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Abstract. This paper investigates the spatial behavior of the solutions of two generalized thermoelastic theories with two
temperatures. To be more precise, we focus on the Green–Lindsay theory with two temperatures and the Lord–Shulman
theory with two temperatures. We prove that a Phragmén–Lindelöf alternative of exponential type can be obtained in
both cases. We also describe how to obtain a bound on the amplitude term by means of the boundary conditions for the
Green–Lindsay theory with two temperatures.
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1. Introduction

The study of the spatial behavior of solutions of partial differential equations is a topic related to the
Saint-Venant’s principle. This is an interesting question to analyze both from a mathematical and from
a thermomechanical viewpoints. Such studies describe how the influence of perturbations on a part of
the boundary is damped for the points which are far away from the part of the boundary where the
perturbations are applied. There exists a long tradition for the study of this question, and many investi-
gations have been developed to understand the spatial damping of the solutions for several thermoelastic
situations (see [12] and the references therein). Spatial decay estimates for elliptic [9], parabolic [13,14],
hyperbolic [10] and/or combinations of such [28] have been obtained in the last years. It is worth recalling
that some contributions have also been proposed in the study of phase field models (see [20–24] and [25]).
However, it is worth noting that such a knowledge for nonlinear problems is very limited. What is usual
is to consider a semi-infinite cylinder whose finite end is perturbed and to study how the solutions behave
when the spatial variable goes to infinity.

The infinite speed of propagation for the Fourier law of heat conduction is an important drawback
from a physical point of view. This led many scientists to look for alternative heat conduction models.
At the end of the 1960s, Gurtin and several co-authors proposed and studied a thermoelastic theory
that they called “thermoelasticity with two temperatures” ([3–5,32]). Several authors have dedicated
their attention to this problem (Iesan [15], Quintanilla [29,30] among others). At the same time, other
heat conduction theories have been proposed and developed. We can mention the damped hyperbolic
heat conduction proposed by Cattaneo and Maxwell or the theories proposed by Green and Naghdi. In
particular, two thermoelastic theories based on the Cattaneo–Maxwell heat conduction were proposed
by Green and Lindsay and Lord and Shulman ([11,18]). A remarkable fact is that these theories are
susceptible to be merged in a way which allows to consider the generalized thermoelastic theories with
two temperatures such as the ones proposed in [8,31] and [33]. In this paper, we focus on such theories.
It is worth recalling that the combination of the theories proposed by Green and Lindsay and Lord and
Shulman with the two temperatures theory was suggested by Youssef [33]. This theory has attracted
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a lot of attention in the past years ([2,19,26]). The spatial behavior for the classical theory with two
temperatures was considered by Awad [1]. Our aim in this paper is to extend these arguments to the
theories of Green–Lindsay with two temperatures and Lord–Shulman with two temperatures. Therefore,
it is suitable to recall that the spatial behavior of solutions for the Green–Lindsay theory was studied in
[6,27]. However, to the best of our knowledge, there is no such contribution for the Lord–Shulman theory.
Nevertheless, the arguments to study the usual Lord–Shulman theory would be very different from the
ones proposed here for the Lord–Shulman theory with two temperatures.

Here, we do not study the existence of solutions of the problems; in fact, this can be a difficult question
in many nonlinear situations (see, e.g., [24]). We note, however, that the existence of solutions can be
done by adapting the arguments proposed in [17] to the three-dimensional unbounded case. We thus
assume the existence of solutions and then only study the spatial asymptotic behavior in that case. More
precisely, we obtain a Phragmén–Lindelöf alternative for the solutions, i.e., either a growth or a decay
estimate of exponential type can be shown. An upper bound on the amplitude term, when the solution
decays, is also derived, in terms of the boundary conditions.

The plan for the paper is the following: In the next section, we recall the boundary-initial-value
problems that we are going to work with. Section 3 is devoted to the study of the Green–Lindsay ther-
moelasticity with two temperatures. The exponential alternative is obtained, and an upper bound for the
amplitude term by means of the boundary conditions is obtained. Section 4 considers the Lord–Shulman
thermoelasticity with two temperatures, and we also obtain an exponential alternative for the solutions.
Some conclusions end the paper.

2. Preliminaries

The system of equations that governs the thermoelastic deformations of a centrosymmetric material for
the Green and Lindsay theory with two temperatures reads

(cijkluk,l + aij(θ + αθ̇)),j = ρüi, (2.1)

hθ̈ + dθ̇ − aij u̇i,j = (kijφ,i),j , (2.2)

φ − θ = a(kijφ,i),j . (2.3)

Here ui is the displacement, θ is the thermodynamic temperature and φ is the conductive temperature.
Furthermore, ρ is the mass density, h and d are constitutive functions, a is a positive constant, cijkl is
the elasticity tensor, aij is the coupling tensor and kij is the thermal conductivity tensor. Finally, α is a
strictly positive constant, which is typical of the Green–Lindsay theory.

