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Abstract. A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects
at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the
balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is
reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization
and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole
structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical
and experimental results on magnetoelectric coupling.
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1. Introduction

The growing interest in materials and structures characterized by noticeable electromagneto-mechanical
coupling has been recently motivated the development of physical models of microscopic interactions
in matter. In particular, materials manifesting both ferromagnetic and ferroelectric effects have been
investigated from theoretical and experimental point of view to explain structural features involved in
these behaviors [1,2].
Concerning with continuum theories of electromagnetic media, beside classical phenomenological models
of dielectric and magnetic solids (see for example [3,4]), more recent microcontinuum theories have been
introduced in order to account for internal degrees of freedom by which polarization and magnetization
can be modeled [5]. These theories are based on the mechanical micromorphic field theory extended to
electromagnetic interactions and, differently from the usual approach [6,7], rely on charge microdensity
and electric multipoles connected to microdeformation.
Although microdeformation allows for specific contributions to polarization and magnetization, the basic
element of magnetic dipoles, i.e., intrinsic microcurrents, is excluded from the domain where rates of
microdisplacement apply. In particular, at equilibrium, macro- and microvelocities are zero contextually
with nonzero stationary microcurrents. Obviously this argument remains valid for nonequilibrium con-
figurations and, in general, holds for solids as well as for fluids, liquid crystals or composite materials
modeled as micromorphic continua.
The previous comment motivates the present work where we look for a description of equilibrium in
electromagnetic solids, compatible with stationary micromotions of bound charges. After a summary of the
micromorphic electromagnetic model developed in [5,8], we focus on the characterization of equilibrium
adopting a lower-scale description which accounts for microcurrents as stationary micromotions. The
interaction among different atomic components of the continuum complies with a microdeformation, in
order to establish the equilibrium configuration. This approach, introduced in Sect. 3, allows us to obtain
an algebraic equation for the microgyration tensor N̂, which involves magnetic induction, electric field and
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its gradient. It is shown that, for uniform fields in the presence of intrinsic polarization, the solution for N̂
cannot be written as a linear map with respect to the electric and magnetic fields. Since magnetization MMM
is linear in N̂, the previous result implies a nonlinear dependence of MMM on the electromagnetic field, as
shown in Sect. 5. This can be realized after the solution of the set of equilibrium equations which, beside
the balance laws for momentum and angular momentum, encloses the evolution equations for multipoles,
here limited to the second order (quadrupole), as functions of microdeformation. The evolution equation
for quadrupole can be solved in terms of the successive order parameters (octupoles for null deformation)
so that polarization, at first order, can be obtained as function of the microdeformation. The present
results are compatible with theoretical and experimental results on the physics of magnetoelectric coupling
in solids.

2. Microcontinuum electromagneto-elastic model

Here we resume the essential results of a microcontinuum theory for electromagnetic media which relies
on both microdensities of mass and electric charge to account for electromagneto-elastic coupling. Details
on the general formulation and derivations of balance equations can be found in previous papers [5,8].
According to the common description of internal degrees of freedom within the continuum particle (see
[9]), we introduce the relative position ξξξ of a point in the particle P with respect to its center of mass
x. Denoting by Ξ and X the corresponding vectors in the reference (material) configuration, we assume
the maps x = x̃(X, t), ξξξ = ξ̃ξξ (X,Ξ, t) to be sufficiently smooth and invertible. In particular, we pose

ξ̃ξξ (X,Ξ, t) = χχχ (X, t)Ξ, or ξi = χiJΞJ , (2.1)

where χχχ is the microdeformation tensor, with inverse XXX (χiJXJk = δik). As usual, we denote by F = ∇Xx̃
the deformation tensor and introduce the following strain measures [9]

C = χχχ T χχχ , C = FT XXX T , Γ = XXX (∇X χχχ )T , (2.2)

known, respectively, as microdeformation strain, deformation strain and wryness. From the last tensor,
posing γijh = χiHΓHKLF−1

Lj ΞKh, the gradient of ξξξ can be expressed as

(∇ξξξ )T = γγγ ξξξ . (2.3)

Also, the material time derivative of ξξξ is expressed by the microgyration tensor N(x, t) as

ξ̇ξξ = Nξξξ . (2.4)

Then, absolute position and velocity of a point in the particle are x + ξξξ and v + ξ̇ξξ , respectively, where
v = ẋ. Denoting by Pt the current configuration of the particle P, we define mass and charge densities
as

