filling up the crack, we shall have normal
discontinuity

wc =
1
2

[w (ρ, φ, c + 0) − w (ρ, φ, c − 0)] for (ρ, φ) ⊆ Sc (1)

and complex tangential discontinuity

uc =
1
2

{ux (ρ, φ, c + 0) − ux (ρ, φ, c − 0) + i [uy (ρ, φ, c + 0) − uy (ρ, φ, c − 0)]} for (ρ, φ) ⊆ Sc (2)

prescribed on the crack faces. From the above consideration, it is obvious that the punch will interact
with the crack (inclusion), so we need to derive governing integral equations describing this interaction
and to solve them. It was shown in [39] that the most general solution for any transversely isotropic body
can be expressed in terms of three harmonic functions Fk, k = 1, 2, 3 satisfying the following differential
equations:

∂2F

∂x2
+

∂2F

∂y2
+ γ2

k

∂2F

∂z2
= 0 (3)

where γk are constants defined in [39] as

γ1,2 =

√(√
C11C33 − C13

) (√
C11C33 + C13 + 2C44

)±
√(√

C11C33 + C13

) (√
C11C33 − C13 − 2C44

)

2
√

C11C44
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(4)

γ3 =
√

C44/C66 (5)

and C11, C13, C33, C44 and C66 are the transversely isotropic elastic constants of the material of the
half-space. After the functions Fk are defined, the field of displacements can be expressed as follows [39]

u = ux + iuy = Λ (F1 + F2 + iF3) , w = m1
∂F1

∂z
+ m1

∂F2

∂z
(6)

Here
Λ =

∂

∂x
+ i

∂

∂y
, (7)

and the constants m1 and m2 are defined as:

m1 =
C11γ

2
1 − C44

C13 + C44
, m2 =

C11γ
2
2 − C44

C13 + C44
(8)

The stresses can be defined as follows [39]

σ1 = σx + σy = 2C66
∂2

∂z2
{[

γ2
1 − (m1 + 1) γ2

3

]
F1 +

[
γ2
2 − (m2 + 1) γ2

3

]
F2

}
(9)

σ2 = σx − σy + 2iτxy = 2C66Λ2 (F1 + F2 + iF3) (10)

σzz = C44
∂2

∂z2
[
(m1 + 1) γ2

1F1 + (m1 + 1) γ2
2F2

]
(11)

τz = τzx + iτyz = C44Λ
∂

∂z
[(m1 + 1) F1 + (m1 + 1) F2 + iF3] (12)

In the case of a crack inside a transversely isotropic half-space and free of stresses on the boundary the
main potential functions are derived in section 3.10 of [39]:

F1c = − γ1
2π (m1 − 1)

[
Φ(z1 − c1) +

1
γ1 − γ2

(2γ2Φ(z1 + c2) − (γ1 + γ2) Φ (z1 + c1))
]

− 1
4π (m1 − 1)

[
X(z1 − c1) +

1
γ1 − γ2

(−2γ1X(z1 + c2) + (γ1 + γ2) X (z1 + c1))
]

, (13)

F2c = − γ2
2π (m2 − 1)

[
Φ(z2 − c2) +

1
γ1 − γ2

(−2γ1Φ(z2 + c1) + (γ1 + γ2) Φ (z2 + c2))
]

− 1
4π (m2 − 1)

[
X(z2 − c2) +

1
γ1 − γ2

(2γ2X(z2 + c1) − (γ1 + γ2) X (z2 + c2))
]

, (14)

F3c =
i

4π
[Y (z3 − c3) − Y (z3 + c3)] , (15)

Here,

Φ (z) =
∫∫

Sc

wcdSc

R (M,N)
, zk = z/γk, ck = c/γk, for k = 1, 2, 3 (16)

X (z) = Λ
∫∫

Sc

ln [R (M,N) + z] ūcdSc + Λ̄
∫∫

Sc

ln [R (M,N) + z] ucdSc, (17)

Y (z) = Λ
∫∫

Sc

ln [R (M,N) + z] ūcdSc − Λ̄
∫∫

Sc

ln [R (M,N) + z] ucdSc, (18)

where R(M,N) stands for the distance between two points: M with polar coordinates (ρ, φ, z) and N
with coordinates (ρ0, φ0, 0); the overbar, here and in the text to follow, denotes the complex conjugate
value, e.g., Λ̄ = ∂/∂x − i∂/∂y; Sc is the surface of the crack and dSc = ρ0dρ0dφ0. One can verify that
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the set of quasi-harmonic functions (13–15) satisfy the differential equation (3), and using (6–12), these
set of quasi-harmonic functions (13–15) provides for normal displacement discontinuities on the crack
faces to be equal wc and the tangential displacement discontinuities to be equal uc; they also give us the
half-space boundary z = 0 free of tractions.