Throughout this paper, we assume that the elasticity tensor satisfies

cijkl = cklij , (2.4)

and that the thermal conductivity tensor is also symmetric

kij = kji. (2.5)

We also assume that a and α are two positive constants and that

ρ ≥ ρ0 > 0, h ≥ h0 > 0, dα − h ≥ m0 > 0. (2.6)

The last inequality is a consequence of the entropy inequality of Green and Lindsay [11], and ρ0, h0

and m0 are positive constants. At the same time, we also assume that all the constitutive functions and
tensors are essentially upper bounded in the region in which we consider our study.

The elasticity tensor and the conductivity tensor are also assumed positive. That is, there exists a
positive constant c0 such that

cijklξijξkl ≥ c0ξijξij , (2.7)
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for every tensor ξij , and there exists another positive constant k0 such that

kijξiξj ≥ k0ξiξi, (2.8)

for every vector ξi.
We also assume that there exists c1 such that the following inequality

cijklξijξkl ≤ c1ξijξij ,

is satisfied for every tensor ξij . In a similar way, we assume the existence of k1 such that

kijξiξj ≤ k1ξiξi,

for every vector ξi.
We denote β = sup aijaij and introduce the parameters

k =
(

λ sup k11
k0

)1/2

, k∗ =
α

2

(
sup k11

m0

)1/2

, k∗∗ =
(

a sup k11
2

)1/2

,

where λ is the Poincaré constant for the domain D (which will be defined below).
The system that governs the deformations of a thermoelastic solid for the Lord and Shulman theory

with two temperatures reads

(cijkluk,l + aijθ),j = ρüi, (2.9)

h1
˙̂
θ − aij

˙̂ui,j = (kijφ,i),j , (2.10)

φ − θ = a(kijφ,i),j , (2.11)

where f̂ = f +d1ḟ . In this theory, d1 is a constitutive constant. When considering this theory, we assume
that (2.4), (2.5), (2.7) and (2.8) hold, but we also need to impose that

a > 0, ρ ≥ ρ0 > 0, h1 ≥ h∗
0 > 0, d1 > 0. (2.12)

In this paper, we study the spatial behavior of the solutions of systems (2.1)–(2.3) and (2.9)–(2.11).
Therefore, we study the problems in a semi-infinite cylinder R = [0,∞)×D, where D is a two-dimensional
bounded domain smooth enough to apply the divergence theorem.

We then need to impose the boundary and initial conditions. We thus assume that

ui(x, t) = φ(x, t) = 0, x ∈ [0,∞) × ∂D, (2.13)

and
ui(x, t) = fi(x2, x3, t), φ(x, t) = g(x2, x3, t), x ∈ {0} × D, (2.14)

where fi and g are given functions. We also impose null initial conditions

ui(x, 0) = 0, φ(x, 0) = 0, x ∈ R. (2.15)

Remark 2.1. Here, we have not defined initial and boundary conditions for the thermodynamic tempera-
ture θ. Actually, in the computations below, θ does not appear and can be seen as an auxiliary unknown
only, so that such conditions are not needed. Note, however, that θ can be expressed in terms of φ, so
that initial and boundary conditions on φ imply proper conditions on θ, although, strictly speaking, one
would also need to impose boundary conditions on the first and second derivatives of φ to do so.

It is worth noting that the existence, uniqueness and continuous dependence of the decaying solutions
determined by problems (2.1)–(2.3), (2.13)–(2.15) and (2.9)–(2.11), (2.13)–(2.15) can be obtained by
means of a semigroup approach. The existence of solutions can be obtained by extending the arguments
proposed in [17] and used there for the one-dimensional problem. However, we do not address this here,
and we will assume the existence of solutions to study their spatial behavior. We refer the interested
reader to [7] or appendix 1 of [16] for more details on this.
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3. Green–Lindsay theory with two temperatures

In this section, we study the spatial behavior of the solutions of the problem determined by systems
(2.1)–(2.3) subject to the boundary conditions (2.13), (2.14) and the initial conditions (2.15) whenever
assumptions (2.4)–(2.8) hold. To be more precise, we will give a Phragmén–Lindelöf alternative for the
solutions of this problem, as well as an upper bound for the amplitude term for the decaying solutions.
To simplify the notation, we will write

K(φ) = (kijφ,i),j .

