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Abstract. We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with
BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous
flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family
of systems of the same number of ODEs in the Banach space L∞, whose solutions constitute a weak asymptotic solution
of the original system of PDEs. We establish well posedness, monotonicity and L1-stability. We prove that the sequence of
approximate solutions is strongly L1-precompact and that it converges to an entropy solution of the original equation in
the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard
multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
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1. Introduction

We construct a sequence (uε), (t, x) �−→ u(t, x; ε), t ∈ [0,+∞), x ∈ T
n = R

n/Zn, differentiable in t,
essentially bounded in x, that tends to satisfy a periodic PDE in the strong sense in time and in the
weak sense in space. The construction consists in resolving, for each value ε > 0, a system of ordinary
differential equations in the Banach space L∞(Tn), one ODE per equation of the system, whose solutions
constitute a weak asymptotic solution of the original PDE. We prove that the approximate solutions
so constructed tend to the unique entropy solution in the sense of Carrillo in the case of degenerate
parabolic scalar equations, a fortiori to the unique entropy solution in the sense of Kruzhkov for scalar
conservation laws. The result in this paper gives an approximation process for these equations, satisfying
well posedness, monotonicity and L1-stability.

In the sequel of this section we recall the definitions of Carrillo and Kruzhkov entropy solutions and
we prove uniqueness in the periodic case when the flux vector and the diffusion functions are merely
continuous. At the beginning of the next section we give the details of the scheme. The final result of
convergence of the approximations is Theorem 4 in Sect. 5.

Theorem 4 (main result) The approximate solutions u(t, x; ε) converge to the unique entropy solution
u(t, x) in the space C([0,+∞);L1(Tn)) when ε → 0.

The assumptions are: continuity and bounded variation of the flux function, continuity of the diffusion
function which is increasing in a nonstrict sense.

In the half-space Π = R+ × R
n, R+ = (0,+∞), we consider the scalar conservation law

ut + divxf(u) = μΔg(u), t > 0, x ∈ R
n, (1)

with continuous flux vector f(u) = (f1(u), . . . , fn(u)) ∈ C(R,Rn) and with a continuous diffusion function
g(u) ∈ C(R) increasing in a nonstrict sense. The constant μ is positive or null. The case g(u) = u
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corresponds to the usual viscous term μΔu. The case μ = 0 (or g(u) ≡ const) corresponds to a first-order
conservation law

ut + divxf(u) = 0. (2)

Recall the notion of entropy solution to the Cauchy problem for Eq. (1) with initial data

u(0, x) = u0(x) ∈ L∞(Rn) (3)

in the sense of Carrillo [6].

Definition 1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called an entropy solution (e.s. for
short) of (1), (3) if the generalized gradient ∇xg(u) ∈ L2

loc(Π,Rn) and for all k ∈ R

|u − k|t + divx[sign (u − k)(f(u) − f(k))] − μΔ|g(u) − g(k)| ≤ 0 (4)

in the sense of distributions on Π (in D′(Π)), and

ess lim
t→0

u(t, ·) = u0 in L1
loc(R

n). (5)

Condition (4) means that for all nonnegative test functions φ = φ(t, x) ∈ C2
0 (Π)∫

Π

[|u − k|φt + sign (u − k)(f(u) − f(k)) · ∇xφ − μ sign (u − k)∇xg(u) · ∇xφ]dtdx

=
∫

Π

[|u − k|φt + sign (u − k)(f(u) − f(k)) · ∇xφ + μ|g(u) − g(k)|Δxφ]dtdx ≥ 0

(here and below “·” denotes the scalar product in R
n).

Taking in (4) k = ±M , where M ≥ ‖u‖∞, we obtain that

ut + divxf(u) = μΔg(u) in D′(Π),

that is, an e.s. is a weak solution of (1) as well.
In the case μ = 0 Definition 1 coincides with the known Kruzhkov definition [20] of an entropy solution

of the problem (2), (3).
In the case under consideration when the flux vector and the diffusion function are merely continuous,

the uniqueness of an e.s. to problem (1), (3) may be violated if n > 1 (for the case of conservation laws,
see examples in [21,22]). In the case n = 1 the uniqueness is known, see [25]. But in the class of spatially
periodic e.s. the uniqueness holds in any dimension. For the sake of completeness we will provide the
proof of the uniqueness of periodic e.s. Hence, we assume that initial data u0 and e.s. u = u(t, x) are
space periodic: u0(x + ei) = u0(x) for almost all x ∈ R

n, u(t, x + ei) = u(t, x) for almost all (t, x) ∈ Π,
where i = 1, . . . , n, and {ei}n

i=1 is a basis of periods in R
n. Without loss of generality, we can suppose that

{ei}n
i=1 is the canonical basis. We denote by P = [0, 1)n the corresponding fundamental parallelepiped

(cube), which will be identified with the torus T
n = R

n/Zn.
The uniqueness of a periodic e.s. is an easy consequence of the following property.