The normal contact problem is usually posed as mixed boundary value problem with normal displace-
ment given inside the domain of contact, and the rest of the half-space boundary is presumed to be free of
tractions. The tangential contact problem is posed in a similar manner, except that the normal tractions
are presumed absent all over the plane z = 0, while tangential displacements are prescribed inside the
domain of contact and tangential tractions vanish outside that domain. In order to accommodate both
cases of contact problems, we introduce the following quasi-potential functions [39]:

F1p =
Hγ1

m1 − 1

⎡
⎣1

2
γ2

⎛
⎝Λ

∫∫

S

{z1 ln [R (M1, N) + z1] − R (M1, N)} τ̄ (ρ0, φ0) ρ0dρ0dφ0

+ Λ̄
∫∫

S

{z1 ln [R (M1, N) + z1] − R (M1, N)} τ (ρ0, φ0) ρ0dρ0dφ0

⎞
⎠

+
∫∫

S

ln [R (M1, N) + z1] σ (ρ0, φ0) ρ0dρ0dφ0

⎤
⎦ (19)

F2p =
Hγ2

m2 − 1

⎡
⎣1

2
γ1

⎛
⎝Λ

∫∫

S

{z2 ln [R (M2, N) + z2] − R (M2, N)} τ̄ (ρ0, φ0) ρ0dρ0dφ0

+Λ̄
∫∫

S

{z2 ln [R (M2, N) + z2] − R (M2, N)} τ (ρ0, φ0) ρ0dρ0dφ0

⎞
⎠

+
∫∫

S

ln [R (M2, N) + z2] σ (ρ0, φ0) ρ0dρ0dφ0

⎤
⎦ (20)

F3p =
iγ3

4πC44

⎡
⎣Λ̄
∫∫

S

{z3 ln [R (M3, N) + z3] − R (M3, N)} τ (ρ0, φ0) ρ0dρ0dφ0

−Λ
∫∫

S

{z3 ln [R (M3, N) + z3] − R (M3, N)} τ̄ (ρ0, φ0) ρ0dρ0dφ0

⎤
⎦ (21)

Here σ and τ are the yet unknown normal and tangential stresses under the punch. The superposi-
tion of (13–15) and (19–21) yields the main quasi-potential functions, from which the complete field of
displacements and stresses in the whole half-space can be obtained by simple differentiation of

F1 = F1c + F1p, F2 = F2c + F2p, F3 = F3c + F3p, (22)

according to (6–12). In a similar way, the proper differentiation of (22) yields the necessary governing inte-
gral equations of the specific problems, which can be posed for the punch–crack (inclusion) configuration.
The derivation will be given in the next section.

Yet another approach to the subject problem of this article can be made on the basis of the reciprocal
theorem. In order to use it, we need to recall some basic results from [39]. First, the field of displacements
in the transversely isotropic half-space due to the action of an arbitrary force on its boundary is given by
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u (ρ0, φ0, z) =
γ3

4πC44

[
T

R3
+

q2T̄

R3 (R3 + z3)
2

]
+

Hγ2
m2 − 1

[
γ1
2

(
− T

R2
+

q2T̄

R2 (R2 + z2)
2

)
− Pq

R2 (R2 + z2)

]

+
Hγ1

m1 − 1

[
γ2
2

(
− T

R1
+

q2T̄

R1 (R1 + z1)
2

)
− Pq

R1 (R1 + z1)

]
(23)

w (ρ0, φ0, z) = H

{
−1

2
(
T q̄ + T̄ q

) [ γ2m1

(m1 − 1) R1 (R1 + z1)
+

γ1m2

(m2 − 1) R2 (R2 + z2)

]

+P

[
m1

(m1 − 1) R1
+

m2

(m2 − 1) R2

]}
(24)

Here, P is the normal component of the applied force; T = Tx + iTy is the complex tangential component
of the applied force; and u = ux + iuy is the complex tangential displacement. One can notice some
difference between the formula (23–24) and formula (2.2.9–2.2.10) from [39]; this difference is due to the
fact that here the force is applied at the point with cylindrical coordinates (ρ, φ, 0), while in [39] the force
is applied at the point (ρ0, φ0, 0). The remaining notations are:

q = ρeiφ − ρ0e
iφ0 , H =

(γ1 + γ2) C11

2π (C11C33 − C2
13)

(25)

R2
k = qq̄ + z2k, for k = 1, 2, 3 (26)

We shall also need the following expressions for the stresses

σz (ρ0, φ0, z) = − 1
2π (γ1 − γ2)

[
1
2
γ1γ2

(
T q̄ + T̄ q

)
+ Pz

](
1

R3
1

− 1
R3

2

)
(27)

τz (ρ0, φ0, z) =
γ2

4π (γ1 − γ2)

[
Tz1
R3

1

− T̄ q2 (2R1 + z1)
R3

1 (R1 + z1)
2

]
− γ1

4π (γ1 − γ2)

[
Tz2
R3

2

− T̄ q2 (2R2 + z2)
R3

2 (R2 + z2)
2

]

− 1
4π

[
Tz3
R3

3

− T̄ q2 (2R3 + z3)
R3

3 (R3 + z3)
2

]
+

Pq

2π (γ1 − γ2)

(
1

R3
1

− 1
R3

2

)
(28)

As far as the crack is concerned, we shall need the basic quasi-harmonic functions from Sec. 2.4 and 2.6
of [39]

F1b = − γ1Φ(z1)
2π (m1 − 1)

− X(z1)
4π (m1 − 1)

(29)

F2b = − γ2Φ(z2)
2π (m2 − 1)

− X(z2)
4π (m2 − 1)

(30)

F3b =
i

4π
Y(z3) (31)

where Φ, X, and Y are defined by (16–18).