ρ(x, t) =
1

Δv′

∫

Pt

ρ′(x + ξξξ , t) dv′, q(x, t) =
1

Δv′

∫

Pt

σ′(x + ξξξ , t) dv′ (2.5)

where Δv′ = vol(Pt) and ρ′ and σ′ are, respectively, the microdensities of mass and bound charge.
Since we are not interested into conducting media, density of free charges is neglected here. Beside the
microinertia tensor

III (x, t) =
1

ρΔv′

∫

Pt

ρ′(x + ξξξ , t) ξξξ ⊗ ξξξ dv′, (2.6)

we introduce electric dipole and quadrupole densities as

p(x, t) =
1

Δv′

∫

Pt

σ′(x + ξξξ , t) ξ dv′, Q(x, t) =
1

Δv′

∫

Pt

σ′(x + ξξξ , t) ξξξ ⊗ ξξξ dv′. (2.7)
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Electric multipoles of successive order are similarly defined. A hierarchy of evolution equations for mul-
tipoles can be derived using standard techniques of continuum mechanics [10]. In particular, up to the
first successive multipole, p and Q satisfy the following evolution equations [8]

ṗ + p(∇ · v) = Np − (∇ · N)Q − N : γγγ Q

Q̇ + Q(∇ · v) = 2Sym(NQ) − (∇ · N) QQQ − N : γγγ QQQ (2.8)

where

QQQ =
1

Δv′

∫

Pt

σ′ ξξξ ⊗ ξξξ ⊗ ξξξ dv′

is the electric octupole density. An analogous derivation yields the following evolution equation for the
microinertia tensor

İII = 2Sym(NIII ) − (∇ · N)III − N : γγγ III (2.9)

where

III =
1

ρΔv′

∫

Pt

ρ′ ξξξ ⊗ ξξξ ⊗ ξξξ dv′.

Within the present microcontinuum approach, it has been shown that Maxwell’s equations in matter can
be obtained by a suitable expansion of charge microdensity in terms of the vector ξξξ [8]. This derivation
exploits the evolution equations (2.8) and allows to write polarization P, magnetization M and current
J in terms of electric multipoles densities. Up to second-order multipoles, we have

P = p − 1
2
∇ · Q, J = qv + Np,

M = MMM − 1
c
v × P, Mi =

1
2c

εijk(Njh − Ljh)Qhk

(2.10)

where L = (∇v)T . Here we use Heaviside–Lorentz units and, accordingly, Maxwell’s equations for electric
and magnetic fields E, H read

∇ · B = 0, ∇ × E +
1
c

∂B
∂t

= 0,

∇ · D = q, ∇ × H − 1
c

∂D
∂t

=
1
c
J

(2.11)

where B = H+M and D = E+P are, respectively, the magnetic induction and the electric displacement.
Balance equations for momentum, moment of momentum and energy can be derived after evaluating
electromagnetic forces by an expansion of electric and magnetic fields about ξξξ = 0. For the next analysis,
we are here interested into the first two balance laws. Denoting by T and m, respectively, the Cauchy
stress tensor and the couple stress tensor, we obtain

ρv̇ = ρf + f em + ∇ · T, (2.12)

ρσσσ = ρ(∇f)T III + Cem + TT − S + ∇ · m. (2.13)

where f is the bulk mechanical force per unit mass and σσσ is the rate of spin inertia, given by

σσσ = ṄIII + NNIII . (2.14)
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The explicit form of electromagnetic force and couple densities is

f em = q EEE + (p · ∇) EEE +
1
2
(Q · ∇)∇ EEE +

1
c
[(N − L)p] × B

+
1
c
[(N − L)Q∇] × B +

1
2c

B × [
(Q · ∇)LT

]
.

(2.15)

Cem
ij = piEj +

[
Ei,k +

1
c
εipq(Npk − Lpk)Bq

]
Qkj (2.16)

where EEE = E+ v
c ×B. Tensor equation (2.13) is the dual form of the vector balance on angular momentum

[9]. The second-order tensor S, introduced in this case, is symmetric. In general, additional constitutive
equations for T, S and m are required to obtain explicit forms of balance laws. Common principles of
continuum mechanics imply that these tensors depend on the strain measures (2.2) which involve macro-
and microdeformations [8].

