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Abstract. In this paper, we are concerned with an SIS epidemic reaction–diffusion model with logistic source in spatially
heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper
bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary
focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the
susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885–913,
2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of
infectious disease.
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1. Introduction

We consider the following susceptible-infected-susceptible epidemic system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = a(x)S − b(x)S2 − β(x)

SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
− dIΔI = β(x)

SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

∂S

∂ν
=

∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(1.1)

Here, S and I, respectively, stand for the density of susceptible and infected individuals; dS and dI are
positive constants measuring the motility of susceptible and infected populations, respectively; β and
γ are positive Hölder continuous functions on Ω accounting for the rates of disease transmission and
recovery, respectively. The nonlinear term a(x)S −b(x)S2 for positive Hölder functions a and b represents
that the susceptible population is subject to logistic growth. The habitat Ω ⊂ R

N (N ≥ 1) is a bounded
domain with smooth boundary ∂Ω, and the homogeneous Neumann boundary conditions mean that no
population flux crosses the boundary ∂Ω.

It is straightforward to verify that SI/(S + I) is a Lipschitz continuous function of S and I in the
open first quadrant. Therefore, we can extend it to the entire first quadrant by defining it to be zero
whenever S = 0 or I = 0. Throughout the paper, it is assumed that initially, S0 and I0 are nonnegative
continuous functions on Ω, and there is a positive number of infected individuals, i.e.,

∫

Ω

I0(x)dx > 0.

To capture the effect of spatial heterogeneity, Allen et al. [3] proposed the following SIS epidemic
reaction–diffusion model.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = −β(x)

SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
− dIΔI = β(x)

SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

∂S

∂ν
=

∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(1.2)

A basic reproduction number R0 via variational characterization was defined in [3], and it was proved
that the disease will become extinct whenever R0 < 1; that is, the unique disease-free equilibrium (DFE)
(N/|Ω|, 0) is globally asymptotically stable if R0 < 1. On the other hand, [22] confirmed the persistence
of disease provided R0 > 1, when the environment is temporally periodic. Practically, we are more
concerned with the question whether restricting the motility of susceptible or infected population will help
to eliminate the infectious disease or not. To mathematically study the effect of diffusion rates, the authors
in [3] first investigated the existence and uniqueness of endemic equilibrium (EE) and then demonstrated
that restricting the migration rate of susceptible individuals shall eradicate the disease entirely, provided
the environment can be modified to include low-risk sites. Additionally, it was conjectured that the unique
EE should be globally stable and Peng and Liu [19] confirmed it in some special scenarios. Further results
on asymptotic profiles of the EE were obtained in [18,21]. We also refer interested readers to [2,5–
9,13,14,23,25] and references therein for more works related to model (1.2) and for similar SIS epidemic
models.

We notice that one of the main features of model (1.2) is that the total number of population is
conserved for all time t > 0 in the sense that

∫

Ω

(S(x, t) + I(x, t))dx =
∫

Ω

(S0(x) + I0(x))dx, ∀t > 0,

provided that the initial total population
∫

Ω

(S0(x) + I0(x))dx

is fixed; see [3]. However, model (1.1), due to the introduction of the logistic source of susceptible pop-
ulation, no longer possesses this property. Furthermore, the logistic source also enables (0, 0) to become
a trivial steady state of (1.1) and thus brings new difficulty for theoretical analysis. As a result, our
mathematical treatment, especially the existence of endemic equilibrium, is significantly different from
that in [3] or [14].

As in most mathematical models in population biology, compared to linear source, logistic source
seems to be a more reasonable choice describing birth/death rate since it models the overcrowding effect
in this context. Hence, we are motivated to study SIS epidemic model (1.1) subject to logistic growth
for susceptible individuals in spatially heterogeneous environment. Using the same basic reproduction
number R0 as that in [3], our mathematical results imply that the infectious disease will be eliminated if
R0 < 1 and the unique DFE is globally asymptotically stable, at least when a and b are positive constants;
see Theorem 2.2 and Remark 2.1. On the other hand, it is difficult to obtain even local stability of the
trivial equilibrium (0, 0) since system (1.1) cannot be linearized there. For the time being, we are unable
to rule out the possibility that (0, 0) may be globally asymptotically stable. And consequently, we cannot
prove the persistence of disease in the case of R0 > 1 either, as in [14,22]. Nevertheless, we can indeed
show the global attractivity of the unique positive constant steady state when R0 > 1 in homogeneous
environment; see Theorem 2.3.

It is obvious that only nonnegative steady states of (1.1) are of physical interest. The stability of the
trivial steady state (0, 0) is left for future investigation and is not discussed in this paper. A disease-
free equilibrium (DFE) is a steady state in which the I-component is identically zero over Ω, whereas an
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endemic equilibrium (EE) is a steady state in which the I-component is positive for some x ∈ Ω. To study
the effects of population motility on disease elimination/persistence, we consider the asymptotic profiles
of endemic equilibria when the diffusion (or migration) rate of the susceptible or infected population is
small or large. Assume that the habitat includes some high-risk sites, i.e., locations where β(x) > γ(x).
Then, our mathematical results indicate that slow motility (or migration) of the infected individuals shall
drive the infectious disease to become extinct only in low-risk (where β(x) < γ(x)) and moderate-risk
(where β(x) = γ(x)) sites but not in high-risk sites, whereas the disease persists throughout the entire
habitat if the movement of susceptible population is controlled to be small. This result is consistent
with that in [14] where an SIS epidemic model with linear source is considered. However, it is in sharp
contrast with model (1.2), for which the optimal strategy of eliminating the disease is to restrict the
movement of susceptible individuals, i.e., restricting the movement of the susceptible can eradicate the
disease completely throughout the habitat, while restricting the movement of the infected can eliminate
the disease solely in low-risk and moderate-risk sites; see [3,18,21]. On the other hand, if the habitat Ω
is of high-risk type, meaning

∫

Ω

β >
∫

Ω

γ, then for both (1.2) and (1.1), the results of [3,14,18,21] and

the current paper show that fast movement of the susceptible or the infected tends to homogenize the
corresponding population density to a positive constant and hence large motility of the susceptible or
infected individuals does not help to eliminate the disease at all.

Let us also compare our results here with those in [14]. First of all, for global boundedness of solutions
to the corresponding parabolic systems, the linear nature of the model in [14] enables us to see that
L1-bound is sufficient to ensure the L∞-bound (see [1, Theorem 3.1] and [22, Lemma 3.1]), while for
system (1.1) with quadratic nonlinearity, we need Lp-bound for larger p > 1, and this is achieved through
the method of mathematical induction; see Theorem 2.1. Secondly, since we are not able to show that the
trivial steady state (0, 0) may be globally asymptotically stable, to prove the existence of EE, we need an
extra condition beyond R0 > 1; see Theorem 3.1. Moreover, the existence of EE is proved here by using
degree theory, while that in [14] is done by dynamical system theory. Lastly, for the asymptotic profiles
of EE, our analysis resembles that in [14] and biological interpretations of the main mathematical results
remain the same, although new technical difficulties appear because of the logistic term.

In summary, the above discussion, together with the mathematical results in [14], suggests that, in
stark contrast to epidemic model (1.2) with constant total population number, an extra birth/death term
for the susceptibles, either a linear one or a logistic one, tends to enhance the persistence of disease and
makes the infectious disease more difficult to control; varying total population invalidates the strategy of
restricting the motility of susceptible or infected individuals for disease elimination. Thus, in this scenario,
for decision makers, more effective control measures should be taken into account in order to eradicate
the infectious disease.

The paper is organized as follows. Section 2 is dedicated to the study of parabolic system (1.1), where
we first establish uniform boundedness of global solutions. Then we turn to the global dynamics of (1.1):
The stability of DFE and EE is discussed in Sects. 2.2 and 2.3, respectively. In Sect. 3, we prove the
existence of EE by using a topological degree-type argument. We also establish a priori estimates of
positive equilibrium of (1.1), which will be used repeatedly in the forthcoming section. In Sect. 4, we
investigate the asymptotic profiles of EE as the motility of susceptible or infected individuals is small
or large. Finally, in “Appendix,” we discuss two strongly related elliptic problems, whose existence and
uniqueness of positive solutions, together with the asymptotic behavior of solutions, are obtained, as the
diffusion rate shrinks.