3. Derivation of the governing integral equations

At this stage of derivation we presume the punch to be of arbitrary shape and the domain of contact S
in general case initially unknown; the crack (or rigid inclusion) is also presumed to be of arbitrary shape
and located in the plane z = c. The derivation of the governing integral equation of the contact problem
by the first method requires substitution of (22) in (6) while taking z = 0. After simplifications we get:
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u (ρ, φ, 0) =
1
2
G1

∫∫

S

τ (ρ0, φ0)
R

dS0 +
1
2
G2

∫∫

S

q2τ̄ (ρ0, φ0)
R3

dS0 − Hα

∫∫

S

σ (ρ0, φ0)
q̄

dS0

+
1
π

γ1γ2
γ1 − γ2

Λ [Φ (c2) − Φ(c1)] +
1
2π

Λ
[
γ2Y(c1) − γ1Y(c2)

γ1 − γ2

]
+

1
2π

ΛY (c3) (32)

w (ρ, φ, 0) = H

⎡
⎣1

2
α

∫∫

S

qτ̄ (ρ0, φ0) + q̄τ (ρ0, φ0)
R2

dS0 +
∫∫

S

σ (ρ0, φ0)
R

dS0

⎤
⎦

+
1
π

[
γ1Φ′ (c1) − γ2Φ′ (c2)

γ1 − γ2

]
+

1
2π

[
X′ (c2) − X′ (c1)

γ1 − γ2

]
(33)

Here dS0 = ρ0dρ0dφ0; we used the property m1m2 = 1; the notations Φ′ and X′ are understood as
derivatives with respect to the argument in the parentheses, and the following notations were introduced

R2 = qq̄, G1 = β + γ1γ2H, G2 = β − γ1γ2H,

β =
γ3

2πC44
, α =

(C11C33)
1/2 − C13

C11 (γ1 + γ2)
=

H (γ2m1 − γ1)
m1 − 1

(34)

In the case of an interaction of an arbitrary punch with rigid inclusion, where all the displacement
discontinuities on the crack faces are known, the two governing integral equations (32–33) are sufficient,
because they contain only two unknowns: tractions under the punch σ and τ . One can also note that the
first line in (32–33) represents the usual integral equations for the bonded punch, while the second line
reflects the influence of the crack or inclusion.

In order to confirm the correctness of Eqs. (32–33), we undertake a derivation using an alternative
method, namely the reciprocity theorem. In order to apply this theorem, we recast the punch–crack
configuration as being subjected to two different sets of loading: the first is the actual system, characterized
by normal σ and tangential τ tractions under the punch and the displacements discontinuities uc and
wc on the crack faces; the alternative system consists of a unit normal force applied to the boundary of
the half-space at the point (ρ, φ, 0) and normal stress p and complex tangential tractions t = tx + ity
that are applied to the crack faces in such a way that the crack close up and the whole system behaves
like a uniform transversely isotropic half-space, so that the formulae (23–28) can be used to describe the
resulting stresses and displacements.

The reciprocal theorem states that if we have two system of forces, acting on the same configuration
and corresponding two sets of displacements, then the work of the first system of forces on the second set
of displacements shall be equal to the work of the second system of forces on the first set of displacements.
In the case of a unit normal force we arrive at the following equation

w + 2
∫∫

Sc

pwcdSc + 2
∫∫

Sc

(txuxc + tyuyc) dSc =
∫∫

S

σw1dS0 +
∫∫

S

(txux1 + tyuy1) dS0 (35)

Here w1, ux1 and uy1 are, respectively, the normal displacement and components of the tangential dis-
placements on the surface of the half-space due to the action of a unit normal force. The factor 2 appears
on the left-hand side of (35) due to the definition of wc and uc in (1–2) as half of the relevant displacement
discontinuity. We remind also that S is the domain of contact and Sc is the crack domain.

Now we can find from (23–28)

p =
c

2π (γ1 − γ2)

(
1

R3
1c

− 1
R3

2c

)
, t = tx + ity = − q

2π (γ1 − γ2)

(
1

R3
1c

− 1
R3

2c

)
(36)

w1 =
H

R
, u1 = ux1 + iuy1 =

Hα

q̄
(37)
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and the following new notations were introduced

R1c =
√

R2 + c21, R2c =
√

R2 + c22, (38)

We also use the identities

txuxc + tyuyc = Re (tūc) , τxux1 + τyuy1 = Re (τ ū1) (39)

Here Re denotes the real part of a complex expression. Substitution of (36–37) and (39) in (35) yields

w +
c

π (γ1 − γ2)

∫∫

Sc

(
1

R3
1c

− 1
R3

2c

)
wcdSc − 1

π (γ1 − γ2)
Re
∫∫

Sc

(
1

R3
1c

− 1
R3

2c

)
qūcdSc

= H

⎛
⎝
∫∫

S

σ

R
dS0 + αRe

∫∫

S

τ

q̄
dS0

⎞
⎠ (40)

Comparison of (40) with (33) shows that they are identical.
The alternative derivation of (32) is more involved. We apply a unit concentrated force in 0x direction

at the point (ρ, φ, 0), and we apply the normal px and tangential qx and qy tractions at the crack faces
in such a way that there is no displacement discontinuities and the whole system behaves like an uncut
half-space, so that the formulae (23–28) become applicable. The reciprocal theorem in this case gives

ux + 2
∫∫

Sc

pxwcdSc + 2
∫∫

Sc

(qxuxc + qyuyc) dSc =
∫∫

S

(τxuxTx
+ τyuyTx

) dS0 +
∫∫

S

σwTx
dS0 (41)