Theorem 1. Let u1(t, x), u2(t, x) be two periodic e.s. of problem (1), (3) with initial data u01(x), u02(x),
respectively. Then for a.e. t > 0∫

Tn

(u1(t, x) − u2(t, x))+dx ≤
∫

Tn

(u01(x) − u02(x))+dx. (6)

Here we denote z+ = max(z, 0).
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Proof. As was proved in [6] (see also [3,25]), the following Kato inequality holds

((u1 − u2)+)t + divx[sign +(u1 − u2)(f(u1) − f(u2))] − μΔx(g(u1) − g(u2))+ ≤ 0 (7)

in D′(Π). Here sign +z = (sign z)+ is the Heaviside function.
Let α(t) ∈ C∞

0 ((0,+∞)), β(y) ∈ C∞
0 (Rn), α(t), β(y) ≥ 0,

∫
Rn

β(y)dy = 1. Applying (7) to the test

function α(t)β(x/r), where r ∈ N, we obtain that
+∞∫

0

∫

Rn

(u1(t, x) − u2(t, x))+β(x/r)α′(t)dt

+ r−1

∫

Π

α(t)sign +(u1 − u2)(f(u1) − f(u2)) · ∇yβ(x/r)dtdx

+μr−2

∫

Π

α(t)(g(u1) − g(u2))+Δyβ(x/r)dtdx ≥ 0. (8)

As is rather well known (see, for example [27, Lemma 2.1]), for a bounded spatially periodic function
w(t, x) ∈ L∞(Π) the following relation holds

lim
r→∞ r−n

∫

Π

w(t, x)a(t)b(x/r)dtdx = C

+∞∫

0

⎛
⎝

∫

Tn

w(t, x)dx

⎞
⎠ α(t)dt, (9)

where a(t) ∈ C0((0,∞)), b(y) ∈ C0(Rn), C =
∫
Rn

b(y)dy. Multiplying (8) by r−n and passing to the limit

as r → ∞ with the help of (9), we arrive at
+∞∫

0

I(t)α′(t)dt ≥ 0

for any α(t) ∈ C∞
0 ((0,+∞)), α(t) ≥ 0, where I(t) =

∫
Tn

(u1(t, x)−u2(t, x))+dx. This means that I ′(t) ≤ 0

in D′((0,+∞)) and therefore, for almost all t > 0

I(t) ≤ ess lim
t→0

I(t) = I(0) .=
∫

Tn

(u01(x) − u02(x))+dx, (10)

and (6) follows.
We use also the initial condition in the sense of Definition 1 for e.s. u1, u2, which implies the indicated

in (10) limit relation. Indeed,

|I(t) − I(0)| ≤
∫

Tn

|u1(t, x) − u01(x)|dx +
∫

Tn

|u2(t, x) − u02(x)|dx → 0,

as time t → 0, running over a set of full Lebesgue measure.
The proof is complete. �

It readily follows from (6) that u1(t, x) ≤ u2(t, x) a.e. in Π whenever u01 ≤ u02 (comparison principle).
Clearly, this implies the uniqueness of periodic e.s.

The class of partial differential equations of the type (1) encompasses several interesting nonlinear
phenomena, coming from fluid mechanics to the theory of porous media flow [33] as applied to petroleum
reservoir engineering [14]. We can mention modelling the movement of contaminants in groundwater [4],
the sedimentation–consolidation process [32], freeway traffic flow theory and simulation [34], modelling
ice sheet dynamics [19], and also in combustion theory [5], just to quote a few examples.
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Approximate solutions for various systems of PDEs have been considered in particular by Albeverio
and Danilov [1], Albeverio and Shelkovich [2], Danilov et al. [10–13], Joseph and Sahoo [16,18], Joseph et
al. [17] and Sahoo [28,29], Kunzinger et al. [23,24], Panov et al. [26], Shelkovich [30,31]. They are usually
called weak asymptotic solutions [10–13,26,30,31] and have proved their ability to replace the solutions
in the sense of distributions in many nonlinear instances.

2. Approximation scheme: uniqueness of approximate solutions

We suppose in addition that the vector f(u) has bounded variation on any segment. This allows to
decompose f(u) into the difference of two vector-functions with increasing components: f(u) = p(u)−q(u),
p(u) = (p1(u), . . . , pn(u)), q(u) = (q1(u), . . . , qn(u)); pi(u), qi(u), i = 1, . . . , n, are (nonstrictly) increasing
continuous functions.

Now we introduce the approximation procedure, resembling the method proposed in [7–9] which
reduces, by means of formulas (13,14), a system of PDEs to a system of the same number of ODEs in
the Banach space L∞(Tn), whose solution constitutes a weak asymptotic solution of the original system
of PDEs.

For ε > 0 we define u(t, x; ε) as a solution of the equation obtained by the following finite difference
approximation of the operator −divxf(u) + μΔxg(u):

d
dt

u(x, t; ε) =
1
ε

n∑
i=1

[pi(u(t, x − εei; ε)) − (pi + qi)(u(t, x; ε)) + qi(u(t, x + εei; ε))]

+
μ

ε2

n∑
i=1

[g(u(t, x + εei; ε)) − 2g(u(t, x; ε)) + g(u(t, x − εei; ε))]. (11)

This equation can be rewritten in the form

d
dt

u(x, t; ε) =
1
ε

n∑
i=1

[p̃i(u(t, x − εei; ε))

−(p̃i + q̃i)(u(t, x; ε)) + q̃i(u(t, x + εei; ε))], (12)

where

p̃i(u) = pi(u) +
μ

ε
g(u), q̃i(u) = qi(u) +

μ

ε
g(u)

are nondecreasing functions for all i = 1, . . . , n.
Equation (12) is endowed with the initial condition

u(0, x; ε) = u0(x). (13)

We will consider Eq. (12) as an autonomous ODE u̇ = F (u) in the Banach space L∞(Tn). Here