3. Equilibrium statements for microstructure

In this section, we look for a characterization of equilibrium conditions in the microstructure of continua in
connection with their electromagnetic properties. We observe that the micromorphic model introduced in
the previous section accounts for a dimensional scale below the macroscopic one. Usually, in the context
of solid phase, this scale pertains to molecular structures such as the cell in a crystal lattice where
deformations and motions give rise to polarization variation, local current and magnetization, according
to Eq. (2.10). At equilibrium, all the microstructure contributions to current and magnetization, which
are due to velocity v and microgyration tensor N, vanish. Nevertheless, microlocal currents or magnetic
dipoles pertaining the lower atomic scale exist at equilibrium, irrespective of molecular deformations, and
may contribute to magnetization and polarization.
Owing to these facts, we look for a model which account for atomic behavior and introduce a microstruc-
ture at a lower scale which, at equilibrium, represents particles endowed with electric multipoles and
stationary currents. More precisely, if we denote by ξ̂ξξ the relative position of a point within such particle
P̂ with respect to ξξξ and let N̂ to be the corresponding microrotation tensor, according to (2.4) we can
write

¨̂
ξξξ = ˙̂Nξ̂ξξ + N̂N̂ξ̂ξξ .

Then, the condition ˙̂N = 0 describes a stationary micromotion in P̂. The physical meaning of this
statement can be easily recognized in the particular case of a linear micropolar model where χhH =
δhH − εhijφjδiH and Φ is the microrotation vector. In this case, the micromotion is a rigid rotation
around Φ with angular velocity of modulus ‖Φ̇‖ and N̂ij = −εijkφ̇k. The substitution into the previous

equation shows that the condition ˙̂N = 0 amounts to a stationary microrotation.
The time independent value of N̂ is assumed to be also independent on the microdeformation, but depends
on the electric and magnetic fields E and B at equilibrium.
We conclude that if we concern with equilibrium in such a structure, the following conditions hold

v = 0, N = 0,
˙̂N = 0. (3.1)

Now we consider a nonconducting electromagnetic medium B whose molecular structure consists of n
atoms, in the absence of mechanical body forces, and pose q = 0, f = 0. We model B as a macroscopically
rigid continuum due to the superposition of a set of n micromorphic continua B̂(ν) whose particles have
an internal structure described by a relative microposition ξ̂ξξ and, according to our previous notation, we
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denote with a superimposed hat the corresponding mechanical quantities. Also, we represent multipoles
p̂(ν) and Q̂(ν), as well as the microinertia tensor ÎII (ν)

for each element of the set, in the form

p̂(ν) = p̄(ν) + ṕ(ν), Q̂(ν) = Q̄(ν) + Q́(ν), ÎII (ν)
= ĪII (ν) + ÍII (ν)

(ν = 1, . . . , n)

where p̄,Q̄, ĪII denote quantities pertaining the atomic structure in the absence of microdeformation and
ṕ, Q́, ÍII are perturbed values due to the interaction among the n microcontinua, which is responsible of
the molecular microdeformation. The tensor ÎII is assumed to be positive definite. Owing to Eqs. (2.14)–
(2.16) and (3.1), applied to each element of the set {B̂(ν)}, Eqs. (2.12) and (2.13), at equilibrium, reduce
to

f̂ em(ν) = 0 (3.2)

ρ̂(ν)N̂(ν)N̂(ν)ĪII (ν) = Ĉem(ν) (3.3)

where

f̂ em(ν) = (p̄(ν) · ∇)E +
1
2
(Q̄(ν) · ∇)∇E +

1
c
(N̂(ν)p̄(ν)) × B +

1
c
(N̂(ν)Q̄(ν)∇) × B,

Ĉ
em(ν)
ij = p̄

(ν)
i Ej +

(
Ei,k +

1
c
εipqN̂

(ν)
pk Bq

)
Q̄

(ν)
kj ,

and where contributions due to macro- and microdeformations have been suppressed. Here we remember
that, according to the previous analysis on the stationary conditions at equilibrium, N̂ does not depend on
microdeformation. Moreover, according to this model, the evolution equations (2.8), (2.9) at equilibrium
imply

N̂(ν)p̄(ν) − (∇ · N̂(ν))Q̄(ν) = 0,

2Sym(N̂(ν)Q̄(ν)) − (∇ · N̂(ν)) Q̄QQ (ν) = 0,

2Sym(N̂(ν)ĪII (ν)) − (∇ · N̂(ν))ĪII (ν) = 0.

(3.4)

Equations (3.2)–(3.4) determine the tensors N̂(ν) and the quantities p̄(ν), Q̄(ν), ĪII (ν) (ν = 1, . . . , n) for
a given electromagnetic static configuration. Interactions among the microcontinua are accounted for
in the balance equations of the whole microcontinuum which describe this coupling by means of the
microdeformation of the molecular structure. Again from Eqs. (2.12) and (2.13), in this case we have

(ṕ · ∇)E +
1
2
(Q́ · ∇)∇E +

1
c

(
n∑

ν=1

N̂(ν)ṕ(ν)

)
× B +

1
c

(
n∑

ν=1

N̂(ν)Q́(ν)∇
)

× B + ∇ · T = 0, (3.5)

n∑
ν=1

ρ̂(ν)N̂
(ν)
ij N̂

(ν)
jh Í(ν)

hk = ṕiEk + Ei,hQ́hk +
1
c
εipq

n∑
ν=1

N̂
(ν)
ph BqQ́

(ν)
hk + Tki − Sik + mikp,p, (3.6)

where

ṕ =
n∑

ν=1

ṕ(ν), Q́ =
n∑

ν=1

Q́(ν).