Here uxTx
and uyTx

denote the tangential displacements in the 0x and 0y directions at the point (ρ0, φ0, 0),
respectively, and wTx

stands for the normal displacement at the same point due to the unit force Tx,
applied at the point (ρ, φ, 0). In a similar manner, we can apply a unit concentrated force in 0y direction
at the point (ρ, φ, 0) and we apply the normal py and tangential sx and sy tractions at the crack faces
in such a way that there is no displacement discontinuities and the whole system behaves like an uncut
half-space, so that the formulae (23–28) become applicable. The reciprocal theorem in this case gives

uy + 2
∫∫

Sc

pywcdSc + 2
∫∫

Sc

(sxuxc + syuyc) dSc =
∫∫

S

(
τxuxTy

+ τyuyTy

)
dS0 +

∫∫

S

σwTy
dS0 (42)

The interpretation of the notations in (42) is similar to that of (41). We can find from (23–28)

px + ipy = − γ1γ2q

2π (γ1 − γ2)

(
1

R3
1c

− 1
R3

2c

)
(43)

qx = − γ2
4π (γ1 − γ2)

[
c1

R3
1c

− Re
q2 (2R1c + c1)
R3

1c (R1c + c1)
2

]
+

γ1
4π (γ1 − γ2)

[
c2

R3
2c

− Re
q2 (2R2c + c2)
R3

2c (R2c + c2)
2

]

+
1
4π

[
c3

R3
3c

− Re
q2 (2R3c + c3)
R3

3c (R3c + c3)
2

]

qy = − γ2
4π (γ1 − γ2)

[
−Im

q2 (2R1c + c1)
R3

1c (R1c + c1)
2

]
+

γ1
4π (γ1 − γ2)

[
−Im

q2 (2R2c + c2)
R3

2c (R2c + c2)
2

]

+
1
4π

[
−Im

q2 (2R3c + c3)
R3

3c (R3c + c3)
2

]
(44)
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Hereafter, the notation Im stands for the imaginary part of a complex expression.

sx = − γ2
4π (γ1 − γ2)

[
−Im

q2 (2R1c + c1)
R3

1c (R1c + c1)
2

]
+

γ1
4π (γ1 − γ2)

[
−Im

q2 (2R2c + c2)
R3

2c (R2c + c2)
2

]

+
1
4π

[
−Im

q2 (2R3c + c3)
R3

3c (R3c + c3)
2

]
(45)

sy = − γ2
4π (γ1 − γ2)

[
c1

R3
1c

+ Re
q2 (2R1c + c1)
R3

1c (R1c + c1)
2

]
+

γ1
4π (γ1 − γ2)

[
c2

R3
2c

+ Re
q2 (2R2c + c2)
R3

2c (R2c + c2)
2

]

+
1
4π

[
c3

R3
3c

− Re
q2 (2R3c + c3)
R3

3c (R3c + c3)
2

]
(46)

Now we need to combine two equations (41–42) into one by multiplying (42) by imaginary unit i and
adding the result to (41). We use the following identity.

(qx + isx) uxc + (qy + isy) uyc

=
1
2

[(qx + isx − iqy + sy) (uxc + iuyc) + (qx + isx + iqy − sy) (uxc − iuyc)] (47)

We also notice that sx = qy, uxc + iuyc = uc and uxc − iuyc = ūc. The transformation of the right-hand
sides in (41) and (42) is done in a similar manner. The substitution of (44–46) in (47) and following
simplification allows us to arrive at the result of unification of (41) with (42) as follows

u − γ1γ2
π (γ1 − γ2)

∫∫

Sc

(
1

R3
1c

− 1
R3

2c

)
qwcdSc +

∫∫

Sc

[
1

γ1 − γ2

(
−γ2c1

R3
1c

+
γ1c2
R3

2c

)
+

c3
R3

3c

]
uc

2π
dSc

+
∫∫

Sc

[
1

γ1 − γ2

(
γ2 (2R1c + c1)
R3

1c (R1c + c1)
2 − γ1 (2R2c + c2)

R3
2c (R2c + c2)

2

)
+

(2R3c + c3)
R3

3c (R3c + c3)
2

]
q2ūc

2π
dSc

=
1
2
G1

∫∫

S

τ

R
dS +

1
2
G2

∫∫

S

q2τ̄

R3
dS − Hα

∫∫

S

qσ

R2
dS (48)

The comparison of (48) with (32) shows that they are identical, which proves correctness of our derivation.
In the case of interaction of a punch with inclusion, where uc and wc are known, the two governing
equations above are sufficient. In the case of the interaction of a punch with a loaded crack, where the
loading is known and the crack face displacement discontinuities are not known, two additional equations
need to be derived. The derivation of the first equation requires substitution of (22) in (11), while taking
z = c. After proper simplification we get

σz (c) =
1

4πH

⎧⎨
⎩Δ

∫∫

S

wc

R
dS +

1
(γ1 − γ2)

2 [(γ1 + γ2) (γ1Φ′′ (2c1) + γ2Φ′′ (2c2)) − 4γ1γ2Φ′′ (c1 + c2)]

+
γ1 + γ2

2 (γ1 − γ2)
2 [2X′′ (c1 + c2) − X′′ (2c1) − X′′ (2c2)]

}
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− 1
2π (γ1 − γ2)

⎧⎨
⎩c

∫∫

S

(
1

R3
1c

− 1
R3

2c

)
σ (ρ0, φ0) ρ0dρ0dφ0

+ γ1γ2

∫∫

S

(
1

R3
1c

− 1
R3

2c

)
Re [q̄τ (ρ0, φ0)] ρ0dρ0dφ0

⎫⎬
⎭ (49)