F (u)(x) = Fε(u)(x) .=
1
ε

n∑
i=1

[p̃i(u(x − εei)) − (p̃i + q̃i)(u(x)) + q̃i(u(x + εei))]

is a continuous nonlinear operator on L∞(Tn). It is known that Peano theorem fails in any infinite-
dimensional Banach space (cf. [15]). Therefore, we cannot claim even local existence of the Cauchy
problem for a general ODE u̇ = F (u). Fortunately, for particular problem (12), (13) the existence of
a solution (even global one) is actually fulfilled. We will establish this fact in Sect. 4. Let us firstly
investigate the uniqueness. We fix ε > 0 and denote by u(t, x) = u(t, x; ε) ∈ C1((0, T ), L∞(Tn)) a
solution of (12) defined on some interval (0, T ), 0 < T ≤ +∞. Since for each h(x) ∈ L1(Tn) the functional
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u �→ ∫
Tn

u(x)h(x)dx is linear and continuous on L∞(Tn), the function Ih(t) =
∫
Tn

u(t, x)h(x)dx ∈ C1((0, T ))

and I ′
h(t) =

∫
Tn

F (u(t, ·))(x)h(x)dx. This readily implies the following identity

ut = F (u(t, ·))(x) (14)

in the sense of distributions on (0, T ) × T
n (in D′((0, T ) × T

n)).

Theorem 2. Let u(t, x), v(t, x) ∈ C1((0, T ), L∞(Tn)) be solutions of (12), (13) with initial data u0(x),
v0(x) ∈ L∞(Tn), respectively. Then ∀t ∈ (0, T )

∫

Tn

(u(t, x) − v(t, x))+dx ≤
∫

Tn

(u0(x) − v0(x))+dx. (15)

Proof. In view of (14) (u − v)t = F (u) − F (v) in D′((0, T ) × T
n). Since this distribution is regular,

the chain rule (ϕ(u − v))t = ϕ′(u − v)(F (u) − F (v)) holds for every ϕ(z) ∈ C1(R). We may choose a
sequence ϕr(z) ∈ C1(R) such that ϕr(z) →

r→∞ z+ uniformly on R, while (ϕr)′(z) →
r→∞ sign +z pointwise

and 0 ≤ (ϕr)′(z) ≤ 1. By the above limit relations ϕr(u − v) → (u − v)+, (ϕr)′(u − v)(F (u) − F (v)) →
sign +(u− v)(F (u)−F (v)) as r → ∞ in D′((0, T )×T

n). Therefore, in the limit as r → ∞ we obtain that

((u − v)+)t = sign +(u − v)t = sign +(u − v)(F (u) − F (v)) in D′((0, T ) × T
n) (16)

(actually, the equality (w+)t = (sign +w)wt is well known, see for instance [35, p. 302]). Now observe that
for each u, v ∈ L∞(Tn)

sign +(u − v)(F (u) − F (v)) =
1
ε

n∑
i=1

[sign +(u − v)(p̃i(u(x − εei))

−p̃i(v(x − εei))) − sign +(u − v)(p̃i(u) − p̃i(v) + q̃i(u) − q̃i(v))
+ sign +(u − v)(q̃i(u(x + εei)) − q̃i(v(x + εei)))], u = u(x), v = v(x). (17)

Since 0 ≤ sign +(u − v) ≤ 1 and the functions p̃i(u), q̃i(u) increase,

sign +(u − v)(p̃i(u(x − εei)) − p̃i(v(x − εei)))
≤ (p̃i(u(x − εei)) − p̃i(v(x − εei)))+,

sign +(u − v)(q̃i(u(x + εei)) − q̃i(v(x + εei)))
≤ (q̃i(u(x + εei)) − q̃i(v(x + εei)))+,

sign +(u − v)(p̃i(u) − p̃i(v) + q̃i(u) − qi(v))
= (p̃i(u) − p̃i(v))+ + (q̃i(u) − q̃i(v))+,

and it follows from (17) that

sign +(u − v)(F (u) − F (v))

≤ 1
ε

n∑
i=1

[(p̃i(u(x − εei)) − p̃i(v(x − εei)))+ − (p̃i(u(x)) − p̃i(v(x)))+

+(q̃i(u(x + εei)) − q̃i(v(x + εei)))+ − (q̃i(u(x)) − q̃i(v(x)))+]. (18)
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Taking into account that for each i = 1, . . . , n∫

Tn

(p̃i(u(x − εei)) − p̃i(v(x − εei)))+dx =
∫

Tn

(p̃i(u(x)) − p̃i(v(x)))+dx,

∫

Tn

(q̃i(u(x + εei)) − q̃i(v(x + εei)))+dx =
∫

Tn

(q̃i(u(x)) − q̃i(v(x)))+dx,

we deduce from (18) that ∫

Tn

sign +(u(x) − v(x))(F (u)(x) − F (v)(x))dx ≤ 0.

It follows from this inequality and (16) that
d
dt

∫

Tn

(u(t, x) − v(t, x))+dx =
∫

Tn

((u(t, x) − v(t, x))+)tdx ≤ 0 in D′((0, T )).

From this and continuity of the function t → ∫
Tn

(u(t, x)− v(t, x))+dx we readily obtain relation (15). �

Corollary 1. (Comparison principle) If u0(x) ≤ v0(x) and u(t, x), v(t, x) are solutions of (12), (13) with
initial data u0, v0, then u(t, x) ≤ v(t, x) for all t ∈ (0, T ) and almost all x ∈ T

n.

Proof. In view of (15) for all t ∈ (0, T )∫

Tn

(u(t, x) − v(t, x))+dx ≤
∫

Tn

(u0(x) − v0(x))+dx = 0,

which implies that u(t, x) ≤ v(t, x) for a.e. x ∈ T
n. �

Obviously, Corollary 1 implies the uniqueness of a solution of (12), (13). Another consequence of this
corollary is the following.

