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1. Introduction

In this paper we are concerned with the uniqueness of nontrivial classical solution for the following class
of nonlocal elliptic equations

⎧
⎨

⎩

−
(

a(x) + b(x)
∫

Ω

|∇u|2dx

)

Δu = h(x) in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary, a, b ∈ C0,γ(Ω), γ ∈ (0, 1), are
positive functions with a(x) ≥ a0 > 0, b(x) ≥ b0 > 0 and h ∈ C0,γ(Ω) is given.

In the case that functions a, b are positive constants, problem (P) is the N -dimensional stationary
version of a hyperbolic problem proposed in [5]. Kirchhoff’s equation models small transversal vibrations
of an elastic string with fixed ends which is composed by a homogeneous material. Such an equation is
a more realistic model than that provided by the classic D’Alembert’s wave equation because it takes
into account the change in the length of the string produced by transverse vibrations. The hyperbolic
Kirchhoff problem (with a, b constants) receives special attention mainly after the apparition of [6]. In [6]
the author proposes an abstract framework to the problem.

To our best knowledge, it was [2] the first work to study uniqueness of solution for problem (P)
with a, b constants. It is an immediate consequence of Theorem 1 in [2] that if h is a Hölder continuous
nonnegative (nonzero) function, then problem (P), with a, b constants, has a unique positive solution. In
[2], sign-changing functions h were not considered. When a, b are not constants, problem (P) is even more
relevant in terms of applications, because its unidimensional version models small transversal vibrations
of an elastic string composed by nonhomogeneous materials (see [4], section 2). In [4] (see Theorem 1)
the authors proved that for each h ∈ L∞(Ω) (h �≡ 0), problem (P) admits at least a nontrivial solution.
Moreover, if h has defined sign (h ≤ 0 or h ≥ 0) such a solution is unique. Unfortunately, their approach
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does not work when h is a sign-changing function. To our best knowledge, the uniqueness of solution to
problem (P) in the general case is actually an open problem.

In this article we obtain sufficient conditions on the quotient a/b to ensure uniqueness of solution
when h is a sign-changing function. The main results of this paper are as follows:

Theorem 1.1. If there exists θ > 0 such that a/b = θ in Ω, then for each h ∈ C0,γ(Ω) problem (P) has a
unique solution.

Theorem 1.2. Let a, b ∈ C2,γ(Ω), h ∈ C0,γ(Ω) is sign-changing and suppose c = a/b is not constant.
(i) If Δc ≥ 2|∇c|2/c in Ω, then, for each h ∈ C0,γ(Ω) given, problem (P) has a unique nontrivial

classical solution.
(ii) If Δc < 2|∇c|2/c in some open Ω0 ⊂ Ω, then, for each h ∈ C0,γ(Ω) given, problem (P) has a unique

nontrivial classical solution, provided that

|∇c|∞cM√
λ1c2

L

≤ 3/2,

where λ1 is the first eigenvalue of Laplacian operator with homogeneous Dirichlet boundary condition,
cL = minx∈Ω c(x), cM = maxx∈Ω c(x) and |∇c|∞ = maxx∈Ω |∇c(x)|.

Theorem 1.1 generalizes Theorem 1 in [2] because it holds for sign-changing or signed functions h. On
the other hand, Theorem 1.2 complements Theorem 1 in [4].

The paper is organized as follows: In Sect. 2 we present some abstracts results, notations and defini-
tions. In Sect. 3 we investigate a nonlocal eigenvalue problem which seems to be closely related to the
uniqueness of solution to problem (P). In Sect. 4 we prove Theorems 1.1 and 1.2. Moreover, an alternative
proof for the existence and uniqueness of solution in [4] is supplied.

2. Preliminaries

In this section we state some results and we define some notations which will be used throughout the
paper.

Definition 2.1. We say that a function h is signed in Ω if h ≥ 0 in Ω or h ≤ 0 in Ω.

Definition 2.2. An application Ψ : E → F defined in Banach spaces is locally invertible in u ∈ E if there
are open sets A � u in E and B � Ψ(u) in F such that Ψ : A → B is a bijection. If Ψ is locally invertible
in any point u ∈ E, it is said that Ψ : E → F is locally invertible.