The notations Φ′′ and X′′ denote second derivative with respect to the argument in the parentheses.
Derivation of the second equation requires substitution of (22) in (12) while taking z = c, which yields

τz (c) =
1

2π2 (G2
1 − G2

2)

⎡
⎣G1Δ

∫∫

Sc

uc

R
dSc + G2Λ2

∫∫

Sc

ūc

R
dSc

⎤
⎦

+
1

4π (γ1 − γ2)

⎡
⎣
∫∫

S

(
γ1 (2R2c + c2)
R3

2c (R2c + c2)
2 − γ2 (2R1c + c1)

R3
1c (R1c + c1)

2

)
τ̄ (ρ0, φ0) q2ρ0dρ0dφ0+

+
∫∫

S

(
γ2c1
R3

1c

− γ1c2
R3

2c

)
τ (ρ0, φ0) ρ0dρ0dφ0 + 2

∫∫

S

(
q

R3
2c

− q

R3
1c

)
σ (ρ0, φ0) ρ0dρ0dφ0

⎤
⎦

− 1
4π

⎡
⎣c3

∫∫

S

τ (ρ0, φ0)
R3

3c

ρ0dρ0dφ0 +
∫∫

S

(2R3c + c3)
R3

3c (R3c + c3)
2 τ̄ (ρ0, φ0) q2ρ0dρ0dφ0

⎤
⎦

+
γ1 + γ2

4π2H (γ1 − γ2)
2 Λ [Φ′ (2c1) + Φ′ (2c2) − 2Φ′ (c1 + c2)] +

ΛY ′ (2c3)
4π2 (G1 + G2)

+
1

4π2 (γ1 − γ2)
2 (G1 − G2)

Λ {4γ1γ2X′ (c1 + c2) − (γ1 + γ2) [γ2X′ (2c1) + γ1X′ (2c2)]} (50)

In simplifications of (49–50) the following identities were used.
m1 − 1
m1 + 1

= 2πHC44 (γ1 − γ2) =
1 − m2

1 + m2
, γ3 = πC44 (G1 + G2) (51)

Presuming that the normal tractions on the crack faces are prescribed as σc and the tangential tractions
are equal τc, the two additional governing equations will have the form

σz (c) = −σc, τz (c) = −τc (52)

In the case of a circular crack and a circular punch, all the equations are solvable in quadratures and
majority of integrals involved are computable in terms of elementary functions. We demonstrate the
procedure in the next section.

4. Example: interaction of a circular punch with a circular inclusion

As an illustration we consider the axisymmetric case of the interaction of a smooth flat circular punch
of radius rp with a rigid circular inclusion inside a crack of radius a located in the plane z = c. Both the
punch and the circular inclusion are centered along the z-axis. The rigid inclusion produces the following
displacement discontinuities on the crack faces

wc (ρ) = wc0

√
1 − (ρ/a)2, uc = 0 (53)

Here wc0 is a known constant. We remind that wc is equal to a half of the total displacement discontinuity.
Since we presumed the punch to be smooth, this means that it exerts the normal pressure only, and thus
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τ = 0. We can pose two types of problem for the flat punch: we may presume the normal force P to be
given or we may presume that the z- coordinate of the punch in the position of equilibrium to be given as
w = w0 = const. For simplicity sake, we take the second option. The problem now effectively reduces to
just one integral equation (40), from which the normal tractions under the punch can be found; after that,
the remaining equations will give us all other unknown quantities, like tangential displacements under
the punch u and the normal σc and tangential τc tractions between the crack faces and the inclusion.

Equation (40) will now take the form

w +
c

π (γ1 − γ2)

∫∫

Sc

(
1

R3
1c

− 1
R3

2c

)
wcdSc = H

∫∫

S

σ

R
dS0 (54)

Utilization of all our presumptions and substitution of (53) into (54) yields

w0 +
cwc0

πa (γ1 − γ2)

2π∫

0

a∫

0

(
1

R3
1c

− 1
R3

2c

)√
a2 − ρ20ρ0dρ0dφ0 = H

2π∫

0

b∫

0

σ (ρ0)
R

ρ0dρ0dφ0 (55)

For the sake of generality, we presumed the radius of contact to be yet unknown quantity b ≤ rp; as
inclusion would create a bump on the surface of the half-space, when the force P is relatively small, not
all the surface of the punch will get into contact with the half-space, so that the radius of contact b will
be defined from the condition that the normal traction under the punch would vanish at the boundary
of the domain of contact.

The integral in the left-hand side of (55) is computable [39] in terms of elementary functions, namely

w0 +
cwc0 [f (c1) − f (c2)]

πa (γ1 − γ2)
= H

2π∫

0

b∫

0

σ (ρ0)
R

ρ0dρ0dφ0 (56)

Here

f (z) = 2π

[√
a2 − l21

z
− sin−1

(
a

l2

)]
,

l1 = l1 (z) =
1
2

[√
(a + ρ)2 + z2 −

√
(a − ρ)2 + z2

]
,

l2 = l2 (z) =
1
2

[√
(a + ρ)2 + z2 +

√
(a − ρ)2 + z2

]
(57)

Now we need to solve the integral equation (56) with respect to σ. Its solution is well known.