In the rest of the paper, for notational convenience, we denote

g∗ = max
x∈Ω

g(x) and g∗ = min
x∈Ω

g(x),

for g = a, b, β, γ.
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2. Properties of solutions to (1.1)

We first notice that the standard theory for parabolic equations, combined with our assumption on the
initial data, guarantees that (1.1) admits a unique classical solution (S, I) ∈ C2,1(Ω × (0,∞)). Moreover,
it follows from the strong maximum principle and the Hopf boundary lemma for parabolic equations that
both S(x, t) and I(x, t) are positive for x ∈ Ω and t ∈ (0,∞).

2.1. Uniform boundedness

In this subsection, we will establish the uniform bound of solutions of (1.1). The following well-known
Young’s inequality will be used:

ab ≤ εaτ + ε− τ′
τ bτ ′

, (2.1)

where a, b, ε > 0, τ, τ ′ > 1 and 1
τ + 1

τ ′ = 1.

Theorem 2.1. There exists a positive constant C, independent of initial data, such that

‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤ C, ∀t ≥ T, (2.2)

for some large time T > 0.

Proof. First of all, we will prove the following assertion: for any positive integer k, there exists a positive
constant C = C(k) independent of initial data such that

‖S(·, t)‖Lk(Ω) + ‖I(·, t)‖Lk(Ω) ≤ C, ∀t ≥ T, (2.3)

for some large time T > 0.
We shall employ the method of mathematical induction to derive (2.3). We first show that (2.3) holds

for k = 1. To this aim, it follows from (1.1) and (2.1) that
d
dt

∫

Ω

(S + 2I) =
∫

Ω

βSI

S + I
−

∫

Ω

γI +
∫

Ω

(aS − bS2)

≤
∫

Ω

β∗S − γ∗
∫

Ω

I +
∫

Ω

(
a∗S − b∗S2

)

≤ (β∗ + a∗)
∫

Ω

S − γ∗
∫

Ω

I − b∗
∫

Ω

(

εS − ε2

4

)

≤ μ − ν

∫

Ω

(S + 2I) ,

where

μ =
b∗ε2|Ω|

4
, ν =

γ∗
2

by taking ε > 0 satisfying

β∗ + a∗ − εb∗ = −γ∗
2

.

The above differential inequality yields
∫

Ω

(S(x, t) + 2I(x, t)) ≤ e−νt

∫

Ω

(S0(x) + 2I0(x)) +
μ

ν

(
1 − e−νt

)
, ∀t ≥ 0.

This obviously implies that (2.3) holds.
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We now assume that (2.3) is true for k − 1. Then it remains to show that (2.3) also holds for k.
Multiplying the first equation in (1.1) by Sk−1 and integrating by parts, we find

1
k

d
dt

∫

Ω

Sk + dS(k − 1)
∫

Ω

Sk−2|∇S|2 =
∫

Ω

[

−β
SkI

S + I
+ γISk−1 + (aS − bS2)Sk−1

]

.

In the same fashion,

1
k

d
dt

∫

Ω

Ik + dI(k − 1)
∫

Ω

Ik−2|∇I|2 =
∫

Ω

(

β
IkS

S + I
− γIk

)

.

In view of the above two equalities, we can get from (2.1) and (2.3) with k replaced by k − 1 that

1
k

d
dt

∫

Ω

(
Sk + Ik

)
+ (k − 1)

∫

Ω

(
dSSk−2|∇S|2 + dII

k−2|∇I|2)

≤
∫

Ω

[

β
I

S + I
Ik−1S + γISk−1 − γIk + Sk−1

(
aS − bS2

)
]

≤
∫

Ω

[

β∗Ik−1S + γ∗ISk−1 − γ∗Ik + a∗Sk − b∗Sk−1

(

εS − ε2

4

)]

≤
∫

Ω

[
β∗ (ε′Ik + C(ε′, k)Sk

)
+ γ∗ (ε′Ik + C(ε′, k)Sk

) − γ∗Ik + a∗Sk − b∗εSk
]
+

ε2b∗
4

∫

Ω

Sk−1

≤ [(β∗ + γ∗) ε′ − γ∗]
∫

Ω

Ik + [(β∗ + γ∗) C(ε′, k) + a∗ − b∗ε]
∫

Ω

Sk +
ε2b∗
4

∫

Ω

Sk−1, (2.4)

for any ε, ε′ > 0 and some positive constant C(ε′, k).
In (2.4), we first take ε′ > 0 such that (β∗ + γ∗) ε′ −γ∗ = −γ∗/2. For this ε′ > 0, we then choose ε > 0

fulfilling (β∗ + γ∗) C(ε′, k) + a∗ − b∗ε = −γ∗/2. Hence, it follows from (2.4) and the induction hypothesis
that

1
k

d
dt

∫

Ω

(
Sk + Ik

) ≤ −γ∗
2

∫

Ω

(
Sk + Ik

)
+ C, t ≥ 0,

where the positive constant C is independent of the initial data for large t. Thus, this differential inequality
yields (2.3).

In view of (2.3), one can use [22, Lemma 3.1] to conclude uniform bound (2.2) of any solutions to
(1.1). The proof is complete. �

2.2. Global stability of DFE

As in [24], we define the basic reproduction number R0 for system (1.1) which is the spectral radius
of the associated operator L of [24] by taking m = 1, F (x) = β(x), V (x) = γ(x), dI(x) = dI there.
Furthermore, by [24, Theorem 3.2] and the variational characterization of R0, one immediately sees that
R0 is given by

R0 = sup
0 �=ϕ∈H1(Ω)

∫

Ω

βϕ2

∫

Ω

(dI |∇ϕ|2 + γϕ2)
.

Observe that R0 is independent of the diffusion rate dS .
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It is well known that the logistic-type elliptic problem
{−dSΔS = a(x)S − b(x)S2, x ∈ Ω,

∂S

∂ν
= 0, x ∈ ∂Ω,

(2.5)

admits a unique positive solution S̃, which is globally asymptotically stable for the corresponding para-
bolic equation [19, Lemma 2.1]. Therefore, (S̃, 0) is a semitrivial steady state of (1.1), which we call the
DFE. Moreover, after the extension of the function SI/(S + I) so that it is zero once S = 0 or I = 0, it
is obvious that (0, 0) is a trivial steady state of (1.1).

On the other hand, let (λ∗, ψ∗) be the principal eigenpair of the eigenvalue problem
{

dIΔu + (β − γ)u + λu = 0, x ∈ Ω,
∂u

∂ν
= 0, x ∈ ∂Ω.

(2.6)

Then, we have the following properties of R0, which were established in [3].

Proposition 2.1. The following assertions hold.
(a) R0 is a monotone decreasing function of dI with R0 → max{β(x)/γ(x) : x ∈ Ω} as dI → 0 and

R0 → ∫

Ω

β/
∫

Ω

γ as dI → ∞;

(b) If
∫

Ω

β(x)dx <
∫

Ω

γ(x)dx and β − γ changes sign, then there exists a threshold value d∗
I ∈ (0,∞) such

that R0 > 1 for dI < d∗
I and R0 < 1 for dI > d∗

I ;
(c) If

∫

Ω

β(x)dx ≥ ∫

Ω

γ(x)dx, then R0 > 1 for all dI > 0;

(d) R0 > 1 when λ∗ < 0, R0 = 1 when λ∗ = 0, and R0 < 1 when λ∗ > 0.

It turns out that the stability of the DFE (S̃, 0) is completely determined by the size of R0.

Proposition 2.2. The DFE (S̃, 0) is stable if R0 < 1, and it is unstable if R0 > 1.

Proof. The analysis is rather standard; especially the stability of the DFE for R0 < 1 follows directly
from [24, Theorem 3.1(ii)]. Thus, the details are omitted here. �

The following result suggests that the disease will become extinct if R0 < 1.