Corollary 2. (Maximum/minimum principle) Assume that a ≤ u0(x) ≤ b and u(t, x) is solution of (12),
(13) with initial data u0. Then a ≤ u(t, x) ≤ b for all t ∈ (0, T ) and a.e. x ∈ T

n. In particular,
‖u(t, ·)‖∞ ≤ ‖u0‖∞.

Proof. As is directly verified, any constant u ≡ c is a solution of (12) (because F (c) ≡ 0). Thus, the
desired statement readily follows from the comparison principle. �

Corollary 3. (L1-stability) Assume that u(t, x), v(t, x) are solutions of (12), (13) with initial functions
u0(x), v0(x), respectively. Then for all t ∈ (0, T )∫

Tn

|u(t, x) − v(t, x)|dx ≤
∫

Tn

|u0(x) − v0(x)|dx.

Proof. For the proof one only need to use the identity |u − v| = (u − v)+ + (v − u)+ and the statement
of Theorem 2. �

3. Estimates on the approximate solutions

In this section we obtain uniform estimates of approximate solutions, which in particular guarantee their
compactness in L1

loc([0, T ) × T
n). First, notice that by Corollary 2 for all t ∈ [0, T )

‖u(t, ·; ε)‖∞ ≤ M = ‖u0‖∞. (19)
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Second, since u(t, x+Δx; ε) is a solution of (12), (13) with initial function u0(x+Δx) for every Δx ∈ R
n,

then by Corollary 3 for all t ∈ [0, T )∫

Tn

|u(t, x + Δx; ε) − u(t, x; ε)|dx ≤
∫

Tn

|u0(x + Δx) − u0(x)|dx ≤ ωx(|Δx|), (20)

where

ωx(h) = sup
Δx∈Rn,|Δx|≤h

∫

Tn

|u0(x + Δx) − u0(x)|dx

is the continuity modulus of u0(x) in L1(Tn). We use here the notation |z| for the Euclidean norm of a
finite-dimensional vector z.

Denote N1 = max
|u|≤M

n∑
i=1

(|pi(u)| + |qi(u)|), N2 = max
|u|≤M

|g(u)|. Then, directly from (2),

∀t1, t2 ∈ (0, T ) ‖u(t2, x; ε) − u(t1, x; ε)‖∞ ≤
(

2N1

ε
+

4μnN2

ε2

)
|t2 − t1|. (21)

We need an estimate on the continuity modulus with respect to the time variable which is independent
of ε. Let us begin with the following weak estimate.

Lemma 1. Assume that φ(x) ∈ C2(Tn). Then ∀t,Δt > 0 such that t + Δt < T ,∣∣∣∣∣∣
∫

Tn

(u(t + Δt, x; ε) − u(t, x; ε))φ(x)dx

∣∣∣∣∣∣ ≤ (N1‖∇φ‖∞ + μnN2‖∇2φ‖∞)Δt, (22)

where we denote by ∇2φ the vector of second-order derivatives φxixi
, i = 1, . . . , n.

Proof. We denote I(t) =
∫

Tn

u(t, x; ε)φ(x)dx. Then in view of (2)

I ′(t) =
∫

Tn

1
ε

n∑
i=1

[pi(u(t, x − εei; ε)) − (pi + qi)(u(t, x; ε))

+ qi(u(t, x + εei; ε))]φ(x)dx

+
∫

Tn

μ

ε2

n∑
i=1

[g(u(t, x + εei; ε)) − 2g(u(t, x; ε)) + g(u(t, x − εei; ε))]φ(x)dx

=
∫

Tn

n∑
i=1

[
pi(u(t, x; ε))

φ(x + εei) − φ(x)
ε

− qi(u(t, x; ε))
φ(x) − φ(x − εei)

ε

]
dx

+
∫

Tn

μg(u(t, x; ε))
n∑

i=1

φ(x − εei) − 2φ(x) + φ(x + εei)
ε2

dx. (23)

Since for each i = 1, . . . , n ∣∣∣∣φ(x ± εei) − φ(x)
ε

∣∣∣∣ ≤ ‖∇φ‖∞,

∣∣∣∣φ(x + εei) − 2φ(x) + φ(x − εei)
ε2

∣∣∣∣ ≤ ‖∇2φ‖∞
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and |u(t, x; ε)| ≤ M it follows from (23) that I ′(t) ≤ N1‖∇φ‖∞ + μnN2‖∇2φ‖∞. Therefore, |I(t + Δt) −
I(t)| ≤ (N1‖∇φ‖∞ + μnN2‖∇2φ‖∞)Δt, which yields (22). �

Let β(y) ∈ C∞
0 (Rn) be a nonnegative function supported in the unit ball |x| ≤ 1 such that

∫
Rn

β(y)dy =

1. We introduce the averaging kernels βh(x) = h−nβ(x/h), h > 0. Obviously, the functions βh(x) converge
as h → 0 to the Dirac δ-measure in D′(Rn). For a function u(x) ∈ L1

loc(R
n) we define the corresponding

averaged functions

uh(x) = u ∗ βh(x) =
∫

Rn

u(x − y)βh(y)dy =
∫

Rn

u(x − hy)β(y)dy.

It is well known that uh(x) ∈ C∞(Rn) for all h > 0 and uh(x) → u(x) as h → 0 in L1
loc(R

n) and almost
everywhere in R

n. It is clear that the functions uh(x) are periodic whenever u(x) is a periodic function.
The following result is the straightforward adaptation of Kruzhkov’s lemma [20, Lemma 1] for the

periodic case.