σ (r) = − 1
π2Hr

∂

∂r

b∫

r

tdt√
t2 − r2

∂

∂t

t∫

0

w (ρ) ρdρ√
t2 − ρ2

(58)

where

w (ρ) = w0 +
cwc0 [f (c1) − f (c2)]

πa (γ1 − γ2)
(59)

The integrals in (58) are computable, and the final result is

σ (r) = − 1
π2H

{
1√

b2 − r2

[
w0 + wc0

γ1θ (c1) − γ2θ (c2)
a (γ1 − γ2)

]
+ wc0

γ1Ψ (r, c1) − γ2Ψ (r, c2)
a (γ1 − γ2)

}
(60)
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where

θ (z) = a − b

2
ln
(

l2b (z) + l1b (z)
l2b (z) − l1b (z)

)

+ z

{
1
2

cos−1

[ (
a2 + z2

)2 + b2
(
z2 − a2

)
(a2 + z2) (l22b (z) − l21b (z))

]
− sin−1

(
a√

a2 + z2

)}
(61)

Ψ (r, z) =
1
2

b∫

r

ln
(

l2t (z) + l1t (z)
l2t (z) − l1t (z)

)
dt√

t2 − r2
− Re

⎡
⎣ ai√

(a + iz)2 − r2
tan−1

⎛
⎝

√
b2 − r2√

r2 − (a + iz)2

⎞
⎠
⎤
⎦ (62)

with

l1b (z) =
1
2

[√
(a + b)2 + z2 −

√
(a − b)2 + z2

]
, l2b (z) =

1
2

[√
(a + b)2 + z2 +

√
(a − b)2 + z2

]
(63)

l1t (z) =
1
2

[√
(a + t)2 + z2 −

√
(a − t)2 + z2

]
, l2t (z) =

1
2

[√
(a + t)2 + z2 +

√
(a − t)2 + z2

]
(64)

The details of the derivation are given in “Appendix.” One can see that the expression (60) for σ (r)
consists of two parts: the first one has a singularity at the edge r = b of the domain of contact, while the
second term vanishes at r = b; thus, we can find the radius b from the condition

w0 + wc0
γ1θ (c1) − γ2θ (c2)

a (γ1 − γ2)
= 0 (65)

The normal force, applied to the punch, can be found by integration of σ (r) over the circle r ≤ b. The
result is

P =
2

πH

{
b

[
w0 + wc0

γ1θ (c1) − γ2θ (c2)
a (γ1 − γ2)

]
+ wc0

γ1χ (c1) − γ2χ (c2)
a (γ1 − γ2)

}
(66)

where

χ (z) =
1
4
(
b2 − a2 + z2

)
ln
(

l2b (z) + l1b (z)
l2b (z) − l1b (z)

)
+

1
2
az

[
tan−1

(
a − b

z

)
− tan−1

(
a + b

z

)]

+ aRe
[
i (a + iz) tan−1

(
b

i (a + iz)

)
− b

2

]
(67)

The details of the derivation are given in “Appendix.” We note that all the results of this article are valid
for the case of isotropy, if we find the limit in each formula for γ1 → γ2 → 1 and

H =
1 − ν2

πE
, α =

1 − 2ν

2 (1 − ν)
, β =

1 + ν

πE
, G1 =

(2 − ν) (1 + ν)
πE

, G2 =
ν (1 + ν)

πE
(68)

where E is the modulus of elasticity and ν is the Poisson’s coefficient.

5. Conclusion

For the first time in the literature, we successfully considered here the most general case of interaction
of an arbitrary punch with a general crack or inclusion, located in the plane parallel to the boundary
of a transversely isotropic elastic half-space. When the crack is subjected to both normal and tangential
tractions and the punch is not smooth, the problem is reduced to four simultaneous integral equations with
elementary kernels, two of them are real and the remaining two in a complex form. The case of a general
punch interacting with an inclusion reduces to just two integral equations, one real and another complex.
Only one equation needs to be solved in the case of smooth punch. The method developed in this article
can be expanded and applied to more complicated cases of a piezoelectric or even magneto-electro-elastic
half-spaces.
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Appendix

We give here the details of the derivation of the formulae (60–67). The following integral is to be computed
in order to get (60)

I = − 1
π2Hr

∂

∂r

b∫

r

tdt√
t2 − r2

∂

∂t

t∫

0

f (z) ρdρ√
t2 − ρ2

(69)

where f (z) is defined in (56). The first integral to compute is

I1 =

t∫

0

sin−1

(
a

l2

)
ρdρ√
t2 − ρ2

(70)

Integration by parts in (70) yields

I1 = t sin−1

(
a√

a2 + z2

)
−

t∫

0

√
t2 − ρ2

l1
√

l22 − a2

l2 (l22 − l21)
dρ (71)

Now we introduce new variable
y = l2 (72)

From which it follows

ρ = y

√
1 +

z2

a2 − y2
,

∂l2
∂ρ

=
ρ
(
l22 − a2

)
l2 (l22 − l21)

, dρ =
l2
(
l22 − l21

)
ρ (l22 − a2)

dy (73)

Substitution of (72–73) into (71) and utilization of the identity l1l2 = aρ gives us

I1 = t sin−1

(
a√

a2 + z2

)
− a

l2t(z)∫

l20(z)

√
[y2 − l21t (z)] [l22t (z) − y2]dy

y (y2 − a2)
(74)

Here l1t and l2t are defined in (64) and

l20 (z) =
√

a2 + z2 (75)

The integration in (74) is elementary, and the final result is

I1 = t sin−1

(
a√

a2 + z2

)
− 1

2

{
a

[
tan−1

(
a2 + z2 − t2

2zt

)
− π

2

]

+ t cos−1

[ (
a2 + z2

)2 + t2
(
z2 − a2

)
(a2 + z2) (l22t (z) − l21t (z))