It will be useful to take into account the following identities:(
(cijkluk,l + aij(θ + αθ̇))u̇i + kijφ,i(φ + αφ̇)

)
,j

= cijkluk,lu̇i,j + aij(θ + αθ̇)u̇i,j + (cijkluk,l + aij(θ + αθ̇)),j u̇i

+ kijφ,iφ,j + αkijφ,iφ̇,j + (kijφ,i),j(φ + αφ̇)

= cijkluk,lu̇i,j + aij(θ + αθ̇)u̇i,j + ρüiu̇i + kijφ,iφ,j + αkijφ,iφ̇,j

+ (hθ̈ + dθ̇ − aij u̇i,j)(φ + αφ̇)

=
1
2

d
dt

[cijklui,juk.l + ρu̇iu̇i + αkijφ,iφ,j ] + kijφ,iφ,j + (hθ̈ + dθ̇ − aij u̇i,j)(θ + αθ̇)

+ aij(θ + αθ̇)u̇i,j + (kijφ,i),j(a(klmφ,l),m + aα(klmφ̇,l),m)

=
1
2

d
dt

[ρu̇iu̇i + cijklui,juk.l +
h

α
(θ + αθ̇)2

+
(

d − h

α

)
θ2 + αkijφ,iφ,j + αa(K(φ))2] + (dα − h)(θ̇)2 + kijφ,iφ,j + a(K(φ))2.

(3.1)

We note that the last equality comes from the relation

(hθ̈ + dθ̇)(θ + αθ̇) =
1
2

d
dt

(
h

α
(θ + αθ̇)2 +

(
d − h

α

)
θ2

)
+ (dα − h)(θ̇)2.

3.1. Phragmén–Lindelöf alternative

We start our analysis by considering the function

Fω(z, t) =

t∫
0

∫
D(z)

exp(−2ωs)
(
(ci1kluk,l + ai1(θ + αθ̇))u̇i + ki1φ,i(φ + αφ̇)

)
dads, (3.2)

where ω is an arbitrary positive constant to be fixed later and D(z) = {x ∈ R, x1 = z}.
We have, owing to the boundary and initial conditions, the evolution equations and the divergence

theorem,

Fω(z + h, t) − Fω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx +

t∫
0

∫
R(z,z+h)

exp(−2ωs)W ∗
2 dxds, (3.3)

where R(z, z + h) = {x ∈ R, z < x1 < z + h} ,

W ∗
1 = ρu̇iu̇i + cijklui,juk,l +

h

α
(θ + αθ̇)2 +

(
d − h

α

)
θ2 + αkijφ,iφ,j + αa(K(φ))2,
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and

W ∗
2 = ωW ∗

1 + (dα − h)(θ̇)2 + kijφ,iφ,j + a(K(φ))2.

We then obtain

∂Fω(z, t)
∂z

=
exp(−2ωt)

2

∫
D(z)

W ∗
1 da +

t∫
0

∫
D(z)

exp(−2ωs)W ∗
2 dads. (3.4)

We note that

(θ̇)2 = (φ̇)2 − 2aK(φ̇)φ̇ + a2(K(φ̇))2.

We now consider an auxiliary function to control the expression involving the term K(φ̇)φ̇. We define

G(z, t) = 2a

t∫
0

∫
D(z)

exp(−2ωs)m0ki1φ̇φ̇,i dads,

where m0 is given in Sect. 2.
We find, proceeding as above,

G(z + h, t) − G(z, t) = 2a

t∫
0

∫
R(z,z+h)

exp(−2ωs)m0(kij φ̇,iφ̇,j + φ̇(kij φ̇,i),j) dxds. (3.5)

Therefore, we see that

∂G(z, t)
∂z

= 2am0

t∫
0

∫
D(z)

exp(−2ωs)(kij φ̇,iφ̇,j + K(φ̇)φ̇) dads. (3.6)

Next, we consider the function Hω = Fω + G. We have

Hω(z + h, t) − Hω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx +

t∫
0

∫
R(z,z+h)

exp(−2ωs)W2 dxds, (3.7)

where

W2 = ωW ∗
1 + m0((φ̇)2 + 2akij φ̇,iφ̇,j + a2(K(φ̇))2) + (dα − h − m0)(θ̇)2 + kijφ,iφ,j + a(K(φ))2.

We also have

∂Hω(z, t)
∂z

=
exp(−2ωt)

2

∫
D(z)

W ∗
1 da +

t∫
0

∫
D(z)

exp(−2ωs)W2 dads. (3.8)

The next step consists in obtaining an estimate on |Hω| in terms of the spatial derivative of Hω. First,
we note that

|Hω| ≤ |Fω| + |G|. (3.9)
In fact

|Fω| ≤ |I1| + |I2| + |I3|,
where

I1 =

t∫
0

∫
D(z)

exp(−2ωs)ci1kluk,lu̇i dads,
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I2 =

t∫
0

∫
D(z)

exp(−2ωs)ai1(θ + αθ̇)u̇i dads,

and

I3 =

t∫
0

∫
D(z)

exp(−2ωs)ki1φ,i(φ + αφ̇) dads.