Definition 2.3. Let M,N be metric spaces. We say that a map Ψ : M → N is proper if Ψ−1(K) = {u ∈
M : Ψ(u) ∈ K} is compact in M for all compact set K ⊂ N .

Now, we enunciate the classic local and global inverse function theorems, whose proofs can be found,
for example, in [1].

Theorem 2.4. (Local Inverse Theorem) Let E,F be two Banach spaces. Suppose Ψ ∈ C1(E,F ) and
Ψ′(u) : E → F is an isomorphism. Then, Ψ is locally invertible at u and its local inverse, Ψ−1, is also a
C1-function.

Theorem 2.5. (Global Inverse Theorem) Let M,N be two metric spaces and Ψ ∈ C(M,N) a proper and
locally invertible function in M . Suppose that M is arcwise connected and N is simply connected. Then,
Ψ is a homeomorphism from M onto N .

Next, we state another classic result which will be used in our arguments and whose proof can be
found, for example, in [3].
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Proposition 2.6. Suppose m ∈ L∞(Ω), m(x) > 0 in a set of positive measure and A ∈ L∞(Ω), A(x) ≥ m
for some positive constant m. Then, problem

{−div(A(x)∇u) = λm(x)u in Ω,
u = 0 on ∂Ω,

(2.1)

has a smallest positive eigenvalue λ1(m), which is simple and its corresponding eigenfunctions do not
change sign in Ω.

Throughout this paper X is the Banach space

X =
{
u ∈ C2,γ(Ω) : u = 0 on ∂Ω

}

with norm

‖u‖X = ‖u‖C2(Ω) + max
|β| = 2

[
Dβu

]

γ
,

where γ ∈ (0, 1), β = (β1, . . . , βN ) ∈ NN , |β| = β1 + · · · + βN ,

‖u‖C2(Ω) =
∑

0 ≤ |β| ≤ 2

‖Dβu‖C(Ω) and [Dβu]γ = sup
x,y∈Ω
x�= y

|Dβu(x) − Dβu(y)|
|x − y|γ .

Moreover, Y will denote the Banach space C0,γ(Ω) with norm

‖f‖Y = ‖f‖C(Ω) + [f ]γ ,

where ‖f‖C(Ω) = maxx∈Ω |f(x)|.
Hereafter same symbol C denotes different positive constants.

3. A nonlocal eigenvalue problem

In this section we are interested in studying the following nonlocal eigenvalue problem
⎧
⎨

⎩

−div
( ∇u

c + |∇u|22

)

= λ

{

−div
[ ∇c

(c + |∇u|22)2
]}

u in Ω,

u = 0 on ∂Ω,
(EP )

where Ω ⊂ RN is bounded smooth domain, λ is a positive parameter, and c ∈ C2(Ω) is a positive (not
constant) function. As we will see in the next section, problem (EP ) arises naturally when one studies
questions of uniqueness for the problem (P).

Before stating the main results of this section, we observe that

Lemma 3.1. The set

A :=
{

α > 0 : −div
[ ∇c
(c + α)2

]

> 0 in some open set Ω0 ⊂ Ω
}

is not empty if and only if there is an open set Ω̂ ⊂ RN such that

Δc < 2
|∇c|2

c
in Ω̂. (3.1)

Proof. Differentiating we get

− div
[ ∇c

(c + α)2

]

= − 1
(c + α)2

Δc +
2

(c + α)3
|∇c|2. (3.2)

Now, note that

− div
[ ∇c

(c + α)2

]

> 0 in some open set Ω0 (3.3)
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if and only if

Δc < 2
|∇c|2

(c + α)
in Ω0. (3.4)

It is clear that the existence of a positive number α satisfying (3.4) is equivalent to inequality (3.1). �
Remark 1. In Lemma 3.1 we have shown also that A = ∅ if and only if

Δc ≥ 2
|∇c|2

c
in Ω. (3.5)

Certainly, there are many positive functions c ∈ C2(Ω) verifying (3.5). For instance, setting c = δe + 1,
where 0 < δ ≤ min{1/(4|∇e|2∞), 1/(2|e|∞)} and

{
Δe = 1 in Ω,
e = 0 on ∂Ω,

(3.6)

we conclude that c > 0 and it satisfies (3.5).