Theorem 2.2. Let (S, I) be the unique solution of (1.1). If R0 < 1, then

lim
t→∞ I(x, t) = 0

uniformly for x ∈ Ω. If additionally γ(x) ≥, �≡ β(x) on Ω, then

lim
t→∞(S(x, t) − S̃(x)) = 0

uniformly for x ∈ Ω, where S̃ is the unique positive solution of (2.5).

Proof. When R0 < 1, the assertion I(x, t) → 0 uniformly for x ∈ Ω as t → ∞ follows from the same
argument of [3, Lemma 2.5]. It remains to determine the limit of S. Given any small ε > 0, we can find
a large time T0 > 0 such that I(x, t) ≤ ε for all x ∈ Ω as t ≥ T0. It is clear that S is a lower solution to
the following problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w

∂t
− dSΔw = a(x)w − b(x)w2 + εγ(x), x ∈ Ω, t > T0,

∂w

∂ν
= 0, x ∈ ∂Ω, t > T0,

w(x, T0) = S(x, T0) > 0, x ∈ Ω.

(2.7)
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Denote by w the unique solution to (2.7). Thus, the well-known parabolic comparison principle gives
S(x, t) ≤ w(x, t), ∀(x, t) ∈ Ω × [T0,∞). By Lemma 5.1, we know that the steady-state problem corre-
sponding to (2.7):

{−dSΔw = a(x)w − b(x)w2 + εγ(x), x ∈ Ω,
∂w

∂ν
= 0, x ∈ ∂Ω

admits a unique positive solution, denoted by w1,ε. In addition, some standard analysis enables us to
conclude that w(x, t) → w1,ε(x) uniformly on Ω as t → ∞ and w1,ε(x) → S̃(x) uniformly on Ω as ε → 0.
Hence,

lim sup
t→∞

S(x, t) ≤ S̃(x) uniformly for x ∈ Ω. (2.8)

If γ(x) ≥, �≡ β(x) on Ω, (which can ensure R0 < 1,) it is observed that S is an upper solution to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w

∂t
− dSΔw = a(x)w − b(x)w2, x ∈ Ω, t > 1,

∂w

∂ν
= 0, x ∈ ∂Ω, t > 1,

w(x, 1) = S(x, 1) > 0, x ∈ Ω.

(2.9)

Denote by w the unique solution to (2.9). So we have S(x, t) ≥ w(x, t), ∀(x, t) ∈ Ω × [1,∞). It is also
known that w(x, t) → S̃(x) uniformly on Ω as t → ∞. As a result, we obtain

lim inf
t→∞ S(x, t) ≥ S̃(x) uniformly for x ∈ Ω. (2.10)

A combination of (2.8) and (2.10) yields the limit of S. �

Remark 2.1. We remark here that in the special case when both a and b are positive constants, the unique
DFE (a/b, 0) is globally asymptotically stable, provided R0 < 1. In fact, as above, for any small ε > 0, we
can take a large time T0 > 0 fulfilling I(x, t) ≤ ε for all x ∈ Ω and t ≥ T0. Let δ = minx∈Ω S(x, T0) > 0
and by diminishing ε > 0 if necessary, we may assume

a − √
a − 4bβ∗ε
2b

< δ. (2.11)

For x ∈ Ω and t > T0, it holds

∂S

∂t
− dSΔS = aS − bS2 − β

SI

S + I
+ γI ≥ aS − bS2 − β∗ε.

Consider the following ordinary differential equation.
{

S̄′ = aS̄ − bS̄2 − β∗ε, t > T0,
S̄(T0) = δ.

(2.12)

Simple analysis shows that the unique solution S̄(t) of (2.12) satisfies

lim
t→∞ S̄(t) =

a +
√

a2 − 4bβ∗ε
2b

,

thanks to (2.11). An application of the comparison principle then yields

lim inf
t→∞ S(x, t) ≥ lim

t→∞ S̄(t) =
a +

√
a2 − 4bβ∗ε
2b

uniformly for x ∈ Ω.

This combined with the arbitrariness of small ε and (2.8) indicates that S(x, t) → S̃(x) ≡ a/b uniformly
for x ∈ Ω as t → ∞.



96 Page 8 of 25 B. Li, H. Li and Y. Tong ZAMP

Remark 2.2. We suspect that the conclusion of Theorem 2.2 remains valid as long as R0 < 1. We also
remark that when R0 > 1, we are unable to show the persistence property as in [14]; the mathematical
difficulty lies in that we cannot rule out the possibility that the solution (S, I) of (1.1) may converge
to (0, 0). Even the local stability of this trivial equilibrium seems to be a rather delicate issue since one
cannot linearize the system there.

2.3. Global stability of EE

In this subsection, we consider the global stability of the endemic equilibrium of (1.1), in the case that
all of β, γ, a and b are positive constants. In view of Theorem 2.2, it seems that (1.1) admits no EE if
R0 < 1. Therefore, throughout this section, we always assume that R0 > 1, and that all the coefficients
β, γ, a, b are positive constants. It is easy to see that (Ŝ, Î) is the unique constant EE if and only if β > γ

(i.e., R0 = β
γ > 1), where

(Ŝ, Î) =
(

a

b
,

a(β − γ)
bγ

)

.

In fact, we have

Theorem 2.3. For any dS , dI > 0, assume that the positive constants β > γ. Then the EE (Ŝ, Î) is
globally attractive.

Proof. For any solution (S, I) of (1.1), we now choose the following Volterra-type Lyapunov functional

L(t) =
∫

Ω

L(S(x, t), I(x, t))

with L(S, I) = S − Ŝ ln S + I − Î ln I (the same Lyapunov functional has been used in [14]). Then, for all
t > 0,

L̇(t) =
∫

Ω

[LS(S, I)St + LI(S, I)It]

=
∫

Ω

[(

1 − Ŝ

S

)

(dSΔS) +

(

1 − Î

I

)

(dIΔI)

]

+
∫

Ω

[(

1 − Ŝ

S

)(

−β
SI

S + I
+ γI + aS − bS2

)

+

(

1 − Î

I

)(

β
SI

S + I
− γI

)]

= −
∫

Ω

(

dS
Ŝ

S2
|∇S|2 + dI

Î

I2
|∇I|2

)

+
∫

Ω

[
(
S − Ŝ

)
(a − bS) − I

(

β
S

S + I
− γ

)(
Î

I
− Ŝ

S

)]

= −
∫

Ω

(

dS
Ŝ

S2
|∇S|2 + dI

Î

I2
|∇I|2

)

−
∫

Ω

[

b
(
S − Ŝ

)2

+ β
(SÎ − ŜI)2

S (S + I) (Ŝ + Î)

]

≤ 0,
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where we have used the equalities that

a = bŜ and γ = β
Ŝ

Ŝ + Î
.

As a result, L(t) is a Lyapunov functional for (1.1), namely, L̇(t) < 0, ∀t > 0 along all trajectories except
at (Ŝ, Î) where L̇(t) = 0, ∀t > 0. By some standard arguments, we easily see that

(S(x, t), I(x, t)) → (Ŝ, Î) in
[
L2(Ω)

]2
, as t → ∞.

Recall that both ‖S(·, t)‖L∞(Ω) and ‖I(·, t)‖L∞(Ω) are bounded due to Proposition 2.1. Hence, by [4,
Theorem A2], we have

‖S(·, t)‖C2(Ω) + ‖I(·, t)‖C2(Ω) ≤ C0, ∀t ≥ 1,

for some positive constant C0. Thus, the Sobolev embedding theorem allows one to assert

(S(x, t), I(x, t)) → (Ŝ, Î) in (L∞(Ω))2 , as t → ∞,

that is, (Ŝ, Î) attracts all solutions of (1.1). �

3. Existence of EE

From now on, we are concerned with the steady state (namely, EE) of (1.1), which is a positive solution
to the following elliptic system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dSΔS = aS − bS2 − β(x)SI

S + I
+ γ(x)I, x ∈ Ω,

−dIΔI =
β(x)SI

S + I
− γ(x)I, x ∈ Ω,

∂S

∂ν
=

∂I

∂ν
= 0, x ∈ ∂Ω.

(3.1)

In this section, we will establish a sufficient condition which ensures the existence of EE. Let us first
present some a priori bounds of S and I, which do not depend on dS , dI > 0. Clearly, there exist positive
constants μ and ν, independent of dS , dI > 0, such that

aS − bS2 ≤ μ − νS2, ∀S > 0.