We see that

|I1| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)cijklui,juk,l dads

t∫
0

∫
D(z)

exp(−2ωs)cijklu̇inj u̇knl dads

⎞
⎟⎠

1/2

≤
(

c1
4ρ0ω2

)1/2

⎛
⎜⎝ω

t∫
0

∫
D(z)

exp(−2ωs)cijklui,juk,l dads + ω

t∫
0

∫
D(z)

exp(−2ωs)ρu̇iu̇i dads

⎞
⎟⎠ .

|I2| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)aijaij(θ + αθ̇)2 dads

t∫
0

∫
D(z)

exp(−2ωs)u̇iu̇i dads

⎞
⎟⎠

1/2

≤
(

αβ

4ρ0ω2h0

)1/2

⎛
⎜⎝ω

t∫
0

∫
D(z)

exp(−2ωs)
h

α
(θ + αθ̇)2 dads + ω

t∫
0

∫
D(z)

exp(−2ωs)ρu̇iu̇i dads

⎞
⎟⎠ .

|I3| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)kijφ,iφ,j dads

t∫
0

∫
D(z)

exp(−2ωs)k11φ2 dads

⎞
⎟⎠

1/2

+α

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)kijφ,iφ,j dads

t∫
0

∫
D(z)

exp(−2ωs)k11(φ̇)2 dads

⎞
⎟⎠

1/2

≤ k

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)kijφ,iφ,j dads

⎞
⎟⎠

+ k∗

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)kijφ,iφ,j dads +

t∫
0

∫
D(z)

exp(−2ωs)m0(φ̇)2 dads

⎞
⎟⎠ ,

where k and k∗ are given in Sect. 2.
In a similar way, we see that

|G| ≤ k∗∗

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)2am0kij φ̇,iφ̇,j dads +

t∫
0

∫
D(z)

exp(−2ωs)m0(φ̇)2 dads

⎞
⎟⎠ .
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From the previous inequalities, we can select

C3 = max

((
c1

4ρ0ω2

)1/2

+
(

αβ

4ρ0ω2h0

)1/2

, k + k∗, k∗ + k∗∗
)

.

We obtain

|Hω(z, t)| ≤ C3
∂Hω(z, t)

∂z
, (3.10)

for every t and z ≥ 0.
Inequality (3.10) is classical in the study of spatial estimates (see [9]) and yields a Phragmén–Lindelöf

alternative. If there exists z0 ≥ 0 such that Hω(t, z0) > 0, then the solution satisfies the estimate

Hω(t, z) ≥ Hω(t, z0) exp(C−1
3 (z − z0)), z ≥ z0. (3.11)

This estimate gives information in terms of the measure defined in the cylinder. Indeed, it follows that

exp(−2ωt)
2

∫
R(0,z)

W ∗
1 dx +

t∫
0

∫
R(0,z)

exp(−2ωs)W2 dxds (3.12)

tends to infinity exponentially fast, where R(0, z) = {x ∈ R, x1 ≤ z}. On the contrary, when Hω(z, t) ≤ 0,
for every z ≥ 0, we deduce that Hω(z, t) ≤ 0 for every z ≥ 0 and the solution decays and we can obtain
an estimate of the form

− Hω(z, t) ≤ −Hω(0, t) exp(−C−1
3 z), z ≥ 0. (3.13)

This inequality implies that Hω(z, t) tends to zero as z goes to infinity. Furthermore, in view of (3.13),
we see that

Eω(z, t) ≤ Eω(0, t) exp(−C−1
3 z), z ≥ 0, (3.14)

where

Eω(z, t) =
exp(−2ωt)

2

∫
R(z)

W ∗
1 dx +

t∫
0

∫
R(z)

exp(−2ωs)W2 dxds (3.15)

and R(z) = {x ∈ R, x1 > z}.
Setting finally

E(z, t) =
1
2

∫
R(z)

W ∗
1 dx +

t∫
0

∫
R(z)

W2 dx ds, (3.16)

we have the

Theorem 3.1. Let (ui, φ) be a smooth solution of the problem defined by (2.1)–(2.3), the boundary condi-
tions (2.13), (2.14) and the initial conditions (2.15). Then, either this solution satisfies the growth estimate
(3.11) or it satisfies the decay estimate

E(z, t) ≤ Eω(0, t) exp(2ωt − C−1
3 z), z ≥ 0, (3.17)

where the energy E is defined in (3.16) and Eω is given by (3.15).
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3.2. The amplitude term

The spatial decay estimate obtained in the previous subsection is of limited use unless we have an upper
bound on the amplitude term in terms of the boundary conditions. The aim of this subsection is thus to
obtain such a bound.