Remark 2. When (3.1) holds, an interesting question is related to the topology of set A. In this direction,
the proof of Lemma 3.1 allows us to say that A contains even a neighborhood (0, α0).

Now we are ready to claim the following result.

Theorem 3.2. Suppose that (3.1) holds. For each α ∈ A, problem (EP ) has a unique solution (λα, uα)
such that λα > 0, uα > 0 and |∇uα|22 = α.

Proof. From Lemma 3.1 we get that A �= ∅. Since c ∈ C2(Ω) and b > 0 in Ω, it follows from Proposition 2.6
that, for each α ∈ A, the eigenvalue problem

⎧
⎨

⎩

−div
( ∇u

c + α

)

= λ

{

−div
[ ∇c

(c + α)2

]}

u in Ω,

u = 0 on ∂Ω,
(Pα)

has a positive smallest eigenvalue λα whose associated eigenspace Vα is unidimensional and its eigenfunc-
tions have defined sign. Choosing u ∈ Vα such that u > 0 and |∇u|22 = α, the result follows. �
Remark 3. In particular, if (3.1) holds, then

∫

Ω

u2
α

{

−div
[ ∇c

(c + α)2

]}

dx =
1
λα

∫

Ω

|∇uα|2
c + α

dx, ∀ α ∈ A. (3.7)

Corollary 3.3. Suppose (3.1). For each α ∈ A, the following inequality holds

λα ≥
√

λ1(cL + α)2

2|∇c|∞(cM + α)
,

where λ1 is the first eigenvalue of Laplacian operator with homogeneous Dirichlet boundary condition,
cL = minx∈Ω c(x), cM = maxx∈Ω c(x) and |∇c|∞ = maxx∈Ω |∇c(x)|.
Proof. From Remark 3, we get

λα =

∫

Ω

|∇uα|2
c + α

dx

∫

Ω

u2
α

{

−div
[ ∇c

(c + α)2

]}

dx

. (3.8)

Observe that ∫

Ω

|∇uα|2
c + α

dx ≥ α

cM + α
. (3.9)
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Moreover, by using the divergence theorem,

∫

Ω

u2
α

{

−div
[ ∇c

(c + α)2

]}

dx = 2
∫

Ω

uα∇uα∇c

(c + α)2
dx ≤

2|∇c|∞
∫

Ω

uα|∇uα|dx

(cL + α)2
.

From Hölder and Poincaré inequalities, we conclude that
∫

Ω

u2
α

{

−div
[ ∇c

(c + α)2

]}

dx ≤ 2|∇c|∞α√
λ1(cL + α)2

. (3.10)

From (3.8), (3.9) and (3.10) we have

λα ≥
√

λ1(cL + α)2

2|∇c|∞(cM + α)
,

for all α ∈ A. �

4. Uniqueness results

In order to apply Theorem 2.5 we define operator Ψ : X → Y by

Ψ(u) =

⎛

⎝a(x) + b(x)
∫

Ω

|∇u|2dx

⎞

⎠Δu.

In what follows, we will denote M
(
x, |∇u|22

)
= a(x) + b(x)

∫

Ω

|∇u|2dx for short, where |∇u|22 =
∫

Ω

|∇u|2dx. The proof of main results of this paper will be divided in various propositions.

Proposition 4.1. Operator Ψ : X → Y is proper.

Proof. It is enough to prove that if {hn} ⊂ Y is a sequence converging to h ∈ Y and {un} ⊂ X is another
sequence with Ψ(un) = − hn, then {un} possesses a convergent subsequence in X. For this, note that
the equality Ψ(un) = − hn is equivalent to

− Δun =
hn

M (x, |∇un|22)
. (4.1)

Observe that hn/M
(
., |∇un|22

) ∈ Y because hn ∈ Y , M
(
., |∇un|22

) ∈ Y and M
(
x, |∇un|22

) ≥ a0.
Moreover, ∥

∥
∥
∥

hn(x)
M (x, |∇un|22)

∥
∥
∥
∥

C(Ω)

≤ ‖hn‖C(Ω)/a0, ∀ n ∈ N. (4.2)

From ‖hn‖C(Ω) ≤ ‖hn‖Y , (4.2) and the boundedness of {hn} in Y , it follows that
{
hn/M