Lemma 2. Suppose that u(x) ∈ L1(Tn), h > 0. Then∫

Tn

|u(x)(sign u)h(x) − |u(x)||dx ≤ 2ωu(h), (24)

where

ωu(h) = sup
Δx∈Rn,|Δx|≤h

∫

Tn

|u(x + Δx) − u(x)|dx

is the continuity modulus of u(x) in L1(Tn).

Proof. For all x, z ∈ T
n we have

|u(x)sign u(z) − |u(x)|| = |(u(x) − u(z))sign u(z) + |u(z)| − |u(x)||
≤ |u(x) − u(z)| + ||u(z)| − |u(x)|| ≤ 2|u(x) − u(z)|. (25)

Further, by the definition of averaged functions

u(x)(sign u)h(x) − |u(x)| =
∫

Rn

(u(x)sign u(x − y) − |u(x)|)βh(y)dy,

where we use the identity
∫
Rn

βh(y)dy = 1. Therefore,

∫

Tn

|u(x)(sign u)h(x) − |u(x)||dx

≤
∫

Tn

⎛
⎝

∫

Rn

|u(x)sign u(x − y) − |u(x)||βh(y)dy

⎞
⎠dx

≤ 2
∫

Tn

⎛
⎝

∫

Rn

|u(x) − u(x − y)|βh(y)dy

⎞
⎠ dx

= 2
∫

Rn

⎛
⎝

∫

Tn

|u(x) − u(x − y)|dx

⎞
⎠βh(y)dy, (26)
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where we take into account inequality (25). Since suppβh(y) lies in the ball |y| ≤ h while for |y| ≤ h∫

Tn

|u(x) − u(x − y)|dx =
∫

Tn

|u(x + y) − u(x)|dx ≤ ωu(h),

then inequality (24) follows from (26) and the identity
∫
Rn

βh(y)dy = 1. �

Now we are ready to prove the following “strong” estimate.

Proposition 1. For every t ≥ 0, Δt > 0, such that t + Δt < T∫

Tn

|u(t + Δt, x; ε) − u(t, x; ε)|dx ≤ ωt(Δt), (27)

where ωt(Δt) .= inf
h>0

(4ωx(h) + c1N1Δt/h + μnc2N2Δt/h2), and c1, c2 are universal constants.

Proof. Let 0 ≤ t < t + Δt < T . We take in (22) φ(x) = (sign v)h(x), where v = v(x) = u(t + Δt, x; ε) −
u(t, x; ε). Since ∇φ = (sign v) ∗ ∇βh(x), ∇2φ = (sign v) ∗ ∇2β

h(x), and |sign v| ≤ 1, then ‖∇φ‖∞ ≤
‖∇βh‖1 = c1/h, ‖∇2φ‖∞ ≤ ‖∇2β

h‖1 = c2/h, where c1 =
∫ |∇β(y)|dy, c2 =

∫ |∇2β(y)|dy, and it follows
from (22) that ∫

Tn

v(x)(sign v)h(x)dx ≤ c1N1Δt/h + nμc2N2Δt/h2.

This estimate and Lemma 2 imply that∫

Tn

|v(x)|dx =
∫

Tn

v(x)(sign v)h(x)dx +
∫

Tn

(|v(x)| − v(x)(sign v)h(x))dx

≤
∫

Tn

v(x)(sign v)h(x)dx +
∫

Tn

|v(x)(sign v)h(x) − |v(x)||dx

≤ c1N1Δt/h + nμc2N2Δt/h2 + 2ωv(h), (28)

where

ωv(h) = sup
Δx∈Rn,|Δx|≤h

∫

Tn

|v(x + Δx) − v(x)|dx

≤ sup
Δx∈Rn,|Δx|≤h

∫

Tn

|u(t + Δt, x + Δx; ε) − u(t + Δt, x; ε)|dx

+ sup
Δx∈Rn,|Δx|≤h

∫

Tn

|u(t, x + Δx; ε) − u(t, x; ε)|dx ≤ 2ωx(h), (29)

where we take into account estimate (20). In view of (28), (29) we obtain that∫

Tn

|u(t + Δt, x; ε) − u(t, x; ε)|dx ≤ 4ωx(h) + c1N1Δt/h + nμc2N2Δt/h2

and to complete the proof it only remains to notice that h > 0 is arbitrary. �

Observe that both the functions ωx(h) → 0, ωt(h) → 0 as h → 0 and do not depend on ε.
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Lemma 3. Suppose that u(x) ∈ L∞(Tn) and a(u), b(u) are nondecreasing functions on R. Then for any
y ∈ R

n ∫

Tn

a(u(x))(b(u(x + y)) − b(u(x)))dx ≤ 0. (30)

Proof. We suppose first that a(u) = sign +(u − k), where k ∈ R. Then∫

Tn

a(u(x))(b(u(x + y)) − b(u(x)))dx

=
∫

Tn

sign +(u(x) − k)(b(u(x + y)) − b(k))dx −
∫

Tn

sign +(u(x) − k)(b(u(x)) − b(k))dx

≤
∫

Tn

(b(u(x + y)) − b(k))+dx −
∫

Tn

(b(u(x)) − b(k))+dx = 0,

where we take into account that for a nondecreasing b(u)

sign +(u(x) − k)(b(u(x + y)) − b(k)) ≤ (b(u(x + y)) − b(k))+,

sign +(u(x) − k)(b(u(x)) − b(k)) = (b(u(x)) − b(k))+.