112 Page 6 of 13 M. Romeo ZAMP

These last equations have to be coupled with the evolution equations (2.8), (2.9) for dipole, quadrupole
and microinertia, which in the present formulation become

n∑
ν=1

[
N̂(ν)ṕ(ν) − (∇ · N̂(ν))Q́(ν) − N̂(ν) : γγγ Q̂(ν)

]
= 0,

n∑
ν=1

[
2Sym

(
N̂(ν)Q́(ν)

)
− (∇ · N̂(ν)) Q́QQ (ν) − N̂(ν) : γγγ Q̂QQ (ν)

]
= 0,

n∑
ν=1

ρ̂(ν)
[
2Sym

(
N̂(ν)ÍII (ν)

)
− (∇ · N̂(ν))ÍII

(ν) − N̂(ν) : γγγ ÎII
(ν)

]
= 0.

(3.7)

We observe that the terms due to deformation in these last equations account for the entire values of
second- and third-order multipoles Q̂(ν) and

Q̂QQ (ν)
= Q̄QQ (ν) + Q́QQ (ν)

, ÎII
(ν)

= ĪII
(ν) + ÍII

(ν)
.

The first step in looking for a solution to the present equilibrium problem is the determination of the
tensors N̂(ν). In the following, to save writing, we shall omit the superscript (ν). According to the
microstructure assumptions at the basis of Eqs. (3.2) and (3.3), we concern with an atomic (or ionic)
element whose center of mass is approximately placed at the center of positive charge. Hence, the second-
order moments ÎII and Q̂ contain, respectively, mass and charge microdensities ρ̂′ and σ̂′ of only negative
charges (electrons). Then, σ̂′ is assumed to be proportional to ρ̂′ and denoting by αe the (constant,
negative) ratio σ̂′/ρ̂′ we can write

Q̂ = ρ̂αeÎII . (3.8)

Exploiting the positive definiteness of III and Eq. (3.8), right multiplication of both sides of (3.3) by ĪII −1

yields

N̂ijN̂jh = αep̄iElQ̄
−1
lh + αe

(
Ei,h +

1
c
εipqN̂phBq

)
. (3.9)

Introducing the second-order tensors E and B with entries

Eij = αep̄iElQ̄
−1
lj , Bij =

αe

c
εijkBk,

we rewrite Eq. (3.9) in the form of the following equation for the unknown N̂,

N̂N̂ = E + αe(∇E)T + BN̂. (3.10)

In addition, Eq. (3.2) implies a restriction on the allowed values of dipole and quadrupole densities p̂, Q̂
and their dependence on the electromagnetic field. Determination of the general solution of (3.10) requires
a specific algebraic analysis on quadratic tensor equations. Here we point out some specific results which
will be useful in the next analysis. We observe that if E = 0, the nontrivial solution of (3.10) is

N̂ = B. (3.11)

In this case, the microgyration tensor is skewsymmetric and describes a pure microrotation around the
direction of the magnetic induction. Alternatively, if B = 0, we obtain

N̂ =
[
E + αe(∇E)T

]1/2
=: N̂(E), (3.12)

provided the square root exists. In the general case, where both electric and magnetic fields are different
from zero, it is easy to show that, if N̂(E) exists, Eq. (3.10) admits the solution

N̂ = N̂(E) + B, (3.13)
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if and only if N̂(E)B = 0. This result, which can be verified by direct substitution of (3.13) into (3.10),
characterizes the microgyration tensor for possible uncoupling of electric and magnetic fields.
However, concerning with spatially uniform fields, which will be considered in the following sections,
solutions in the form (3.13) are not compatible with the set of Eq. (3.2) and (3.4)1,2. In “Appendix A”,
we give a proof of this result which has an interesting consequence on the dependence of magnetization
from the electric field, as shown in Sect. 5.