(
x, |∇un|22

)}

is bounded in C(Ω). Thus, the continuous embedding from C1,γ(Ω) into C(Ω) and equality in (4.1) tell us
that {un} is bounded in C1,γ(Ω) (see Theorem 0.5 in [1]). Finally, by compact embedding from C1,γ(Ω)
into C1(Ω), we conclude that there exists u ∈ C1(Ω) such that, passing to a subsequence,

un → u in C1(Ω). (4.3)

This convergence leads to
|∇un(x)|2 → |∇u(x)|2 uniformly in x ∈ Ω. (4.4)

Whence
|∇un|22 → |∇u|22. (4.5)
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In what follows, we show that ∥
∥
∥
∥

hn

M (., |∇un|22)
∥
∥
∥
∥

Y

≤ C, (4.6)

for some positive constant C. In fact, since {hn} ⊂ Y and
{
M

(
., |∇un|22

)} ⊂ Y , with M(x, t) ≥ a0 > 0
for all t ≥ 0, a straightforward manipulation shows us that

[
hn

M (., |∇un|22)
]

γ

≤ 1
a2
0

(
‖hn‖C(Ω)

[
M

(
., |∇un|22

)]

γ
+

∥
∥M

(
., |∇un|22

)∥
∥

C(Ω)
[hn]γ

)
.

From ‖hn‖C(Ω), [hn]γ ≤ C,
[
M

(
., |∇un|22

)]

γ
≤ [a]γ + [b]γ |∇un|22 ≤ [a]γ + C[b]γ (4.7)

and
∥
∥M

(
., |∇un|22

)∥
∥

C(Ω)
≤ ‖a‖C(Ω) + ‖b‖C(Ω)|∇un|22 ≤ ‖a‖C(Ω) + C‖b‖C(Ω), (4.8)

it follows that
[

hn

M (., |∇un|22)
]

γ

≤ C

a2
0

(
[a]γ + C[b]γ + ‖a‖C(Ω) + C‖b‖C(Ω)

)
=

C

a2
0

‖a‖Y +
C2

a2
0

‖b‖Y .

Since
{
hn/M

(
x, |∇un|22

)}
is bounded in C(Ω), the last inequality proves (4.6).

By (4.1), (4.6) and Theorem 0.5 in [1], sequence {un} is bounded in X. By compact embedding from
X in C2(Ω), passing to a subsequence, we get

un → u in C2(Ω). (4.9)

By (4.9), passing to the limit in n → ∞ in (4.1) we have

− Δu =
h

M (x, |∇u|22)
. (4.10)

Last equality and Theorem 0.5 in [1] allow us to conclude that u ∈ X.
Finally, by linearity of Laplacian, we have

− Δ(un − u) =
hn

M (x, |∇un|22)
− h

M (x, |∇u|22)
. (4.11)

From (4.11) and Theorem 0.5 in [1] we conclude that un → u in X. �

Proposition 4.2. Let a, b ∈ C0,γ(Ω) and u ∈ X. If
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx �= 1/2 (4.12)

holds, then Ψ is locally invertible in u.

Proof. We use Theorem 2.4 to prove this lemma. It is standard to show that Ψ ∈ C1(X,Y ) and that

Ψ′(u)v = 2b(x)Δu

∫

Ω

∇u∇vdx + M(x, |∇u|22)Δv.

It remains to prove that Ψ′(u) : X → Y is an isomorphism. If u = 0, there is nothing to prove. Now, if
u �= 0, observe that Ψ′(u) is an isomorphism if and only if, for each g ∈ Y given, there is a unique v ∈ X
such that Ψ′(u)v = − g, this is

− M
(
x, |∇u|22

)
Δv = g(x) + 2b(x)Δu

∫

Ω

∇u∇vdx. (4.13)
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From divergence theorem, (4.13) is equivalent to

− M
(
x, |∇u|22

)
Δv = g(x) − 2b(x)Δu

∫

Ω

uΔvdx. (4.14)

Consequently, Ψ′(u) is an isomorphism if and only if, for each g ∈ Y given, there is a unique v ∈ X such
that

Δv =
2b(x)Δu

∫

Ω
uΔvdx

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
. (4.15)

To study equation (4.15), we define the mapping T : Y → Y by

T (w) =
2b(x)Δu

∫

Ω
uwdx

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
(4.16)

and we note that, since for each w ∈ Y problem
{

Δz = w(x) in Ω,
z = 0 on ∂Ω,

(LP)

has a unique solution z ∈ X, looking for solutions of (4.15) is equivalent to find fixed points of T . Denoting
t =

∫

Ω

uwdx, it follows that w is a fixed point of T if and only if

w = T (w) = t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
. (4.17)

Therefore, w is a fixed point of T if and only if

T

(

t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
)

= t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
.