We denote by vi, ϕ functions satisfying the same boundary conditions as ui and φ and such that they
tend to zero in a fast way when x1 increases. We have

− Hω(0, t) =

t∫
0

∫
R

exp(−2ωs)(cijklui,j v̇k,l + aij(θ + αθ̇)v̇i,j + ρüiv̇i + kijφ,i(ϕ,j + αϕ̇,j)

+ (K(φ))(ϕ + αϕ̇)) dv ds

+ 2am0

t∫
0

∫
R

exp(−2ωs)((kij φ̇,i),jϕ̇ + kij φ̇,iϕ̇,j) dxds. (3.18)

We note that
t∫

0

∫
R

exp(−2ωs)ρüiv̇i dv ds = exp(−2ωt)
∫
R

ρu̇iv̇idx −
t∫

0

∫
R

exp(−2ωs)ρu̇iv̈i dxds

+ 2ω

t∫
0

∫
R

exp(−2ωs)ρu̇iv̇i dxds. (3.19)

We further see that
t∫

0

∫
R

exp(−2ωs)cijklui,j v̇k,l dxds

≤
⎛
⎝

t∫
0

∫
R

exp(−2ωs)cijklui,juk,l dxds

⎞
⎠

1/2

×
⎛
⎝

t∫
0

∫
R

cijklv̇i,j v̇k,l dxds

⎞
⎠

1/2

,

t∫
0

∫
R

exp(−2ωs)aij(θ + αθ̇)v̇i,j dxds ≤
⎛
⎝

t∫
0

∫
R

exp(−2ωs)aijaij(θ + αθ̇)2 dxds

⎞
⎠

1/2

×
⎛
⎝

t∫
0

∫
R

v̇i,j v̇i,j dxds

⎞
⎠

1/2

,

exp(−2ωt)
∫
R

ρu̇iv̇i dx ≤ exp(−2ωt)

⎛
⎝∫

R

ρu̇iu̇i dx

⎞
⎠

1/2 ⎛
⎝∫

R

ρv̇iv̇i dx

⎞
⎠

1/2

,

−
t∫

0

∫
R

exp(−2ωs)ρu̇iv̈i dxds ≤
⎛
⎝

t∫
0

∫
R

exp(−2ωs)ρu̇iu̇i dxds

⎞
⎠

1/2 ⎛
⎝

t∫
0

∫
R

ρv̈iv̈i dxds

⎞
⎠

1/2

,

2ω

t∫
0

∫
R

exp(−2ωs)ρu̇iv̇i dxds
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≤ 2ω

⎛
⎝

t∫
0

∫
R

exp(−2ωs)ρu̇iu̇i dxds

⎞
⎠

1/2 ⎛
⎝

t∫
0

∫
R

ρv̇iv̇i dxds

⎞
⎠

1/2

,

t∫
0

∫
R

exp(−2ωs)kijφ,i(ϕ,j + αϕ̇,j) dxds ≤
⎛
⎝

t∫
0

∫
R

exp(−2ωs)kijφ,iφ,j dxds

⎞
⎠

1/2

×

⎛
⎜⎝

⎛
⎝

t∫
0

∫
R

kijϕ,iϕ,j dxds

⎞
⎠

1/2

+ α

⎛
⎝

t∫
0

∫
R

kijϕ̇,iϕ̇,j dxds

⎞
⎠

1/2
⎞
⎟⎠ ,

t∫
0

∫
R

exp(−2ωs)(K(φ))(ϕ + αϕ̇)) dxds ≤
⎛
⎝

t∫
0

∫
R

exp(−2ωs)(K(φ))2 dx

⎞
⎠

1/2

×
⎛
⎝

t∫
0

∫
R

(ϕ + αϕ̇)2 dx

⎞
⎠

1/2

,

2am0

t∫
0

∫
R

exp(−2ωs)kij φ̇,iϕ̇,j dxds ≤ 2am0

⎛
⎝

t∫
0

∫
R

exp(−2ωs)kij φ̇,iφ̇,j dxds

⎞
⎠

1/2

×
⎛
⎝

t∫
0

∫
R

kijϕ̇,iϕ̇,j dxds

⎞
⎠

1/2

,

2am0

t∫
0

∫
R

exp(−2ωs)K(φ̇)ϕ̇ dxds ≤ 2am0

⎛
⎝

t∫
0

∫
R

exp(−2ωs)K(φ̇)2 dxds

⎞
⎠

1/2

×
⎛
⎝

t∫
0

∫
R

(ϕ̇)2 dxds

⎞
⎠

1/2

.