Thus, (30) holds for a(u) = sign +(u − k).
In the case of an arbitrary continuous nondecreasing function a(u) we take M = ‖u‖∞ and notice

that for |u| ≤ M

a(u) = a(−M) +

M∫

−M

sign +(u − k)da(k),

where da(k) is a nonnegative Stieltjes measure. Therefore, using the Fubini theorem, we get∫

Tn

a(u(x))(b(u(x + y)) − b(u(x)))dx = a(−M)
∫

Tn

(b(u(x + y)) − b(u(x)))dx

+

M∫

−M

∫

Tn

sign +(u(x) − k)(b(u(x + y)) − b(u(x)))dxda(k) ≤ 0,

as was to be proved.
Finally, in the general case when a(u) may be discontinuous we can choose the sequence ar(u), r ∈ N,

of continuous nondecreasing functions, which pointwise converges to a(u) as r → ∞. As we already
proved, ∫

Tn

ar(u(x))(b(u(x + y)) − b(u(x)))dx ≤ 0.

Passing in the above relation to the limit as r → ∞, we arrive at (30). �

Corollary 4. Let u(t, x; ε) be the approximate solution. Then for any (merely continuous) convex function
η(u) ∫

Tn

η(u(t, x; ε))dx ≤
∫

Tn

η(u0(x))dx. (31)

In particular, ‖u(t, ·; ε)‖Lp(Tn) ≤ ‖u0‖Lp(Tn) for any p ≥ 1.
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Proof. Without loss of generality we can assume that η(u) ∈ C1(R). The general case is treated using an
approximation procedure. By the chain rule and (12)

d
dt

∫

Tn

η(u(t, x; ε))dx =
∫

Tn

d
dt

η(u(t, x; ε))dx

=
1
ε

n∑
i=1

⎛
⎝

∫

Tn

η′(u(t, x; ε))(p̃i(u(t, x − εei; ε)) − p̃i(u(t, x; ε)))dx

+
∫

Tn

η′(u(t, x; ε))(q̃i(u(t, x + εei; ε)) − q̃i(u(t, x; ε)))dx

⎞
⎠ . (32)

Since the functions η′(u), p̃i(u), q̃i(u) are nondecreasing, then by Lemma 3 for each i = 1, . . . , n

∫

Tn

η′(u(t, x; ε))(p̃i(u(t, x − εei; ε)) − p̃i(u(t, x; ε)))dx ≤ 0,

∫

Tn

η′(u(t, x; ε))(q̃i(u(t, x + εei; ε)) − q̃i(u(t, x; ε)))dx ≤ 0

and it follows from (32) that d
dt

∫
Tn

η(u(t, x; ε))dx ≤ 0. This readily implies (31). �

Another consequence of Lemma 3 is the following a priori estimate (as we will establish in Sect. 4, the
approximate solution u(t, x; ε) exists for all time t ∈ R+, and we can assume that T = +∞).

Proposition 2. Let G(u) =
u∫
0

g(s)ds be a primitive for g(u). Then

μ

ε2

n∑
i=1

∫

(0,+∞)×Tn

(g(u(t, x + εei; ε)) − g(u(t, x; ε)))2dtdx ≤ 2 max
|u|≤M

|G(u)|. (33)

Proof. Like in the proof of Corollary 4, we have the relation

d
dt

∫

Tn

G(u(t, x; ε))dx

=
1
ε

n∑
i=1

⎛
⎝

∫

Tn

g(u(t, x; ε))(pi(u(t, x − εei; ε)) − pi(u(t, x; ε)))dx

+
∫

Tn

g(u(t, x; ε))(qi(u(t, x + εei; ε)) − qi(u(t, x; ε)))dx

⎞
⎠

+
μ

ε2

n∑
i=1

∫

Tn

g(u(t, x; ε))[g(u(t, x + εei; ε)) + g(u(t, x − εei; ε)) − 2g(u(t, x; ε)]dx. (34)
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In view of Lemma 3 for all i = 1, . . . , n∫

Tn

g(u(t, x; ε))(pi(u(t, x − εei; ε)) − pi(u(t, x; ε)))dx ≤ 0,

∫

Tn

g(u(t, x; ε))(qi(u(t, x + εei; ε)) − qi(u(t, x; ε)))dx ≤ 0

and it follows from (34) that

d
dt

∫

Tn

G(u(t, x; ε))dx ≤ μ

ε2

n∑
i=1

∫

Tn

g(u(t, x; ε))[g(u(t, x + εei; ε))

+ g(u(t, x − εei; ε)) − 2g(u(t, x; ε))]dx. (35)

In view of translation invariance of the Lebesgue measure on torus T
n we have the equalities∫

Tn

g(u(t, x; ε))g(u(t, x + εei; ε))dx =
∫

Tn

g(u(t, x − εei; ε))g(u(t, x; ε))dx,

∫

Tn

(g(u(t, x; ε)))2dx =
∫

Tn

(g(u(t, x + εei; ε)))2dx.

Therefore, ∫

Tn

g(u(t, x; ε))[g(u(t, x + εei; ε)) + g(u(t, x − εei; ε)) − 2g(u(t, x; ε))]dx

=
∫

Tn

[g(u(t, x; ε))g(u(t, x + εei; ε))

+g(u(t, x − εei; ε))g(u(t, x; ε)) − 2(g(u(t, x; ε)))2]dx

=
∫

Tn

[2g(u(t, x; ε))g(u(t, x + εei; ε)) − (g(u(t, x; ε)))2 − (g(u(t, x + εei; ε)))2]dx

= −
∫

Tn

(g(u(t, x + εei; ε)) − g(u(t, x; ε)))2dx

and it follows from (35) that

− d
dt

∫

Tn

G(u(t, x; ε))dx ≥ μ

ε2

n∑
i=1

∫

Tn

(g(u(t, x + εei; ε)) − g(u(t, x; ε)))2dx.