From (4.16), we get

2b(x)Δu

M(x, |∇u|22)
∫

Ω

u

[

t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
]

dx = t
2b(x)Δu

M(x, |∇u|22)
.

Since b > 0 and Δu �≡ 0 (because u �= 0), T admits a fixed point if and only if

2
∫

Ω

u

[

t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
]

dx = t,

namely

t

⎡

⎣

∫

Ω

2b(x)uΔu

M(x, |∇u|22)
dx − 1

⎤

⎦ = 2
∫

Ω

g(x)u
M(x, |∇u|22)

dx. (4.18)

Equality (4.18) says us that if (4.12) occurs, then T has a unique fixed point w given by

w = t
2b(x)Δu

M(x, |∇u|22)
− g(x)

M(x, |∇u|22)
,

with

t = 2
∫

Ω

g(x)u
M(x, |∇u|22)

dx
/

⎡

⎣

∫

Ω

2b(x)uΔu

M(x, |∇u|22)
dx − 1

⎤

⎦.

�
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Remark 4. Equality (4.18) shows us that Ψ′(u) : X → Y is not surjective if
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx = 1/2.

In fact, in this case, functions g ∈ Y such that
∫

Ω

g(x)u
M(x, |∇u|22)

dx �= 0

do not belong to the range of Ψ′(u).

Actually, it is possible to get the same result of (existence and) uniqueness provided in [4] for signed
functions as a consequence of global inverse theorem and previous proposition. This is exactly the content
of next corollary.

Corollary 4.3. For each signed function h ∈ Y given, problem (P) has a unique solution.

Proof. First of all, we define the sets

P1 = {u ∈ X : Δu ≥ 0} ⊂ X

and

P2 = {h ∈ Y : h ≥ 0} ⊂ Y.

Consider P1∪(−P1) and P2∪(−P2) as metric spaces whose metrics are induced from X and Y , respectively.
It is clear that P1∪(−P1) is arcwise connected (because P1 and − P1 are convex sets and P1∩(−P1) =

{0}) closed in X. On the other hand, since P2 ∪ (−P2) is the union of the closed cone of nonnegative
functions of Y with the closed cone of nonpositive functions of Y , it follows that P2 ∪ (−P2) is simply
connected.

From Ψ(P1) ⊂ P2 and Ψ(−P1) ⊂ (−P2), it follows that Ψ is well defined from P1∪(−P1) to P2∪(−P2).
Moreover, being Ψ proper from X to Y (see Proposition 4.1) and P1 ∪(−P1) and P2 ∪(−P2) are closed

metric spaces in X and Y , respectively, we conclude that Ψ is proper from P1 ∪ (−P1) to P2 ∪ (−P2).
Note that if u ∈ P1 (resp. −P1), then, as u is (the unique) solution to problem

{
Δu = Δu in Ω,
u = 0 on ∂Ω.

(4.19)

From the maximum principle, it follows that u ≤ 0 (resp. u ≥ 0). Whence, we have
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx ≤ 0, ∀ u ∈ P1 ∪ (−P1).

Therefore, from Proposition 4.2, Ψ : P1 ∪ (−P1) → P2 ∪ (−P2) is locally invertible. The result follows
now from the global inverse theorem. �

Next result tells us that if h ∈ Y given (signed or not) is “small,” then there is a unique solution with
“little variation.”

Corollary 4.4. There are positive constants ε, δ such that for each h ∈ Y with ‖h‖Y < ε, problem (P) has
a unique solution u with ‖u‖X < δ.