Employing the arithmetic–geometric mean inequality, we see that

−Hω(0, t) ≤ ε1

t∫
0

∫
R

exp(−2ωs)W2 dxds + D1

t∫
0

∫
R

cijklv̇i,j v̇k,l dxds

+ε2

t∫
0

∫
R

exp(−2ωs)W2 dxds + D2

t∫
0

∫
R

v̇i,j v̇i,j dxds

+ε3
exp(−2ωt)

2

∫
R

W ∗
1 dx + D3

∫
R

ρv̇iv̇i dx

+ε4

t∫
0

∫
R

exp(−2ωs)W2 dxds + D4

t∫
0

∫
R

ρv̈iv̈i dxds
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+ε5

t∫
0

∫
R

exp(−2ωs)W2 dxds + D5

t∫
0

∫
R

ρv̇iv̇i dxds

+ε6

t∫
0

∫
R

exp(−2ωs)W2 dxds + D6

t∫
0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dxds

+ε7

t∫
0

∫
R

exp(−2ωs)W2 dxds + D7

t∫
0

∫
R

(ϕ2 + (ϕ̇)2) dxds

+ε8

t∫
0

∫
R

exp(−2ωs)W2 dxds + D8

t∫
0

∫
R

(ϕ̇)2 dxds

+ε9

t∫
0

∫
R

exp(−2ωs)W2 dxds + D9

t∫
0

∫
R

ϕ̇,iϕ̇,i dxds.

Here εi, i = 1, . . . , 9, are positive constants that are as small as needed and Di are positive constants
depending on the constitutive tensors, the parameters εi, the parameter ω and time. In fact, we can take

D1 = (4ε1ω)−1, D2 = αβ(4ε2ωh0)−1, D3 = (2ε3)−1, D4 = (4ε4ω)−1, D5 = ωε−1
5 ,

D6 = max(1, α)k1(4ε6)−1, D7 = max(1, α)(2ε7a)−1, D8 = m0ε
−1
8 , D9 = am0k1(2ε9)−1.

We can always select εi in such a way that ε1 + ε2 + ε4 + ε5 + ε6 + ε7 + ε8 + ε9 = 1/2 and ε3 = 1/2.
We then obtain

−Hω(0, t) ≤ 2D1

t∫
0

∫
R

cijklv̇i,j v̇k,l dxds + 2D2

t∫
0

∫
R

v̇i,j v̇i,j dxds

+2D3

∫
R

ρv̇iv̇i dx + 2D4

t∫
0

∫
R

ρv̈iv̈i dxds + 2D5

t∫
0

∫
R

ρv̇iv̇i dxds

+2D6

t∫
0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dxds

+2D7

t∫
0

∫
R

(ϕ2 + (ϕ̇)2) dxds + 2D8

t∫
0

∫
R

(ϕ̇)2 dxds

+2D9

t∫
0

∫
R

ϕ̇,iϕ̇,i dxds.

We now select vi(x, t) = fi(x2, x3, t) exp(−mx1) and ϕ(x, t) = g(x2, x3, t) exp(−mx1), where m is an
arbitrary positive real number. We have

t∫
0

∫
R

cijklv̇i,j v̇k,l dxds =
1
2

t∫
0

∫
D

(mci1k1ḟiḟk + ci1kαḟiḟk,α + ciαk1ḟi,αḟk +
1
m

ciαkβ ḟi,αḟk,β) dads,
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t∫
0

∫
R

v̇i,j v̇i,j dxds =
1
2

t∫
0

∫
D

(mḟiḟi +
1
m

ḟi,αḟi,α) dads,

∫
R

ρv̇iv̇i dxds =
1

2m

∫
D

ρḟiḟi da,

t∫
0

∫
R

ρv̈iv̈i dxds =
1

2m

t∫
0

∫
D

ρf̈if̈i dads,

t∫
0

∫
R

ρv̇iv̇i dxds =
1

2m

t∫
0

∫
D

ρḟiḟi dads,

t∫
0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dxds =
1
2

t∫
0

∫
D

(
m(g2 + (ġ)2) +

1
m

(g,αg,α + ġ,αġ,α)
)

dads,

t∫
0

∫
R

(ϕ2 + (ϕ̇)2) dxds =
1

2m

t∫
0

∫
D

(g2 + (ġ)2) dads.