Integrating this inequality over the interval (0, T ), where T > 0, we obtain the estimate

μ

ε2

n∑
i=1

∫

(0,T )×Tn

(g(u(t, x + εei; ε)) − g(u(t, x; ε)))2dtdx

≤
∫

Tn

G(u0(x))dx −
∫

Tn

G(u(T, x; ε))dx ≤ 2 max
|u|≤M

|G(u)|

(we use estimate (19) in the last inequality), and to complete the proof, one only need to pass to the
limit as T → +∞. �
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4. Existence of approximate solutions

In this section we establish existence of a solution u = u(t, x) ∈ C1([0,+∞), L∞(Tn)) to approximate
problem (12), (13). Suppose first that the vectors p̃(u), q̃(u) are Lipschitz:

n∑
i=1

[|p̃i(u) − p̃i(v)| + |q̃i(u) − q̃i(v)|] ≤ L|u − v| ∀u, v ∈ R,

where L is a positive constant. Then the map F is Lipschitz continuous as well:

‖F (u) − F (v)‖∞ ≤ 3L

ε
‖u − v‖∞ ∀u, v ∈ L∞(Tn).

By Picard theorem for ODE in the Banach space L∞(Tn) there is a unique solution u = u(t) ∈
C1([0, T ), L∞(Tn)) of Cauchy problem (12), (13) defined on some interval [0, T ), T > 0. Moreover in
view of (19) this solution is bounded in L∞(Tn): ‖u(t)‖∞ ≤ M . This readily implies that our solution
exists on the maximal interval [0,+∞). In the general case we can choose sequences p̃r(u), q̃r(u), r ∈ N, of
Lipschitz continuous vectors with nondecreasing components p̃ri, q̃ri, i = 1, . . . , n, such that p̃r(u) → p̃(u),
q̃r(u) → q̃(u) as r → ∞ uniformly on any segment. Let ur(t) ∈ C1([0,+∞), L∞(Tn)) be a unique solution
to the problem

u̇ = Fr(u), u(0) = u0, (36)
where for u = u(x) ∈ L∞(Tn)

Fr(u)(x) =
1
ε

n∑
i=1

[p̃ri(u(x − εei)) − (p̃ri + q̃ri)(u(x)) + q̃ri(u(x + εei))].

Theorem 3. The sequence ur(t) converges as r → ∞ to a unique solution u(t) = u(t, x) ∈ C1([0,+∞),
L∞(Tn)) of original approximate problem (12), (13) in C1([0,+∞), L1(Tn)). In particular, a global so-
lution of this problem exists.

Proof. In view of estimates (19), (21) (or (27)) the sequence ur(t) is uniformly bounded and equicon-
tinuous in C([0,+∞), L1(Tn)). Moreover, estimates (19), (20) imply precompactness of sequences ur(t),
r ∈ N, in L1(Tn) for any fixed t ≥ 0. By generalized Arzelà–Ascoli theorem the family ur is precom-
pact in C([0,+∞), L1(Tn)), and we can extract a subsequence of um = urm

(t), which converges to some
function u(t) ∈ C([0,+∞), L1(Tn)) uniformly on any segment [0, T ]. By (19), (21) the limit function
u(t) ∈ C([0,+∞), L∞(Tn)), and ‖u(t)‖∞ ≤ M . Passing to the limit as m → ∞ in the equality

um(t) = u0 +

t∫

0

Fm(um(s))ds, Fm
.= Frm

,

and taking into account that as m → ∞

Fm(um(s)) =
1
ε

n∑
i=1

[p̃mi(um(s, x − εei))

−(p̃mi + q̃mi)(um(s, x)) + q̃mi(um(s, x + εei))]

→ F (u(s)) =
1
ε

n∑
i=1

[p̃i(u(s, x − εei)) − (p̃i + q̃i)(u(s, x)) + q̃i(u(s, x + εei))]

in C([0, t], L1(Tn)) (where p̃mi = p̃rmi, q̃mi = q̃rmi), we arrive at the identity

u(t) = u0 +

t∫

0

F (u(s))ds ∀t > 0.
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This implies that u(t) = u(t, x) ∈ C1([0,+∞), L∞(Tn)) is a solution of (12), (13). Since this solution
is unique, we see that the limit point u(t) of a subsequence um does not depend on the choice of this
subsequence. The latter readily implies that the original sequence ur(t) converges to u(t) as r → ∞ in
C([0,+∞), L1(Tn)). Since d

dt (ur − u)(t) = Fr(ur) − F (u) →
r→∞ 0 in C([0,+∞), L1(Tn)), we conclude that

ur(t) converges as r → ∞ to u(t) in C1([0,+∞), L1(Tn)). This concludes the proof. �

5. Convergence of approximations

Let, as above, u = u(t, x; ε) be a unique solution of (12), (13). It follows from estimates (19), (20), (27)
that the family u = u(t, x; ε) is precompact in C([0,+∞), L1(Tn)). This allows to extract a sequence
εr → 0 such that ur(x, t) = u(t, x; εr) → u(t, x) as r → ∞ in C([0,+∞), L1(Tn)) and, therefore, in
L1

loc(Π) as well.
Let us prove that this limit function u(t, x) is an e.s. of Cauchy problem (1), (3).

Theorem 4. The approximate solutions u(t, x; ε) → u(t, x) as ε → 0 in C([0,+∞), L1(Tn)), where u(t, x)
is a unique e.s. of (1), (3).