Integrating the two PDEs of (3.1), respectively, yields
∫

Ω

β
SI

S + I
=

∫

Ω

γI +
∫

Ω

(aS − bS2) ≤
∫

Ω

γI +
∫

Ω

(
μ − νS2

)

and ∫

Ω

β
SI

S + I
=

∫

Ω

γI.

Consequently, we have

0 ≤ μ|Ω| − ν

∫

Ω

S2,

and therefore,
∫

Ω

S2 ≤ μ

ν
|Ω|. (3.2)
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As we shall see in the sequel, this actually can allow one to derive better estimates for I. In fact,
multiplying the second equation in (3.1) by Ik for k > 0 and integrating by parts, we have

0 ≤ kdI

∫

Ω

Ik−1|∇I|2 =
∫

Ω

βSIk+1

S + I
−

∫

Ω

γIk+1.

As a result,

γ∗
∫

Ω

Ik+1 ≤
∫

Ω

γIk+1 ≤
∫

Ω

β
I

S + I
SIk ≤ β∗

∫

Ω

SIk

≤ β∗

⎛

⎝

∫

Ω

Ik· k+1
k

⎞

⎠

k
k+1

⎛

⎝

∫

Ω

Sk+1

⎞

⎠

1
k+1

≤ γ∗
2

∫

Ω

Ik+1 + C

∫

Ω

Sk+1, (3.3)

where we have used Hölder inequality and Young’s inequality (2.1). Taking k = 1 and recalling (3.2), we
obtain ∫

Ω

I2 ≤ C. (3.4)

Hereafter, the positive constant C is independent of dS , dI and may vary from line to line.
Now multiplying the first equation of (3.1) by Sm for m > 0 and integrating by parts, we have

0 ≤ mdS

∫

Ω

Sm−1|∇S|2 =
∫

Ω

aSm+1 −
∫

Ω

bSm+2 −
∫

Ω

βSm+1I

S + I
+

∫

Ω

γISm,

from which it follows that

b∗
∫

Ω

Sm+2 ≤ a∗
∫

Ω

Sm+1 + γ∗
∫

Ω

ISm ≤ a∗
∫

Ω

Sm+1 + γ∗

⎛

⎝

∫

Ω

Sm· m+1
m

⎞

⎠

m
m+1

⎛

⎝

∫

Ω

Im+1

⎞

⎠

1
m+1

. (3.5)

Taking m = 1 and in view of (3.2) and (3.4), we find
∫

Ω

S3 ≤ C. (3.6)

Now with (3.6) at hand, we then take k = 2 in (3.3) to conclude that
∫

Ω

I3 ≤ C.

In the same fashion, by setting m = 2 in (3.5) and then k = 3 in (3.3), we see
∫

Ω

S4 ≤ C and
∫

Ω

I4 ≤ C.

Thus, the above iteration procedure eventually yields the following preliminary result.

Lemma 3.1. Let (S, I) be any EE of (3.1). Then, for any p > 0, there exists a positive constant C = C(p)
independent of dS , dI > 0 satisfying

∫

Ω

Sp ≤ C and
∫

Ω

Ip ≤ C.
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To obtain the existence of positive solutions to (3.1), we shall employ the topological degree argument.
For our purpose, for the parameter δ ∈ [0, 1], we consider the following auxiliary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dSΔS = [(1 − δ)a0 + δa] S − [(1 − δ)b0 + δb] S2

− [(1 − δ)β0 + δβ(x)] SI

S + I
+ [(1 − δ)γ0 + δγ(x)] I, x ∈ Ω,

−dIΔI =
[(1 − δ)β0 + δβ(x)] SI

S + I
− [(1 − δ)γ0 + δγ(x)] I, x ∈ Ω,

∂S

∂ν
=

∂I

∂ν
= 0, x ∈ ∂Ω,

(3.7)

where a0, b0, β0, γ0 are given positive constants satisfying a0 > γ0, β0 > γ0 and β0 − γ0 > β − γ on Ω.
Before stating our result, we need to give a preliminary result as follows.

Lemma 3.2. Assume that R0 > 1. Then, for any constant η ∈ (0, 1), the principal eigenvalue λ̂ of the
eigenvalue problem

⎧
⎨

⎩

dIΔψ + [(1 − η)(β0 − γ0) + η((β − γ)]ψ + λψ = 0, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω,

(3.8)

satisfies λ̂ < 0.

Proof. We can choose ϕ∗ to be an eigenfunction corresponding to λ∗ with ϕ∗ > 0 on Ω; see (2.6).
Since R0 > 1, λ∗ < 0 due to Proposition 2.1 (d). Given η ∈ (0, 1), by direct calculations, we see that
u = ηϕ∗ + (1 − η) > 0 satisfies

−dIΔu = η[λ∗ϕ∗ − (γ − β)ϕ∗]

< −[η(γ − β) + (1 − η)(γ0 − β0)][ηϕ∗ + (1 − η)]

= −[η(γ − β) + (1 − η)(γ0 − β0)]u, ∀x ∈ Ω
(3.9)

Here, we used the facts of β0 > γ0, β0 − γ0 > β − γ on Ω and λ∗ < 0.
Let ϕ̂ > 0 be the principal eigenfunction of (3.8). We now multiply (3.9) by ϕ̂ and then integrate to

conclude that

dI

∫

Ω

∇u · ∇ϕ̂ <

∫

Ω

[η(β − γ) + (1 − η)(β0 − γ0)] uϕ̂. (3.10)

On the other hand, if we multiply the PDE satisfied by (λ̂, ϕ̂) by u and integrate, we are led to

dI

∫

Ω

∇u · ∇ϕ̂ =
∫

Ω

[η(β − γ) + (1 − η)(β0 − γ0)] uϕ̂ + λ̂

∫

Ω

ϕ̂u. (3.11)

A combination of (3.10) and (3.11) gives λ̂
∫

Ω

ϕ∗u < 0, which clearly infers λ̂ < 0. �

Our existence result can be stated as follows.

Theorem 3.1. Assume that R0 > 1 and

min
x∈Ω

(

a(x) +
max{minΩ(β − γ), 0}

γ∗ γ(x) − β(x)
)

> 0. (3.12)

Then, (3.1) admits at least one positive solution.
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Proof. In the following, we denote by C a positive constant which is independent of δ and may vary from
line to line. Throughout this argument, we use (S, I) = (Sδ, Iδ) to represent a positive solution of (3.7).

First of all, similar to Lemma 3.1, the standard regularity theory for elliptic equations concludes that

‖S‖L∞(Ω) ≤ C, ‖I‖L∞(Ω) ≤ C. (3.13)

We now show
S(x), I(x) > C, ∀x ∈ Ω. (3.14)

Let S(x0) = minx∈Ω S(x). Then it follows from the maximum principle [16, Proposition 2.2] and the
first equation of (3.7) that

aS(x0) − bS2(x0) − βS(x0)I(x0)
S(x0) + I(x0)

+ γI(x0) ≤ 0.

where a := (1 − δ)a0 + δa(x0), b := (1 − δ)b0 + δb(x0), β := (1 − δ)β0 + δβ(x0), γ := (1 − δ)γ0 + δγ(x0).
Consequently,

aS(x0) + γI(x0) ≤ bS2(x0) +
βS(x0)I(x0)
S(x0) + I(x0)

. (3.15)

Similarly, by setting I(y0) = minx∈Ω I(x), we get from the second equation of (3.7) that

[(1 − δ)β0 + δβ(y0)]S(y0)
S(y0) + I(y0)

≤ (1 − δ)γ0 + δγ(y0).

This implies that

[(1 − δ)(β0 − γ0) + δ(β(y0) − γ(y0))]S(y0) ≤ [(1 − δ)γ0 + δγ(y0)]I(y0),

hence,

I(x) ≥ I(y0) ≥ [(1 − δ)(β0 − γ0) + δ(β(y0) − γ(y0))]
(1 − δ)γ0 + δγ(y0)

S(x0). (3.16)

Due to (3.12) and β0 > γ0, using (3.15) and (3.16), simple analysis shows that

S(x) ≥ S(x0) ≥ C > 0.