We then obtain

Eω(0, t) ≤ D1

t∫
0

∫
D

(
mci1k1ḟiḟk + ci1kαḟiḟk,α + ciαk1ḟi,αḟk +

1
m

ciαkβ ḟi,αḟk,β

)
dads

+D2

t∫
0

∫
D

(
mḟiḟi +

1
m

ḟi,αḟi,α

)
dads +

D3

m

∫
D

ρḟiḟi da

+
D4

m

t∫
0

∫
D

ρf̈if̈i dads +
D5

m

t∫
0

∫
D

ρḟiḟi dads

+(D6 + D9)

t∫
0

∫
D

(
m(g2 + (ġ)2) +

1
m

(g,αg,α + ġ,αġ,α)
)

dads

+
D7 + D8

m

t∫
0

∫
D

(g2 + (ġ)2) dads.

One would like to optimize the value depending on the parameter m. However, it is clear that this is
a very cumbersome task.

4. Lord–Shulman theory with two temperatures

In this section, we study the spatial behavior of the solutions of the problem determined by system
(2.9)–(2.11) subject to the boundary conditions (2.13), (2.14) and the initial conditions (2.15) whenever
assumptions (2.4), (2.5)–(2.7)–(2.8) hold. As in the case of the Green–Lindsay theory with two tempera-
tures, it is possible to obtain the spatial decay of solutions.
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We note that from the equation for the displacement in the Lord–Shulman theory we obtain

(cijklûk,l + aij θ̂),j = ρ¨̂ui.

Now, we consider the equalities

((cijklûk,l + aij θ̂) ˙̂ui + kijφ,iφ̂),j = (cijklûk,l + aij θ̂) ˙̂ui,j + (cijklûk,l + aij θ̂),j
˙̂ui + (kijφ,i),j φ̂ + kijφ,iφ̂,j

= (cijklûk,l + aij θ̂) ˙̂ui,j + ρ ˙̂ui
¨̂ui + (h1

˙̂
θ − aij

˙̂ui,j)φ̂ + kijφ,iφ̂,j

=
1
2

d
dt

(ρ ˙̂ui
˙̂ui + cijklûk,lûi,j) + aij θ̂ ˙̂ui,j

+(h1
˙̂
θ − ai,j

˙̂ui,j)θ̂ + a(kijφ,i),j(klmφ̂,l),m + kijφ,iφ,j + d1kijφ,iφ̇,j

=
1
2

d
dt

(ρ ˙̂ui
˙̂ui + cijklûk,lûi,j + h1(θ̂2) + ad1(K(φ))2 + d1kijφ,iφ,j)

+a(K(φ))2 + kijφ,iφ,j .

Phragmén–Lindelöf alternative

As far as this theory is concerned, the analysis starts by considering the function

Fω(z, t) =

t∫
0

∫
D(z)

exp(−2ωs)
(
(ci1klûk,l + ai1θ̂) ˙̂ui + ki1φ,iφ̂

)
dads. (4.1)

We have

Fω(t, z + h) − Fω(t, z) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx +

t∫
0

∫
R(z,z+h)

exp(−2ωs)W ∗
2 dxds, (4.2)

where R(z, z + h) has already been defined,

W ∗
1 = ρ ˙̂ui

˙̂ui + cijklûi,j ûk,l + h1(θ̂)2 + d1kijφ,iφ,j + d1a(K(φ))2

and

W ∗
2 = ωW ∗

1 + kijφ,iφ,j + a(K(φ))2.

We then obtain

∂Fω(t, z)
∂z

=
exp(−2ωt)

2

∫
D(z)

W ∗
1 da +

t∫
0

∫
D(z)

exp(−2ωs)W ∗
2 dads. (4.3)

We need another function G. Here, we define the function G by

G(z, t) = aωh∗
0

t∫
0

∫
D(z)

exp(−2ωs)ki1φ̂φ̂,i dads.

We have

∂G(z, t)
∂z

= aωh∗
0

t∫
0

∫
D(z)

exp(−2ωs)(kij φ̂,j φ̂,i + (kij φ̂,i),j φ̂) dads, (4.4)
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As in Sect. 3, we define Hω = Fω + G. We also have

Hω(z + h, t) − Hω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx +

t∫
0

∫
R(z,z+h)

exp(−2ωs)W2 dxds,

(4.5)

where

W2 = ω(ρ ˙̂ui
˙̂ui + cijklûi,j ûk,l + d1kijφ,iφ,j + d1a(K(φ))2

+
(

h1 − h∗
0

2

)
(θ̂)2 +

h∗
0

2
(φ̂2 + 2akij φ̂,iφ̂,j + a2(K(φ̂))2)) + kijφ,iφ,j + a(K(φ))2.