4. Polarization in uniform fields

Our main interest pertains the representation of polarization and magnetization at equilibrium and their
dependence on the applied electromagnetic field. Here we deal with polarization in a spatially uniform
magnetic field in order to derive the increment of dipole and quadrupole densities at equilibrium, due to
microdeformation.
In the absence of dipole density p̄ for unstrained continua, Eq. (3.11) holds also in the presence of electric
field and we have

N̂
(ν)
ij = N̂ij =

αe

c
εijkBk. (4.1)

Owing to the independence of B on spatial variables, we have ∇ · N̂(ν) = 0 and Eqs. (3.4)–(3.6) reduce
to

1
c
(N̂ṕ) × B + ∇ · T = 0, (4.2)

N̂ijN̂jhÍhk =
1
c
εipqN̂phBqQ́hk + Tki − Sik + mikp,p + piEk (4.3)

N̂ṕ − N̂ : γγγ Q̂ = 0,

2Sym(N̂Q́) − N̂ : γγγ Q̂QQ = 0,

2Sym(N̂ÍII ) − N̂ : γγγ ÎII = 0,

(4.4)

where

ÍII =
1
ρ̂

n∑
ν=1

ρ̂(ν)ÍII (ν)
, Q̂ =

n∑
ν=1

Q̄(ν) + Q́,

and analogue positions for Q̂QQ , ÎII . After linearization, Eqs. (4.2)–(4.4) can be solved to obtain microde-
formation and incremental quantities ṕ, Q́, ÍII up to third-order multipoles. This analysis requires the
introduction of suitable constitutive equations which specify the dependence of T, S and m on mi-
crodeformation strain measures. The general case of micromorphic, anisotropic continua implies complex
constitutive laws which yield results in terms of a second-order deformation tensor and a large number
of constitutive elastic parameters. However, physically meaningful results can be achieved within the
simpler case of micropolar deformations and isotropic behavior of the continuum B. As previously noted,
the micropolar deformation tensor in its linear form can be expressed in terms of the microrotation vector
Φ as χhH = δhH − εhijφjδiH and the strain measure γγγ turns out to be

γlmn = −εlmpφp,n.

According to our hypothesis of rigid macrocontinuum, we can express the stress and couple stress tensors
for isotropic continua in the form (see [9])

Tij = κεjikφk, mijk = −1
2
εjkhmih, mih = αφp,pδih + βφi,h + γφh,i, (4.5)
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where κ, α, β, γ are real material parameters with κ > 0, γ > 0. Under the micropolar assumption, S = 0
and, accounting for (4.1) and (4.5), Eqs. (4.2) and (4.3) can be rewritten as

αe

c2
(ṕkBi − ṕiBk)Bk + κεijkφk,j = 0, (4.6)

εijk
αe

c2
(ρ̂αeÍkp − Q́kp)BpBj = 2κφi + (α + β)φh,hi − γφi,pp + εijkṕjEk. (4.7)

We observe that the reasoning used to justify Eq. (3.8) applies to both quantities Q̄ and Q́ separately.
This implies that the left-hand side of Eq. (4.7) vanishes and we get

2κφi + (α + β)φh,hi + γφi,pp + εijkṕjEk = 0. (4.8)

According to the micropolar assumption, equations (4.4)1,2 become

εijpBpṕj + (φh,hBp − φq,pBq)(Q̄pi + Q́pi) = 0, (4.9)

(εijlQ́jk + εkjlQ́ji)Bl + (φh,hBp − φq,pBq)(Q̄pik + Q́pik) = 0 (4.10)

These last equations represent the first two evolution equations of a hierarchical set for multipoles. They
can be exploited to derive the incremental multipoles up to the second order if we neglect Q́QQ . Consistently,
the entries of the unperturbed quadrupole Q̄ are required to satisfy Eq. (3.4)2 at equilibrium in the absence
of microdeformation and for uniform fields, i.e.,

2Sym(N̂Q̄) = 0. (4.11)

Finally, without loss of generality, we choose B = Be2 to obtain explicit results for Φ, ṕ and Q́. In this
case, Eq. (4.6) yields

−αe

c2
ṕ1B

2 − κ(φ2,3 − φ3,2) = 0,

φ3,1 − φ1,3 = 0,

−αe

c2
ṕ3B

2 − κ(φ1,2 − φ2,1) = 0.

(4.12)

Owing to (4.11),

Q̄11 = Q̄33, Q̄ij = 0, i �= j,

and Eq. (4.9) gives

−ṕ3 + Q́12ϕ − Q́13ϕ3 − (Q̄11 + Q́11)ϕ1 = 0,

(Q̄22 + Q́22)ϕ − Q́12ϕ1 − Q́23ϕ3 = 0,

ṕ1 + Q́23ϕ − Q́13ϕ1 − (Q̄33 + Q́33)ϕ3 = 0,

(4.13)

where we posed

ϕ = φ1,1 + φ3,3, ϕ1 = φ2,1, ϕ3 = φ2,3.