Proof. It is sufficient to note that when u = 0 the integral (4.12), in Proposition 4.2, is null. �

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Since X and Y are Banach spaces, then X is arcwise connected and Y is simply
connected. Moreover, from Proposition 4.1, operator Ψ is proper and by divergence theorem we obtain

∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx =

1
θ + |∇u|22

∫

Ω

uΔudx = − |∇u|22
θ + |∇u|22

< 0, ∀ u ∈ X.

The result follows directly from Proposition 4.2 and global inverse theorem. �

Next proposition provides us a sufficient condition on functions a and b for that (4.12) occurs when
a/b is not constant.

Proposition 4.5. Let a, b ∈ C2,γ(Ω) and c = a/b.

(i) If Δc ≥ 2|∇c|2/c in Ω, then
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx ≤ 0, ∀ u ∈ X. (4.20)

(ii) If Δc < 2|∇c|2/c in some open Ω0 ⊂ Ω, then
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx < 1/2, ∀ u ∈ X, (4.21)

provided that

|∇c|∞cM√
λ1c2

L

≤ 3/2.

Proof. Putting b in evidence in the integral (4.12), we get
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx =

∫

Ω

uΔu

c + |∇u|22
dx,

where c = c(x) = a(x)/b(x). From divergence theorem, we have
∫

Ω

uΔu

c + |∇u|22
dx = −

∫

Ω

∇
(

u

c + |∇u|22

)

∇udx.

Since

∇
(

u

c + |∇u|22

)

=
1

c + |∇u|22
∇u − u

(c + |∇u|22)2
∇c,

we conclude that
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx = −

∫

Ω

|∇u|2
c + |∇u|22

dx +
∫

Ω

u∇u∇c

(c + |∇u|22)2
dx

= −
∫

Ω

|∇u|2
c + |∇u|22

dx +
1
2

∫

Ω

∇(u2)∇c

(c + |∇u|22)2
dx.

Using again the divergence theorem
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx = −

∫

Ω

|∇u|2
c + |∇u|22

dx +
1
2

∫

Ω

u2

{

−div
[ ∇c

(c + |∇u|22)2
]}

dx. (4.22)
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(i) In this case, from Lemma 3.1 (see also Remark 1) we get that A = ∅. Consequently, for each u ∈ X
we have

∫

Ω

u2

{

−div
[ ∇c

(c + |∇u|22)2
]}

dx ≤ 0.

Whence, by (4.22),
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx ≤ 0, ∀ u ∈ X.

(ii) In this case A �= ∅. If u ∈ X is such that |∇u|22 �∈ A, we already know that
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx ≤ 0.

Now, if u ∈ X is such that |∇u|22 ∈ A, then, from (4.22) and Proposition 3.2 (see also Remark 3), we
obtain

∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx ≤

(
1

2λα
− 1

)∫

Ω

|∇u|2
c + α

dx, (4.23)

where α := |∇u|22. If α is such that 1/2 ≤ λα, then, by (4.23),
∫

Ω

b(x)uΔu/M(x, |∇u|22)dx ≤ 0. Finally, if

0 < λα < 1/2, it follows from α = |∇u|22 and from Corollary 3.3 that,
∫

Ω

b(x)uΔu

M(x, |∇u|22)
dx <

|∇c|∞(cM + α)√
λ1(cL + α)2

− 1 =: g(α). (4.24)

We have that g(0) = |∇c|∞cM/
√

λ1c
2
L − 1 and

g′(α) =
|∇c|∞(cL − 2cM − α)√

λ1(cL + α)3
< 0, ∀α > 0.

Therefore, g is decreasing and, from (4.24), we conclude that if

|∇c|∞cM√
λ1c2

L

≤ 3
2
,

then (4.21) holds. �

Now, we give the proof of our main uniqueness result to problem (P) which covers sign-changing
functions.

Proof of Theorem 1.2. It follows directly from Propositions 4.1, 4.2, 4.5 and the global inverse theorem.
�

Theorems 1.1 and 1.2 seem to indicate that in the case that h is sign-changing the uniqueness of
solution to the problem (P) is, in some way, related to the variation of a/b. In any way, it remains open
the question to know what happens with the number of solutions of (P) in the case that h is sign-changing,
Δc < 2|∇c|2/c in some open Ω0 ⊂ Ω and |∇c|∞cM/

√
λ1c

2
L is large.



ZAMP Existence and uniqueness of solution Page 11 of 11 144

References

[1] Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)
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