We then verify that there exists a positive C such that I(x) ≥ C, ∀x ∈ Ω. We argue by contradiction
and suppose that there exists a sequence {δn} with δn → δ̃ such that the corresponding solution sequence
(Sn, In) := (Sδn

Iδn
) of (3.7) with δ = δn satisfies

min
Ω

In → 0, as n → ∞, (3.17)

We observe that In satisfies following problem:
⎧
⎪⎨

⎪⎩

−dIΔIn =
[(1 − δn)β0 + δnβ(x)]SnIn

Sn + In
− [(1 − δn)γ0 + δnγ(x)]In, x ∈ Ω,

∂In

∂ν
= 0, x ∈ ∂Ω.

(3.18)

According to the Harnack-type inequality (see, e.g., [15] or [20, Lemma 2.2]) as applied to (3.18), it is
easily seen that

In → 0 uniformly on Ω, as n → ∞, (3.19)

Define

Ĩn :=
In

‖In‖L∞(Ω)
,
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then ‖Ĩn‖L∞(Ω) = 1 for all n ≥ 1, and Ĩn satisfies
⎧
⎪⎪⎨

⎪⎪⎩

−dIΔĨn =
{

[(1 − δn)β0 + δnβ(x)] Sn

Sn + In
− [(1 − δn)γ0 + δnγ(x)]

}

Ĩn, x ∈ Ω,

∂Ĩn

∂ν
= 0, x ∈ ∂Ω.

(3.20)

By a standard compactness argument for elliptic equations, together with the fact Sn(x) ≥ C, ∀x ∈
Ω, n ≥ 1, after passing to a further subsequence if necessary, we may assume that

Ĩn → I∗∗ uniformly on Ω, as n → ∞,

where I∗∗ ∈ C1(Ω) with I∗∗ ≥ 0 on Ω and ‖I∗∗‖L∞(Ω) = 1. From (3.17), (3.19) and (3.20), it follows that
I∗∗ solves

⎧
⎨

⎩

−dIΔI∗∗ =
{[

(1 − δ̃)β0 + δ̃β(x)
]

−
[
(1 − δ̃)γ0 + δ̃γ(x)

]}
I∗∗, x ∈ Ω,

∂I∗∗

∂ν
= 0, x ∈ ∂Ω.

(3.21)

Using the Harnack-type inequality again, one has I∗∗ > 0 on Ω. In the following, we consider separately
the cases of δ̃ = 0, δ̃ ∈ (0, 1) and δ̃ = 1.

If δ̃ = 0, (3.21) becomes
{−dIΔI∗∗ = (β0 − γ0)I∗∗, x ∈ Ω,

∂I∗∗

∂ν
= 0, x ∈ ∂Ω.

(3.22)

Integrating the first equation of (3.22) yields
∫

Ω

(β0 − γ0)I∗∗ = 0,

which is a contradiction with I∗∗ > 0 and β0 > γ0.
If δ̃ ∈ (0, 1), Lemma 3.2 tells us that λ̃ < 0, where λ̃ is the principal eigenvalue of the problem

⎧
⎨

⎩

−dIΔψ +
[
(1 − δ̃)(γ0 − β0) + δ̃(γ − β)

]
ψ = λψ, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

However, (3.21) implies that λ̃ = 0, an obvious contradiction.
If δ̃ = 1, then (3.21) becomes

{−dIΔI∗∗ = (β(x) − γ(x))I∗∗, x ∈ Ω,
∂I∗∗

∂ν
= 0, x ∈ ∂Ω.

Thus, it follows that the principal eigenvalue λ∗ of (2.6) satisfies λ∗ = 0. Again, this is a contradiction
with our assumption that λ∗ < 0 due to R0 > 1. Hence, (3.14) is proved.

Finally, we prove the existence of the positive solution. Let us denote

Θ = {(S, I) ∈ C(Ω) × C(Ω) : C1 < S, I < C2},

where C1 and C2 can be found to be independent of δ ∈ [0, 1] by (3.13) and (3.14). Thus, for such C1

and C2, (3.7) has no positive solution (S, I) ∈ ∂Θ. For δ ∈ [0, 1], we also define the operator

B(δ, (S, I)) = (−Δ + I)−1
(
h1(δ, (S, I)), h2(δ, (S, I))

)
,
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where (−Δ + I)−1 stands for the inverse operator of −Δ + I subject to Neumann boundary condition
over ∂Ω and

h1(δ, (S, I))

= S + d−1
S

{

[(1 − δ)a0 + δa] S − [(1 − δ)b0 + δb] S2 − [(1 − δ)β0 + δβ] SI

S + I
+ [(1 − δ)γ0 + δγ] I

}

,

and

h2(δ, (S, I)) = I + d−1
I

{
[(1 − δ)β0 + δβ] SI

S + I
− [(1 − δ)γ0 + δγ] I

}

.

It is well known that B is a compact operator from [0, 1] × Θ to C(Ω) × C(Ω). In addition,

(S, I) �= B(δ, (S, I)), ∀δ ∈ [0, 1] and (S, I) �∈ ∂Θ.

As a result, the topological degree deg (I−B(δ, ·),Θ) is well defined, which is also independent of δ ∈ [0, 1].
In light of Theorem 2.3, we notice that

(Ŝ0, Î0) =
(

a0

b0
,

a0(β0 − γ0)
b0γ0

)

is the unique fixed point of B(0, ·) in Θ, and thus

deg (I − B(0, ·),Θ) = index (I − B(0, ·), (Ŝ0, Î0)).

Furthermore, a straightforward calculation shows that (Ŝ0, Î0) is linearly stable as the unique positive
constant steady state of (1.1) with (a, b, β, γ) replaced by (a0, b0, β0, γ0). Hence, by the well-known Leray-
Schauder degree formula (see, e.g., Theorem 2.8.1 in [17]), we get

deg (I − B(0, ·),Θ) = index (I − B(0, ·), (Ŝ0, Î0)) = 1.

Therefore, it follows that

deg (I − B(1, ·),Θ) = deg (I − B(0, ·),Θ) = 1,

which in turn implies that B(1, ·) has at least one fixed point in Θ (equivalently, (3.1) admits at least
one positive solution). This finishes the proof. �

4. Asymptotic profiles of EE

In this section, we are concerned with the asymptotic behavior of the EE of (1.1) when dS or dI is large
or small.

4.1. The case of dS → 0

Our result of this subsection reads as follows.

Theorem 4.1. Assume that R0 > 1 and

min
x∈Ω

(a(x) − β(x)) > 0. (4.1)

Fix dI > 0, and let dS → 0, then every positive solution (S, I) of (3.1) satisfies (up to a subsequence of
dS → 0)

(S, I) → (S∗, I∗) uniformly on Ω,

where S∗(x) = G (x, I∗(x)) is the unique positive root of h(τ) = 0 with

h(τ) = −b(x)τ3 + [a(x) − b(x)I∗(x)] τ2 + I∗(x) [a(x) − β(x) + γ(x)] τ + γ(x) (I∗(x))2 ,



ZAMP Analysis on a diffusive SIS epidemic model with logistic source Page 15 of 25 96

and I∗ is a positive solution to
⎧
⎪⎨

⎪⎩

−dIΔI∗ =
β(x)G (x, I∗) I∗

G (x, I∗) + I∗ − γ(x)I∗, x ∈ Ω,

∂I∗

∂ν
= 0, x ∈ ∂Ω.

(4.2)

Proof. We first notice that (4.1) surely implies (3.12) and hence according to Theorem 3.1, there exists
at least one positive solution of (3.1). In the following, we divide our argument into three steps for the
sake of clarity.

Step 1: Estimates for lower bound of S and upper bound of I. Let S(x0) = minx∈Ω S(x). Then it
follows from the maximum principle [16, Proposition 2.2] and the first equation of (3.1) that

a(x0)S(x0) − b(x0)S2(x0) − β(x0)S(x0)I(x0)
S(x0) + I(x0)

+ γ(x0)I(x0) ≤ 0.