Up to second-order multipoles ( Q́QQ = 0), from (4.10) we obtain

−2Q́13 + Q̄211ϕ − Q̄111ϕ1 − Q̄311ϕ3 = 0,

−Q́23 + Q̄212ϕ − Q̄211ϕ1 − Q̄123ϕ3 = 0,

Q́11 − Q́33 + Q̄123ϕ − Q̄311ϕ1 − Q̄313ϕ3 = 0,

Q̄222ϕ − Q̄212ϕ1 − Q̄322ϕ3 = 0,

Q́12 + Q̄322ϕ − Q̄123ϕ1 − Q̄323ϕ3 = 0,

2Q́13 + Q̄323ϕ − Q̄313ϕ1 − Q̄333ϕ3 = 0.

(4.14)
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Equation (4.14) can be solved for the set of unknowns

{ϕ,ϕ1, ϕ3, Q́12, Q́23, Q́13} (4.15)

if the incremental quantities Q́11, Q́33 are given. Then, substitution into (4.13) allows us to achieve Q́22

and ṕ1, ṕ3 in the following form

Q́22 =
1
u

(u1u12 + u3u23)Q́ − Q̄22, Q́ := Q́11 − Q́33

ṕ1 = (u1u13 − uu23)Q́2 + u3(Q̄33 + Q́33)Q́,

ṕ3 = (uu12 − u3u13)Q́2 − u1(Q̄11 + Q́11)Q́,

(4.16)

where all the coefficients u depend on the entries of the octupole tensor Q̄QQ . These are given in “Appendix
B” where solution for the set (4.15) is explicitly derived. The results (4.16) show that the first-order con-
tribution ṕ to polarization can be expressed in terms of the incremental values of the principal momenta
Q11, Q33 along the direction orthogonal to the applied magnetic field. Obviously, these quantities depend
on the atomic structure of the n components of the continuum and also on the intensities of electric and
magnetic fields. We introduce the fields

f1 = φ1,2 − ϕ1, f3 = φ3,2 − ϕ3

and note that, owing to (4.12)2, f1,3 = f3,1 and in turn, ṕ1,1+ ṕ3,3 = 0. Retaining first-order contributions
to polarization and exploiting the Gauss’ law (2.11)3 in the present case of uniform fields, we obtain

ṕ2,2 = 0. (4.17)

Going back to Eq. (4.8), we firstly consider E parallel to the magnetic field B, posing E = Ee2, and
obtain

2κφ1 + (α + β)φh,h1 + γφ1,hh − ṕ3E = 0,

2κφ2 + (α + β)φh,h2 + γφ2,hh = 0,

2κφ3 + (α + β)φh,h3 + γφ3,hh + ṕ1E = 0.

(4.18)

Substituting ṕ1 and ṕ3 from equations (4.12)1,3 into (4.18), it is easy to show that the following differential
equation holds

2κf + γΔf +
κc2

αe

E

B2
f,2 = 0, (4.19)

for both f = f1 and f = f3. Also, by the same substitution of ṕ1 and ṕ3 into equations (4.16)2,3, we
realize that Q́2 is a linear combination of f1 and f3, since

[(u2
1 − u2

3)u13 − u(u1u23 − u3u12) − u1u3]Q́2 =
κc2

αeB2
(u1f3 − u3f1).

This implies that Q́2 also satisfies Eq. (4.19). A formal rearrangement of Eqs. (4.12) and (4.16) allows to
express the dipole increments in the form

ṕ1 =
(Q̄33 + Q́33)(f3 + ϕ3) + (u1u13 − uu23)Q́2

1 + αeB2

κc2 (Q̄33 + Q́33)
,

ṕ3 = − (Q̄11 + Q́11)(f1 + ϕ1) + (u3u13 − uu12)Q́2

1 + αeB2

κc2 (Q̄11 + Q́11)

(4.20)

As expected, in the absence of microdeformation the previous quantities vanish. Moreover, from a dimen-
sional analysis it follows that the order of magnitude of the quantities fj is the same as that of ukQ́2,
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(j, k = 1, 3) while ϕj/uk has the order of Q́. This implies that retaining terms at the lowest order in Q́,
Eq. (4.19) reduces to

ṕ1 ≈ Q̄33u3

1 + αeB2

κc2 Q̄33

Q́, ṕ3 ≈ − Q̄11u1

1 + αeB2

κc2 Q̄11

Q́. (4.21)

Similar results are obtained if the electric field is orthogonal to B. In fact, posing E = Ee1 from (4.8) we
have

2κφ1 + (α + β)φh,h1 + γφ1,hh = 0,

2κφ2 + (α + β)φh,h2 + γφ2,hh + ṕ3E = 0,

2κφ3 + (α + β)φh,h3 + γφ3,hh − ṕ2E = 0.