Proof. Let uε = u(t, x; ε) be a solution of approximate problem (12), (13) and k ∈ R. Since v ≡ k is a
solution of (12), then by relations (16), (18)
for all t > 0

∂

∂t
|u(t, x; ε) − k| =

∂

∂t
[(uε − k)+ + (k − uε)+]

≤ 1
ε

n∑
i=1

[|p̃i(u(t, x − εei; ε)) − p̃i(k)| − |p̃i(u(t, x; ε)) − p̃i(k)|

+|q̃i(u(t, x + εei; ε)) − q̃i(k)| − |q̃i(u(t, x; ε)) − q̃i(k)|]

=
1
ε

n∑
i=1

[|pi(u(t, x − εei; ε)) − pi(k)| − |pi(uε(t, x; ε)) − pi(k)|

+|qi(u(t, x + εei; ε)) − qi(k)| − |qi(u(t, x; ε)) − qi(k)|]

+
μ

ε2

n∑
i=1

[|g(u(t, x − εei; ε)) − g(k)|

−2|g(u(t, x; ε)) − g(k)| + |g(u(t, x + εei; ε)) − g(k)|]. (37)

Multiplying this inequality by a nonnegative test function φ = φ(t, x) ∈ C2
0 (Π) and integrating the

left-hand side by parts, we arrive at

−
∫

Π

|u(t, x; ε) − k|φtdtdx ≤
∫

Π

n∑
i=1

{
1
ε
[(|pi(u(t, x − εei; ε)) − pi(k)|

−|pi(uε) − pi(k)|) + (|qi(u(t, x + εei; ε)) − qi(k)|
−|qi(uε) − qi(k)|)] +

μ

ε2
[|g(u(t, x − εei; ε)) − g(k)|

− 2|g(uε) − g(k)| + |g(u(t, x + εei; ε)) − g(k)|]
}

φdtdx

=
∫

Π

n∑
i=1

{
|pi(uε) − pi(k)|φ(t, x + εei) − φ(t, x)

ε

−|qi(uε) − qi(k)|φ(t, x) − φ(t, x − εei)
ε
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+ μ|g(uε) − g(k)|φ(t, x + εei) − 2φ(t, x) + φ(t, x − εei)
ε2

}
dtdx

=
∫

Π

n∑
i=1

[(|pi(uε) − pi(k)| − |qi(uε) − qi(k)|)φxi
+ |g(uε) − g(k)|φxixi

]dtdx + I(ε), (38)

where I(ε) → 0 as ε → 0. Since the functions pi(u), qi(u) increase, then

|pi(uε) − pi(k)| − |qi(uε) − qi(k)|
= sign (uε − k)[(pi(uε) − pi(k)) − (qi(uε) − qi(k))]
= sign (uε − k)(fi(u) − fi(k))

for all i = 1, . . . , n, and it follows from (38) that
∫

Π

{
|uε − k|φt +

n∑
i=1

[sign (uε − k)(fi(uε) − fi(k))φxi

+μ|g(uε) − g(k)|φxixi

}
dtdx ≥ −I(ε), uε = u(t, x; ε). (39)

As was shown above, the sequence u(t, x; εr) → u(t, x) as r → ∞ in L1
loc(Π). Passing to the limit in (39)

as ε = εr → 0, we obtain the entropy relation∫

Π

{|u − k|φt + sign (u − k)(f(u) − f(k)) · ∇xφ

+μ|g(u) − g(k)|Δxφ}dtdx ≥ 0, u = u(t, x), k ∈ R. (40)

Since a nonnegative test function φ = φ(t, x) ∈ C1
0 (Π̄) is arbitrary, identity (40) means that u satisfies

entropy relation (4). Recall that u(t, x; εr) → u(t, x) as r → ∞ in C([0,+∞), L1(Tn)) and u(0, x; ε) =
u0(x). Therefore, u(0, x) = u0(x) as well, and in view of continuity of u(t, ·) in L1(Tn) we obtain that
u(t, ·) → u0 in L1(Tn) as t → 0, which implies the initial condition (5). It remains only to establish that
∇xg(u) ∈ L2

loc(Π). We will demonstrate that actually ∇xg(u) ∈ L2((0,+∞) ×T
n). For that observe that

by Proposition 2 the sequences vri = (g(u(t, x+εrei; εr))−g(u(t, x; εr)))/εr are bounded in L2((0,+∞)×
T

n) for all i = 1, . . . , n: ‖vri‖2 ≤ C/μ, where C = 2max|u|≤M |G(u)|. Therefore, may be after extraction
of a subsequence, vri ⇀ vi as r → ∞ weakly in L2((0,+∞) × T

n). Let φ(t, x) ∈ C1
0 (Π). Then∫

Π

g(u(t, x; εr))
φ(t, x − εrei) − φ(t, x)

εr
dtdx

=
∫

Π

vri(t, x)φ(t, x)dtdx →
r→∞

∫

Π

vi(t, x)φ(t, x)dtdx.

On the other hand, as r → ∞ u(t, x; εr) → u(t, x) in L1
loc(Π) and

φ(t, x − εrei) − φ(t, x)
εr

→ −φxi
(t, x)

uniformly on Π, hence∫

Π

g(u(t, x; εr))
φ(t, x − εrei) − φ(t, x)

εr
dtdx →

r→∞ −
∫

Π

g(u(t, x))φxi
(t, x)dtdx.

Comparing the above limit relation, we conclude that for all φ(t, x) ∈ C1
0 (Π)

−
∫

Π

g(u(t, x))φxi
(t, x)dtdx =

∫

Π

vi(t, x)φ(t, x)dtdx,
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that is, the distributions g(u)xi
= vi ∈ L2((0,+∞) × T

n), as was to be proved. �
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