]
+ z ln

[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]}
(76)
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For the sake of future reference, we present below two more integrals

t∫

0

l1
√

l22 − a2ρ2dρ

l2
√

t2 − ρ2 (l22 − l21)
=

1
2

{
a

[
π

2
− tan−1

(
a2 + z2 − t2

2zt

)]
− z ln

[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]}
(77)

t∫

0

l1
√

l22 − a2dρ

l2
√

t2 − ρ2 (l22 − l21)
=

1
2t

cos−1

[ (
a2 + z2

)2 + t2
(
z2 − a2

)
(a2 + z2) (l22t (z) − l21t (z))

]
(78)

The next step is computation of the derivative

∂

∂t

t∫

0

sin−1

(
a

l2

)
ρdρ√
t2 − ρ2

= sin−1

(
a√

a2 + z2

)
− 1

2
cos−1

[ (
a2 + z2

)2 + t2
(
z2 − a2

)
(a2 + z2) (l22t (z) − l21t (z))

]
(79)

Now we need to compute the integral

I2 =

b∫

r

cos−1

[ (
a2 + z2

)2 + t2
(
z2 − a2

)
(a2 + z2) (l22t (z) − l21t (z))

]
tdt√

t2 − r2
(80)

Integration by part in (80) yields

I2 =
√

b2 − r2 cos−1

[ (
a2 + z2

)2 + b2
(
z2 − a2

)
(a2 + z2) (l22b (z) − l21b (z))

]
− 4az

b∫

r

√
t2 − r2tdt[

(t + a)2 + z2
] [

(t − a)2 + z2
] (81)

We remind that l1b (z) and l2b (z) are defined in (63). According to (69), we need to compute the derivative

− 1
r

∂I2
∂r

=
1√

b2 − r2
cos−1

[ (
a2 + z2

)2 + b2
(
z2 − a2

)
(a2 + z2) (l22b (z) − l21b (z))

]

− 4az

b∫

r

tdt
√

t2 − r2
[
(t + a)2 + z2

] [
(t − a)2 + z2

] (82)

The integration in (82) is done by the following transformation of the integrand

t[
(t + a)2 + z2

] [
(t − a)2 + z2

] =
1

8iaz

(
1

t + a + iz
− 1

t + a − iz
− 1

t − a + iz
+

1
t − a − iz

)
(83)

We use the following basic integral
∫

dt

[t + (a + iz)]
√

t2 − r2
=

1√
(a + iz)2 − r2

ln

√
r − (a + iz)

√
r − t +

√
r + (a + iz)

√
r + t√

r − (a + iz)
√

r − t −√r + (a + iz)
√

r + t
(84)

Substitution of (83) into integral (82) will lead to four integrals of the type (84). Further simplification
will give us

∫
tdt[

(t + a)2 + z2
] [

(t − a)2 + z2
]√

t2 − r2
=

1
2az

Re

⎡
⎣ 1√

(a + iz)2 − r2
tan−1

⎛
⎝

√
t2 − r2√

r2 − (a + iz)2

⎞
⎠
⎤
⎦

(85)
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Using the above results, we can finally write

−1
r

∂

∂r

b∫

r

[
sin−1

(
a√

a2 + z2

)
− 1

2
cos−1

( (
a2 + z2

)2 + t2
(
z2 − a2

)
(a2 + z2) (l22t (z) − l21t (z))

)]
tdt√

t2 − r2

=
1√

b2 − r2

[
sin−1

(
a√

a2 + z2

)
− 1

2
cos−1

( (
a2 + z2

)2 + b2
(
z2 − a2

)
(a2 + z2) (l22b (z) − l21b (z))

)]

+Re

⎡
⎣ 1√

(a + iz)2 − r2
tan−1

⎛
⎝

√
b2 − r2√

r2 − (a + iz)2

⎞
⎠
⎤
⎦ (86)

Now we can move to the computation of

I3 =

t∫

0

√
a2 − l21

ρdρ√
t2 − ρ2

(87)

Integration by parts gives us

I3 = at −
t∫

0

√
t2 − ρ2

ρ
√

a2 − l21
(l22 − l21)

dρ (88)

As before, we introduce new variable

l1 = y, ρ = y

√
1 +

z2

a2 − y2
,

∂l1
∂ρ

=
ρ
(
a2 − l21

)
l1 (l22 − l21)

, dρ =
l1
(
l22 − l21

)
ρ (a2 − l21)

dy (89)

Substitution of (89) in (88) gives us after simplification

I3 = at −
l1t(z)∫

0

√
[l21t (z) − y2] [l22t (z) − y2]ydy

a2 − y2
(90)

The integral in (90) is elementary, and the final result is

I3 =

t∫

0

√
a2 − l21

ρdρ√
t2 − ρ2

=
at

2
+

az

2
cos−1

(
a2 + z2 − t2

l2t (z) − l1t (z)

)
− 1

4
(
t2 + z2 − a2

)
ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]

(91)
The differentiation with respect to t simplifies the result as follows

∂

∂t

t∫

0

√
a2 − l21

ρdρ√
t2 − ρ2

= a − t

2
ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]
(92)

For the future reference, we can quote the following integral
t∫

0

√
a2 − l21ρdρ√

t2 − ρ2 (l22 − l21)
=

1
2

ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]
(93)

We can also quote the following useful derivatives

∂

∂t
ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]
=

2a
(
a2 + z2 − t2

)