(4.22)

A derivation analogous to the previous case shows that, accounting for Eq. (4.17), the functions f1 and
f3, and in turn Q́2, satisfy the equation

2κf + γΔf +
κc2

αe

E

B2
f,1 = 0. (4.23)

The results (4.20) and (4.21) hold again in this case, as well as in the absence of electric field.
Owing to the negative definiteness of Q, and since αe/κ < 0, from (4.20) or (4.21) we recognize that ṕ1
and ṕ3 tend to vanish for large values of B. This agrees with known experimental results on magnetizable
and polarizable dielectric solids [11]. Also, theoretical quantum approaches to polarization, based on the
Berry-phase formalism [12], yield such a dependence on the applied magnetic field for crystals whose
structure allows for polarization controlled by magnetic field [13].

5. Magnetization

The previous results allow us to inquire into the dependence of magnetization on the electromagnetic
field at equilibrium. Equation (2.10)4 expresses magnetization for a general micromorphic continuum and
accounts for rates of macro and microdeformations. At equilibrium, following the model depicted for the
particle P̂(ν) we can apply the microrotation tensor N̂(ν) to represent intrinsic magnetization MMM of the
continuum particle P in the static case, as the resultant of the contribution of the n continua,

Mi =
1
2c

εijk

n∑
ν=1

N̂
(ν)
kl Q

(ν)
lj . (5.1)

This result accounts for microdeformation through the quadrupole density as shown in the previous
section. From Eq. (3.11) and taking into account the independence of N̂ on ν, we obtain

MMM =
αe

2c2
[Q̂ − (trQ̂)I]B. (5.2)

Equation (5.2) generalizes the common linear constitutive law for MMM in absence of electric field. Here,
linearity is expressed in terms of a field-independent electric quadrupole density if microdeformation
effects are discarded.
Posing again B = Be2, the results of the previous section hold also for nonnull electric field. In particular,
from (4.12)1,3 and (4.16)2,3,

Q̂11 + Q̂33 =
(

1 + 2
uu23 − u1u13

u3

)
Q́.



ZAMP On magnetoelectric coupling Page 11 of 13 112

Then, Eq. (5.2) yields

M1 =
αe

2c2
u12Q́B,

M2 = − αe

2c2

(
1 + 2

uu23 − u1u13

u3

)
Q́B,

M3 =
αe

2c2
u23Q́B.

(5.3)

As to the dependence on the electric field, we observe that, owing to Eqs. (4.19) or (4.23), admitted values
of Q́ depend on the fraction E/B2. This implies a nonlinear dependence of magnetization on the magnetic
field and, in particular, the effect of the electric field on magnetization turns out to be more relevant
for lower values of B. This behavior agrees with experimental results on the converse magnetoelectric
effect, observed in some magnetic materials [11]. On the other hand, Eq. (5.3) represents a constitutive
law for magnetization where a nonlinear coupling between electric and magnetic fields is expressed by
microdeformation through Q́. As we showed at the end of Sect. 3, a linear constitutive law obtained by
substituting possible solutions (3.13) into (5.1) cannot apply. We remark that in the more general case
of uniform or nonuniform fields with p̄ �= 0, a solution of the full equation (3.10) is required to obtain
the pertinent constitutive laws for both polarization and magnetization.

6. Concluding remarks

The analysis of equilibrium for a polarizable and magnetizable electromagnetic continuum, developed in
Sect. 3, shows that atomic microcurrents can be modeled by the microgyration tensor of a micromorphic
description at a lower dimensional order, satisfying the micromorphic balance laws of momentum and
angular momentum, together with the evolution equations for electric multipoles. Here we restricted our
analysis to the micropolar case although a more general approach could be exploited where microdefor-
mation includes internal degrees of freedom due to stretch. Nevertheless, the microcurrent phenomena
can be phenomenologically modeled by simple microrotations when we deal with nonconducting media,
as in the present work. Moreover, the isotropic assumption could be replaced by considering anisotropic
micromorphic structures, substantially without affecting the derivation of Eq. (3.10). In this respect, we
observe that classical isotropic linear models of microcontinua require magnetization be parallel to B
and polarization parallel to E [6]. In the present electromagneto-elastic model, mechanical isotropy does
not prevent to obtain nonzero magnetization or polarization components along directions different from
those of B or E.
Finally, it is worth remarking that, according to the results of Sects. 4 and 5, it does not seem so natural
to state linear constitutive laws for polarization and magnetization when both electric and magnetic
fields are applied to electromagnetic media. This linearity is a common view within various approaches
based on statistical or microcontinuum models, when a dependence on both electric and magnetic fields is
assumed (see for example [7,14]). On the other hand, as remarked at the end of Sect. 4, both theoretical
quantum approaches and experimental results support the occurrence of nonlinear laws with noticeable
magnetoelectric coupling effects.