Consequently,

a(x0)S(x0) < a(x0)S(x0) + γ(x0)I(x0) ≤ b(x0)S2(x0) + β(x0)S(x0),

which gives

S(x) ≥ S(x0) ≥ minΩ(a − β)
b∗ =: m > 0, (4.3)

thanks to (4.1)
As for I, observe that it solves

⎧
⎪⎨

⎪⎩

ΔI +
[

β(x)S
dI(S + I)

− γ(x)
dI

]

I = 0, x ∈ Ω,

∂I

∂ν
= 0, x ∈ ∂Ω.

According to the Harnack-type inequality (see, e.g., [15] or [20, Lemma 2.2]), we get

max
Ω

I ≤ C min
Ω

I. (4.4)

Hereafter, C represents a positive constant independent of dS > 0 which may vary from line to line. Thus,
we obtain from (4.4) and Lemma 3.1 that

max
Ω

I ≤ C min
Ω

I ≤ C

|Ω|
∫

Ω

I ≤ C. (4.5)

Step 2: Convergence of I. Recall that I satisfies
⎧
⎪⎨

⎪⎩

−dIΔI + γ(x)I =
βS

S + I
I, x ∈ Ω,

∂I

∂ν
= 0, x ∈ ∂Ω,

By (4.5), we have
∥
∥
∥
∥

βS

S + I
I

∥
∥
∥
∥

Lp(Ω)

≤ C, ∀ p > 1.

From the standard Lp-estimate for elliptic equations (see, e.g., [11]), it then follows that

‖I‖W 2,p(Ω) ≤ C for any given p > 1.

Taking p to be sufficiently large, we see from the Sobolev embedding that

‖I‖C1+α(Ω) ≤ C for some 0 < α < 1.
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As a result, there exists a subsequence of dS → 0, say dn := dS,n, satisfying dn → 0 as n → ∞, and a
corresponding positive solution (Sn, In) of (3.1) with dS = dn, such that

In → I∗ uniformly on Ω, as n → ∞,

where 0 ≤ I∗ ∈ C1(Ω). Due to (4.4),

either I∗ ≡ 0 on Ω or I∗ > 0 on Ω. (4.6)

Suppose the former holds in (4.6); that is,

In → 0 uniformly on Ω, as n → ∞. (4.7)

Then for arbitrarily small ε > 0, we have

0 ≤ In(·) ≤ ε for all large n.

This fact, together with the first equation of (1.1), implies that for all large n, Sn satisfies

−dnΔSn ≤ a(x)Sn − b(x)S2
n + γ∗ε, x ∈ Ω;

∂Sn

∂ν
= 0, x ∈ ∂Ω (4.8)

and

−dnΔSn ≥ a(x)Sn − b(x)S2
n − β∗ε, x ∈ Ω;

∂Sn

∂ν
= 0, x ∈ ∂Ω.

It follows from (4.8) and Lemma 5.1 that Sn(x) ≤ un(x), where un is the unique positive solution of
(5.1) with d replaced by dn and κ replaced by γ∗ε. Moreover,

lim sup
n→∞

Sn(x) ≤ lim
n→∞ un(x) = gε(x), (4.9)

where gε(x) is the unique positive root of hε(τ) := a(x)τ − b(x)τ2 + γ∗ε. Elementary analysis shows that,
for all small ε > 0,

a(x)
b(x)

< gε(x) <
a(x)
b(x)

+
(

γ∗ε
b∗

) 1
2

. (4.10)

On the other hand, consider the auxiliary problem

−dnΔv = a(x)v − b(x)v2 − β∗ε, x ∈ Ω;
∂v

∂ν
= 0, x ∈ ∂Ω. (4.11)

For m defined via (4.3), Lemma 5.2 tells us that (4.11) possesses a unique positive solution larger than
m, denoted by vn. Straightforward calculations show that m is a lower solution of (4.11) for all small
ε > 0, while Sn ≥ m is an upper solution, thanks to (4.3). Thus, for all large n, m ≤ vn ≤ Sn on Ω. As a
result,

lim inf
n→∞ Sn(x) ≥ lim

n→∞ vn(x) = gε(x) uniformly on Ω, (4.12)

with gε(x) being the larger positive root of hε(τ) := a(x)τ − b(x)τ2 − β∗ε. Furthermore, it can be easily
checked that, for all small ε > 0,

a(x)
b(x)

−
(

β∗ε
b∗

) 1
2

< gε(x) <
a(x)
b(x)

. (4.13)

In light of (4.9) and (4.12), together with (4.10) and (4.13), we obtain

Sn(x) → a(x)
b(x)

uniformly on Ω, as n → ∞. (4.14)

Notice that In verifies

−dIΔIn =
β(x)SnIn

Sn + In
− γ(x)In, x ∈ Ω;

∂In

∂ν
= 0, x ∈ ∂Ω. (4.15)
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Define

Ĩn :=
In

‖In‖L∞(Ω)
.

Then ‖Ĩn‖L∞(Ω) = 1 for all n ≥ 1, and Ĩn solves

− dIΔĨn =
[

β(x)Sn

Sn + In
− γ(x)

]

Ĩn, x ∈ Ω;
∂Ĩn

∂ν
= 0, x ∈ ∂Ω. (4.16)

As before, by a standard compactness argument for elliptic equations, after passing to a further subse-
quence if necessary, we may assume that

Ĩn → Ĩ in C1(Ω), as n → ∞,

where 0 ≤ Ĩ ∈ C1(Ω) with ‖Ĩ‖L∞(Ω) = 1. From (4.7), (4.14) and (4.16), it follows that Ĩ satisfies

−dIΔĨ = [β(x) − γ(x)] Ĩ , x ∈ Ω;
∂Ĩ

∂ν
= 0, x ∈ ∂Ω.

An application of the Harnack-type inequality (see, [15] or [20, Lemma 2.2]) yields Ĩ > 0 on Ω. As a
result, this implies λ∗ = 0, where λ∗ is the principal eigenvalue of (2.6), contradicting our assumption
R0 > 1 (note that R0 does not depend on dS) and Proposition 2.1 (d). Thus, (4.7) cannot occur, and so
I∗ > 0 on Ω. That is,

In → I∗ > 0 uniformly on Ω, as n → ∞. (4.17)
Step 3: Convergence of S. Consider the equation satisfied by Sn:

⎧
⎪⎨

⎪⎩

−dnΔSn = a(x)Sn − b(x)S2
n − β(x)SnIn

Sn + In
+ γ(x)In, x ∈ Ω,

∂Sn

∂ν
= 0, x ∈ ∂Ω.

(4.18)

It follows from (4.17) that for any small ε > 0, we have

0 < I∗ − ε ≤ In ≤ I∗ + ε, (4.19)

on Ω for all large n. Thus,

a(x)Sn − b(x)S2
n − β(x)SnIn

Sn + In
+ γ(x)In

≤ a(x)Sn − b(x)S2
n − β(x)Sn(I∗ − ε)

Sn + (I∗ − ε)
+ γ(x)(I∗ + ε)

=
hε(x, Sn(x))
Sn + (I∗ − ε)

,

with

hε(x, τ) := −bτ3 − b (I∗ − ε) τ2 + aτ2 + [(a − β)(I∗ − ε) + γ(I∗ + ε)] τ + γ(I∗ − ε)(I∗ + ε).

To emphasize the dependence on τ , we write hε(τ) instead of hε(x, τ) for each fixed x ∈ Ω. Direct
calculations show that

h′
ε(τ) = −3bτ2 − 2b(I∗ − ε)τ + 2aτ + [(a − β)(I∗ − ε) + γ(I∗ + ε)] ,

h′′
ε (τ) = −6bτ − 2b(I∗ − ε) + 2a,

h′′′
ε (τ) = −6b.