Similarly, we have

|Fω| ≤ |I1| + |I2| + |I3|,
where

I1 =

t∫
0

∫
D(z)

exp(−2ωs)ci1klûk,l
˙̂ui dads,

I2 =

t∫
0

∫
D(z)

exp(−2ωs)ai1θ̂ ˙̂ui dads,

and

I3 =

t∫
0

∫
D(z)

exp(−2ωs)ki1φ,iφ̂ dads.

We can estimate I1,. . . , I3 in a similar way, and we have

|I1| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)cijklûi,j ûk,l dads

t∫
0

∫
D(z)

exp(−2ωs)cijkl
˙̂uinj

˙̂uknl dads

⎞
⎟⎠

1/2

≤
(

c1
4ρ0ω2

)1/2

⎛
⎜⎝ω

t∫
0

∫
D(z)

exp(−2ωs)cijklûi,j ûk,l dads + ω

t∫
0

∫
D(z)

exp(−2ωs)ρ ˙̂ui
˙̂ui dads

⎞
⎟⎠ ,

|I2| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)aijaij(θ̂)2 dads

t∫
0

∫
D(z)

exp(−2ωs) ˙̂ui
˙̂ui dads

⎞
⎟⎠

1/2

≤
(

β

2ρ0ω2h∗
0

)1/2

⎛
⎜⎝ω

t∫
0

∫
D(z)

exp(−2ωs)
(

h1 − h∗
0

2

)
(θ̂)2 dads + ω

t∫
0

∫
D(z)

exp(−2ωs)ρ ˙̂ui
˙̂ui dads

⎞
⎟⎠ ,

|I3| ≤

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)kijφ,iφ,j dads

t∫
0

∫
D(z)

exp(−2ωs)k11φ̂2 dads

⎞
⎟⎠

1/2
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+m∗

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)d1kijφ,iφ,j dads +

t∫
0

∫
D(z)

ωh∗
0

2
exp(−2ωs)(φ̂)2 dads

⎞
⎟⎠ ,

where

m∗ =
(

sup k11
2d1h∗

0ω

)1/2

.

On the other hand

|G(z, t)| ≤ (2a)1/2

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)ωah∗
0kij φ̂,iφ̂,j dads

t∫
0

∫
D(z)

exp(−2ωs)ω
h∗
0

2
k11φ̂

2 dads

⎞
⎟⎠

1/2

≤ m∗∗

⎛
⎜⎝

t∫
0

∫
D(z)

exp(−2ωs)ωah∗
0kij φ̂,iφ̂,j dads +

t∫
0

∫
D(z)

ωh∗
0

2
exp(−2ωs)(φ̂)2 dads

⎞
⎟⎠ ,

where

m∗∗ = (a sup k11/2)1/2.

From the previous inequalities, we see that

|Hω(z, t)| ≤ C3
∂Hω(z, t)

∂z
, (4.6)

for every t and z ≥ 0, where

C3 = max

((
c1

4ρ0ω2

)1/2

+
(

β

2ρ0ω2h∗
0

)1/2

,m∗ + m∗∗
)

.

From this equality on, the analysis is identical to the one proposed in the previous section. If we
define the functions Eω(z, t) and E(z, t) as in Sect. 3, but with the functions W ∗

1 and W2 proposed in
this section, we have the following result:

Theorem 4.1. Let (ui, φ) be a smooth solution of the problem defined by (2.9)–(2.11), the boundary condi-
tions (2.13)–(2.14) and the initial conditions (2.15). Then, either this solution satisfies the growth estimate
(3.11) or it satisfies the decay estimate

E(z, t) ≤ Eω(0, t) exp(2ωt − C−1
3 z), z ≥ 0, (4.7)

where the energy E is defined in (3.16) and Eω is given by (3.15).

To have a complete description of this estimate, we need an upper bound on the amplitude term
Eω(0, t). This can be done by using an argument similar to the one proposed in Sect. 3. However, we do
not do it here to avoid repetitions.

5. Conclusion

In this paper, we have analyzed the spatial behavior of the solutions for the thermoelasticity theory
of Green–Lindsay with two temperatures and the thermoelasticity theory of Lord–Shulman with two
temperatures. We have seen that the alternative for the solutions is of exponential type in both theories.
In fact, the growth/decay are also quite similar, but of course depending on the constitutive functions
and tensors. It is worth noting that from the first system we obtain the classical thermoelasticity when
a = α = 0 and h = 0. We then see that the growth/decay for the classical thermoelasticity could be
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faster in general. A similar comment can be done for the Lord–Shulman theory. Another relevant result is
that both theories determine the infinite speed of propagation in view of the alternative result obtained
in each case.

Acknowledgements

R.Q. was supported by the Projects “Análisis Matemático de las Ecuaciones en Derivada Parciales
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