A Equilibrium compatibility of N̂ = N̂(E) + B

We consider Eq. (3.10), for spatially uniform fields E, B, i.e.,

N̂N̂ = E + N̂B,
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and inquire into the compatibility of solutions in the form (3.13), where N̄(E) �= 0, with the equilibrium
conditions (3,2), (3.4)1,2. Without loss of generality, for a given ν, we choose a basis in R3 as the triad
{e1, e2, e3} of unit vectors along the principal axes of Q̄ and pose E = Eeβ with E > 0, (β = 1, 2, 3).
Denoting by λβ the (negative) eigenvalue of Q̄ with respect to eβ , the entries of the tensor E are

Eij = αe
E

λβ
A

(β)
ij , A

(β)
ij =

{
p̄i j = β

0 j �= β
.

A square root of A(β) exists in the form

[A(β)]1/2
ij = π

(β)
i δβj , πππ (β) =

1√
p̄β

(p̄1, p̄2, p̄3), (A.1)

if p̄β > 0. From (A.1) and (3.12), we obtain

N̂
(E)
ij =

√
αeE

λβ
π
(β)
i δβi. (A.2)

Applying the necessary and sufficient condition N̂B = 0 for (3.13) to hold, we obtain p̄ = 0 or B = Beβ .
In the first case, we obtain the trivial result N̂(E) = 0. Allowing for the second alternative, electric and
magnetic fields E and B are required to be parallel. Now we exploit Eq. (3.2) which reduces to

[(N̂(E) + B)p̄] × B = 0.

By requiring that this equation holds for arbitrary values of E and B, we find the necessary condition
p̄ = p̄βeβ . Finally, if we use Eq. (3.4)1, which reduces to the more restrictive condition (N̂(E) +B)p̄ = 0,
we arrive at the trivial result p̄ = 0. We conclude that, at least for uniform fields, (3.13) does not hold,
in nontrivial form, under the equilibrium conditions modeled in Sect. 3.

B Solution to algebraic system (4.14)

Owing to the symmetry of octupole third-order tensor QQQ , its independent entries amount to ten quan-
tities. We pose

Q111 = Q1, Q222 = Q2, Q333 = Q3, Q112 = Q4, Q113 = Q5,

Q122 = Q6, Q123 = Q7, Q223 = Q8, Q133 = Q9, Q233 = Q10

and rewrite system (4.14) in the equivalent form, where, to save writing, we omit the superimposed bar

−2Q́13 + Q4ϕ − Q1ϕ1 − Q5ϕ3 = 0,

−Q́23 + Q6ϕ − Q4ϕ1 − Q7ϕ3 = 0,

Q́12 + Q8ϕ − Q7ϕ1 − Q10ϕ3 = 0,

Q7ϕ − Q5ϕ1 − Q9ϕ3 = −Q́,

Q2ϕ − Q6ϕ1 − Q8ϕ3 = 0,

(Q4 + Q10)ϕ − (Q1 + Q9)ϕ1 − (Q3 + Q5)ϕ3 = 0.

(B.1)

The determinant of the coefficient matrix of this system is

(Q7Q6 − Q2Q5)(Q3 + Q5) + (Q5Q8 − Q6Q9)(Q4 + Q10) + (Q2Q9 − Q7Q8)(Q1 + Q9) := 2D

It can be easily verified that the subsystem (A.1)4,5,6 for the unknowns ϕ, ϕ1, ϕ3 has determinant D.
Solving this subsystem, we obtain

ϕ = uQ́, ϕ1 = u1Q́, ϕ3 = u3Q́, (B.2)
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where

u =
1
D

[Q8(Q1 + Q9) − Q6(Q3 + Q5)],

u1 =
1
D

[Q8(Q4 + Q10) − Q2(Q3 + Q5)], u3 =
1
D

[Q6(Q4 + Q10) − Q2(Q1 + Q9)]

Substituting (A.2) into (A.1)1,2,3, we get the following result

Q́12 = u12Q́, Q́13 = u13Q́, Q́23 = u23Q́,

where

u12 = −Q8u + Q7u1 + Q10u3, u13 =
1
2
(Q4u − Q1u1 − Q5u3), u23 = Q6u − Q4u1 − Q7u3.

Thus, microstrain measures and off diagonal entries of Q due to microdeformation in a field B = Be2
can be expressed by means of Q́11 − Q́33 when the octupole density Q̄QQ of the undeformed continuum is
given. Analogous results hold for a magnetic field along a different direction.
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