As h′′′
ε (τ) < 0 for all τ > 0, we have h′′

ε (τ) is strictly decreasing with respect to τ > 0. Consequently,
h′′

ε (τ) changes sign at most once on (0,∞). We consider two different cases.
Case 1: h′′

ε (τ) changes sign exactly once. This means h′′
ε (0) > 0 since h′′

ε (∞) = −∞. Notice h′
ε(0) > 0

due to (4.1) and h′
ε(∞) = −∞. It follows that h′

ε(τ) is strictly increasing and then strictly decreasing
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with a positive maximum value for τ ∈ (0,∞). Also observe that hε(0) > 0 and hε(∞) = −∞. We then
conclude that hε(τ) is also strictly increasing and then strictly decreasing with a positive maximum value
for τ ∈ (0,∞). As a result, hε(τ) = 0 has a unique positive root. Case 2: h′′

ε (τ) does not change sign. This
means h′′

ε (τ) < 0 for all τ ∈ (0,∞). Hence hε(τ) is strictly decreasing with respect to τ ∈ (0,∞). Since
h′

ε(0) > 0 and h′
ε(∞) = −∞, then h′

ε(τ) changes sign exactly once (from positive to negative). Again
using the fact that hε(0) > 0 and hε(∞) = −∞, we see hε(τ) is strictly increasing and then decreasing
with a positive maximum value. In either case, we can conclude that hε(τ) = 0 possesses a unique positive
root, denoted by gε(x, I∗(x)). Moreover, we can write hε(τ) = (gε(x, I∗(x)) − τ) h̃ε(τ) with h̃ε(τ) > 0 for
all x ∈ Ω and τ > 0.

Let Sn(xn) = maxΩ Sn. Then the maximum principle [16, Proposition 2.2] applied to (4.18) yields

b(xn)S2
n(xn) − a(xn)Sn(xn) − γ(xn)In(xn) ≤ 0,

which indicates that

Sn(x) ≤ Sn(xn) ≤ a(xn) +
√

a2(xn) + 4b(xn)γ(xn)In(xn)
2b(xn)

≤ a∗ +
√

(a∗)2 + 4b∗γ∗(I∗ + 1)
2b∗

, (4.20)

for large n.
For large n, we consider the following auxiliary problem

−dnΔw =
(gε(x, I∗(x)) − w)h̃ε(w)

w + (I∗ − ε)
, x ∈ Ω;

∂w

∂ν
= 0, x ∈ ∂Ω. (4.21)

Observe that Sn is a subsolution to (4.21) and any sufficiently large positive constant C is a supersolution.
Moreover, we can take C large enough so that Sn ≤ C on Ω thanks to (4.20). Hence, (4.21) has at least
one positive solution, denoted by wn, satisfying Sn ≤ wn ≤ C on Ω. Upon an application of the maximum
principle [16, Proposition 2.2] again, one can see that any positive solution wn of (4.21) fulfills

min
x∈Ω

gε(x, I∗(x)) ≤ min
x∈Ω

wn(x) ≤ wn(x) ≤ max
x∈Ω

wn(x) ≤ max
x∈Ω

gε(x, I∗(x)), ∀x ∈ Ω.

By similar arguments to those in the proof of Lemma 5.1 (see also [10, Lemma 2.4]), together with the
facts that gε > 0 and h̃ε > 0 on Ω, we know that any positive solution wn of (4.21) satisfies

wn → gε(x, I∗(x)) uniformly on Ω, as n → ∞,

which, combined with Sn ≤ wn ≤ C on Ω, yields

lim sup
n→∞

Sn(x) ≤ gε(x, I∗(x)) uniformly on Ω. (4.22)

On the other hand, by (4.19), for all large n we have

a(x)Sn − b(x)S2
n − βSnIn

Sn + In
+ γIn

≥ a(x)Sn − b(x)S2
n − βSn(I∗ + ε)

Sn + (I∗ + ε)
+ γ(I∗ − ε)

=
hε(x, Sn(x))
Sn + (I∗ + ε)

,

with

hε(x, τ) := −bτ3 − b (I∗ + ε) τ2 + aτ2 + [(a − β)(I∗ + ε) + γ(I∗ − ε)] τ + γ(I∗ − ε)(I∗ + ε).

Arguing similarly as before, we are led to

lim inf
n→∞ Sn(x) ≥ gε(x, I∗(x)) uniformly on Ω, (4.23)
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where gε(x, I∗(x)) is the unique positive root of hε(x, τ) = 0. As

lim
ε→0

gε(x, I∗(x)) = lim
ε→0

gε(x, I∗(x)) = G(x, I∗(x)),

it follows readily from (4.22) and (4.23) that

Sn(x) → G(x, I∗(x)) uniformly on Ω, as n → ∞.

Furthermore, because of (4.15), it can be easily seen that I∗ satisfies (4.2). The proof is finally complete.
�

4.2. The case of dI → 0

This subsection is devoted to the investigation of the asymptotic behavior of positive solutions of (3.1)
with dS > 0 being fixed and dI → 0. In light of Proposition 2.1(a) and (3.12), we assume that {β(x) >
γ(x) : x ∈ Ω} is nonempty so that R0 > 1 for all small dI . Our main result reads as follows.

Theorem 4.2. Assume that the set {β(x) > γ(x) : x ∈ Ω} is nonempty and that (3.12) holds. Fix dS > 0
and let dI → 0, then every positive solution (S, I) of (3.1) satisfies

(S, I) → (S∗, I∗) uniformly on Ω,

where

I∗(x) :=
(β(x) − γ(x))+

γ(x)
S∗(x),

and S∗ is the unique positive solution of
⎧
⎪⎨

⎪⎩

−dSΔS∗ = a(x)S∗ − b(x)S2
∗ − β(x)S∗I∗

S∗ + I∗
+ γ(x)I∗, x ∈ Ω,

∂S∗
∂ν

= 0, x ∈ ∂Ω.

Proof. According to the standard elliptic Lp theory, it follows from the S-equation and Lemma 3.1 that

‖S‖W 2,p(Ω) ≤ C,

for any p > 1. Hereafter, C represents a positive constant independent of small dI > 0. Then for sufficiently
large p, the Sobolev embedding theory guarantees that for some α ∈ (0, 1), it holds

‖S‖C1+α(Ω) ≤ C. (4.24)

Moreover, up to a subsequence of dI → 0, say dn := dI,n → 0 with dn → 0 as n → ∞, the corresponding
positive solution sequence (Sn, In) of (3.1) with dI = dn satisfies

Sn → S∗ in C1(Ω), as n → ∞, (4.25)

where 0 ≤ S∗ ∈ C1(Ω).
Let I(x0) = maxx∈Ω I(x). Then for all dI > 0, in light of the maximum principle [16, Proposition 2.2]

and the I-equation, we obtain

β(x0)S(x0)I(x0)
S(x0) + I(x0)

− γ(x0)I(x0) ≥ 0,

from which it follows

I(x) ≤ I(x0) ≤ β(x0) − γ(x0)
γ(x0)

S(x0) ≤
(

max
Ω

β − γ

γ

)(

max
Ω

S

)

≤ C, ∀x ∈ Ω, (4.26)

where we have used (4.24).



96 Page 20 of 25 B. Li, H. Li and Y. Tong ZAMP

By (3.1), it can be easily seen that
⎧
⎨

⎩

−Δ(dSS + dII) = a(x)S − b(x)S2, x ∈ Ω,
∂(dSS + dII)

∂ν
= 0, x ∈ ∂Ω,

Denote (dSS +dII)(x1) = minx∈Ω(dSS +dII)(x). Then invoking the maximum principle [16, Proposition
2.2] again, we are led to

a(x1)S(x1) − b(x1)S2(x1) ≤ 0 and so S(x1) ≥ a∗
b∗ .

Therefore,

(dSS + dII)(x) ≥ dSS(x1) ≥ dSa∗
b∗ , ∀x ∈ Ω. (4.27)

By sending n → ∞ in (4.27) and using (4.25) and (4.26), we conclude that S∗ > 0 in Ω.

The rest of the argument is the same as Step 4 in the proof of [14, Theorem 5.2] and hence is
omitted. �

4.3. The case of dS → ∞

When dS → ∞, we have

Theorem 4.3. Assume that R0 > 1 and (3.12) holds. Fix dI > 0 and let dS → ∞, then every positive
solution (S, I) of (3.1), up to a subsequence of dS, satisfies

(S, I) → (S∞, I∞) uniformly on Ω,

where S∞ is a positive constant and I∞ > 0 on Ω, and (S∞, I∞) solves
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

Ω

[

a(x)S∞ − b(x) (S∞)2 − β(x)S∞I∞

S∞ + I∞ + γ(x)I∞
]

= 0,

−dIΔI∞ =
β(x)S∞I∞

S∞ + I∞ − γ(x)I∞, x ∈ Ω,

∂I∞

∂ν
= 0, x ∈ ∂Ω.