[l22t (z) − l21t (z)]2
(94)



ZAMP Interaction between a punch and an arbitrary crack Page 15 of 18 4

∂

∂t
tan−1

(
a2 + z2 − t2

2zt

)
= −2z

l22t (z) + l21t (z)

[l22t (z) − l21t (z)]2
(95)

∂

∂t
tan−1

[
2azt2

(a2 + z2)2 + t2 (z2 − a2)

]
=

4azt

[l22t (z) − l21t (z)]2
(96)

∂

∂t
cos−1

[
a2 + z2 − t2

l2t (z) − l1t (z)

]
= 2z

l22t (z) + l21t (z)

[l22t (z) − l21t (z)]2
(97)

The next integral to compute is

I4 = −1
r

∂

∂r

b∫

r

{
a − t

2
ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]}
tdt√

t2 − r2
(98)

Integration by parts in (98) and differentiation of the result with respect to r give us

I4 =
1√

b2 − r2

{
a − b

2
ln
[
l2b (z) + l1b (z)
l2b (z) − l1b (z)

]}
+ Re

⎡
⎣ z − ai√

(a + iz)2 − r2
tan−1

⎛
⎝

√
b2 − r2√

b2 − (a + iz)2

⎞
⎠
⎤
⎦

+
1
2

b∫

r

ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]
dt√

t2 − r2
(99)

The last integral in (99) does not seem to be computable in terms of elementary functions. In derivation
of (99) we used the following integrals.

b∫

r

t3dt[
(t + a)2 + z2

] [
(t − a)2 + z2

]√
t2 − r2

=
1

2az
Re

⎡
⎣ (a + iz)2√

(a + iz)2 − r2
tan−1

⎛
⎝

√
b2 − r2√

r2 − (a + iz)2

⎞
⎠
⎤
⎦

(100)
b∫

r

at
(
a2 + z2 − t2

)
dt

[l22t (z) − l21t (z)]2
√

t2 − r2
= Re

⎡
⎣ z − ia√

(a + iz)2 − r2
tan−1

⎛
⎝

√
b2 − r2√

r2 − (a + iz)2

⎞
⎠
⎤
⎦ (101)

Combination of (86) and (99) gives us (60–62)
Finding of the total force P requires computation of the following integrals.

I5 = 2π

b∫

0

rdr

b∫

r

ln
[
l2t (z) + l1t (z)
l2t (z) − l1t (z)

]
dt√

t2 − r2
(102)

We interchange the order of integration in (102), integrate with respect to r and then use the integration
by parts to integrate with respect to t. The final result is

I5 = π

{(
b2 − a2 + z2

)
ln
[
l2b (z) + l1b (z)
l2b (z) − l1b (z)

]
+ 2ab + 2az

[
tan−1

(
a + b

z

)
− tan−1

(
a − b

z

)]}
(103)

The next integral is computable by parts:

2π

b∫

0

−ia√
(a + iz)2 − r2

tan−1

⎛
⎝

√
b2 − r2√

r2 − (a + iz)2

⎞
⎠ rdr = 2πia

[
(a + iz) tan−1

(
b

i (a + iz)

)
+ ib

]
(104)
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The following integrals were used

b∫

0

dt[
(t+ a)2 + z2

] [
(t − a)2 + z2

]

=
1

4 (a2 + z2)

{
1

a
ln

[
l2b (z) + l1b (z)

l2b (z) − l1b (z)

]
+

1

z

[
tan−1

(
a+ b

z

)
− tan−1

(
a − b

z

)]}

(105)
b∫

0

t2dt[
(t+ a)2 + z2

] [
(t − a)2 + z2

] =
1

4az

{
z ln

[
l2b (z) − l1b (z)

l2b (z) + l1b (z)

]
+ a

[
tan−1

(
a+ b

z

)
− tan−1

(
a − b

z

)]}

(106)
b∫

0

t4dt[
(t+ a)2 + z2

] [
(t − a)2 + z2

]

= b+
1

4az

{
z
(
z2 − 3a2

)
ln

[
l2b (z) + l1b (z)

l2b (z) − l1b (z)

]
+ a

(
a2 − 3z2

) [
tan−1

(
a+ b

z

)
− tan−1

(
a − b

z

)]}

(107)
b∫

0

(
a2 + z2 − t2

)
t2dt[

(t+ a)2 + z2
] [

(t − a)2 + z2
]

=
a2 − z2

2a
ln

[
l2b (z) + l1b (z)

l2b (z) − l1b (z)

]
+ z

[
tan−1

(
a+ b

z

)
− tan−1

(
a − b

z

)]
− b (108)

b∫

r

t2dt[
(t+ a)2 + z2

] [
(t − a)2 + z2

]√
t2 − r2

=
1

2az
Re

⎡
⎣ (a+ iz)√

(a+ iz)2 − r2
tan−1

⎛
⎝ (a+ iz)

√
b2 − r2

b
√
r2 − (a+ iz)2

⎞
⎠
⎤
⎦

(109)
b∫

r

t4dt[
(t+ a)2 + z2

] [
(t − a)2 + z2

]√
t2 − r2

= cosh−1

(
b

r

)
+

1

2az
Re

⎡
⎣ (a+ iz)3√

(a+ iz)2 − r2
tan−1

⎛
⎝ (a+ iz)

√
b2 − r2

b
√
r2 − (a+ iz)2

⎞
⎠
⎤
⎦ (110)

The above integrals are sufficient for the computation of (66–67).
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