(4.28)

Proof. We rewrite the first equation of (3.1) as
⎧
⎪⎨

⎪⎩

−ΔS =
1
dS

[

a(x)S − b(x)S2 − β(x)SI

S + I
+ γ(x)I

]

, x ∈ Ω,

∂S

∂ν
= 0, x ∈ ∂Ω.

(4.29)

In view of Lemma 3.1, by a standard compactness argument, we see that (4.24) and (4.26) remain valid for
some positive constant C independent of dS > 1 which may vary in different places below. Furthermore,
there exists a subsequence of dS , labeled by dn with dn → ∞ as n → ∞ such that the corresponding
positive solution (Sn, In) of (3.1) for dS = dn satisfies Sn → S∞ ≥ 0 in C1(Ω) as n → ∞. Moreover,
from (4.29), it can be easily verified that S∞ solves

−ΔS∞ = 0, x ∈ Ω;
∂S∞

∂ν
= 0, x ∈ ∂Ω.

Clearly, S∞ ≥ 0 on Ω must be a constant. Moreover, as in the proof of Theorem 3.1, (3.12) is sufficient
to guarantee that Sn is bounded from below by a positive constant. Consequently, we must have S∞ > 0.
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Since Sn → S∞ > 0 in C1(Ω), as before, it follows from the second equation of (3.1) that, by passing
to a further subsequence if necessary,

In → I∞ in C1(Ω), as n → ∞,

with 0 ≤ I∞ ∈ C1(Ω) fulfilling

−dIΔI∞ =
β(x)S∞I∞

S∞ + I∞ − γ(x)I∞, x ∈ Ω;
∂I∞

∂ν
= 0, x ∈ ∂Ω.

Moreover, as in deriving (4.17), we can claim that I∞ > 0 on Ω. The first equation of (4.28) is valid
since

∫

Ω

[

a(x)Sn − b(x)S2
n − β(x)SnIn

Sn + In
+ γ(x)In

]

= 0, ∀n ≥ 1.

�

4.4. The case of dI → ∞

Finally, we discuss the limiting behavior of positive solutions of (3.1) when dI → ∞. To ensure the
existence of positive solutions of (3.1) for all large dI , we need to assume that

∫

Ω

β >
∫

Ω

γ due to Proposition

2.1.

Theorem 4.4. Assume that
∫

Ω

β >
∫

Ω

γ and (3.12) holds. Fix dS > 0 and let dI → ∞, then every positive

solution (S, I) of (3.1), up to a subsequence of dI , satisfies

(S, I) → (S∞, I∞) uniformly on Ω,

where I∞ is a positive constant and S∞ > 0 on Ω, and (S∞, I∞) solves
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−dSΔS∞ = a(x)S∞ − b(x)S2
∞ − β(x)S∞I∞

S∞ + I∞
+ γ(x)I∞, x ∈ Ω,

∂S∞
∂ν

= 0, x ∈ ∂Ω,
∫

Ω

[
β(x)S∞
S∞ + I∞

− γ(x)
]

= 0.

(4.30)

Proof. In view of Lemma 3.1, a compactness argument as in the proof of Theorem 4.3 yields that there
exists a sequence of dI → ∞, say dn satisfying dn → ∞ as n → ∞, such that the corresponding positive
solution sequence (Sn, In) of (3.1) fulfills

(Sn, In) → (S∞, I∞) in C1
(
Ω
)
, as dI → ∞,

where I∞ is a nonnegative constant and 0 < S∞ ∈ C1
(
Ω
)
, thanks to (3.12) ensuring the positive lower

bound of Sn.
Now, we shall prove that I∞ must be a positive constant and (S∞, I∞) solves (4.30). Suppose on the

contrary that I∞ = 0. Let Ĩn = In

‖In‖L∞(Ω)
. Then ‖Ĩn‖L∞(Ω) = 1 for all n ≥ 1, and Ĩn satisfies

−dnΔĨn =
[

β(x)Sn

Sn + In
− γ(x)

]

Ĩn, x ∈ Ω;
∂Ĩn

∂ν
= 0, x ∈ ∂Ω. (4.31)

As before, a compactness argument yields that, after passing to a further subsequence if necessary,

Ĩn → 1 in C1
(
Ω
)
, as n → ∞. (4.32)
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On the other hand, from (4.31) it follows that
∫

Ω

[
β(x)Sn

Sn + In
− γ(x)

]

Ĩn = 0, ∀n ≥ 1.

By sending dn → ∞, this, together with (4.32) and In → 0 while Sn → S∞ > 0 on Ω, leads to
∫

Ω

(β(x) − γ(x)) = 0,

which is a contradiction with our assumption. Therefore, I∞ must be a positive constant. Furthermore,
from the first equation of (3.1) and the fact that

∫

Ω

[
β(x)SnIn

Sn + In
− γ(x)In

]

= 0,

it is easily seen that (S∞, I∞) satisfies (4.30). �
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5. Appendix

Lemma 5.1. Let d, κ > 0 be constants. Then the following problem
{−dΔu = a(x)u − b(x)u2 + κ, x ∈ Ω,

∂u

∂ν
= 0, x ∈ ∂Ω

(5.1)

admits a unique positive solution, denoted by ud. Furthermore, ud(x) → g(x) uniformly on Ω as d → 0,
where g(x) is the unique positive root of h(τ) := a(x)τ − b(x)τ2 + κ = 0.

Proof. It is easily checked that a small positive constant is a lower solution of (5.1), while a large positive
constant is an upper solution. Thus, a positive solution exists according to the lower–upper solution
method. Moreover, a minimal solution u1 and a maximal solution u2 exist. To show uniqueness, it suffices
to prove u1 ≡ u2. Suppose that u1 ≤ u2, u1 �≡ u2. Then multiplying the u1-equation by u2 and integrating
by parts, we are led to

d

∫

Ω

∇u1 · ∇u2 =
∫

Ω

[
a(x)u1u2 − b(x)u2

1u2 + κu2

]
. (5.2)

Similarly, multiplying the u2-equation by u1 and integrating by parts, we have

d

∫

Ω

∇u1 · ∇u2 =
∫

Ω

[
a(x)u1u2 − b(x)u2

2u1 + κu1

]
. (5.3)
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As a result of (5.2) and (5.3), there holds
∫

Ω

[b(x)u1u2 + κ] (u1 − u2) = 0.

This contradiction implies the uniqueness of positive solution to (5.1).
We now prove the asymptotic behavior of ud under the extra assumption that a, b ∈ C2

(
Ω
)

(so that
g ∈ C2

(
Ω
)
). Denote d(x) = dist(x, ∂Ω) and choose c > 0 such that |∇g| ≤ c on Ω. Notice that since ∂Ω

is smooth, then d(x) is C2 near ∂Ω and ∂d
∂ν (x) < 0 for x ∈ ∂Ω. We construct a pair of upper and lower

solutions of (5.1) as follows.
For any given small ε > 0, define

u = (1 − ε)g(x) − f(x) > 0 and u = (1 + ε)g(x) + f(x) ≥ u,

with f(x) fulfilling the following conditions:
(i) f ∈ C2

(
Ω
)

and 0 ≤ f ≤ ε on Ω;
(ii) f(x) = ε

2 − Md(x) when x is close to ∂Ω, where M > 0 is chosen to satisfy

−(1 ± ε)c − M
∂d

∂ν
(x) ≥ 0, ∀x ∈ ∂Ω.

Note that on ∂Ω, it holds
∂u

∂ν
= (1 − ε)

∂g

∂ν
+ M

∂d

∂ν
≤ (1 − ε)c + M

∂d

∂ν
≤ 0. (5.4)

On the other hand, it is easily checked that

g(x) >
a(x)
2b(x)

, ∀x ∈ Ω.

Hence, we can pick c1 > 0 such that

g(x) >
a(x)
2b(x)

+ c1, ∀x ∈ Ω. (5.5)

For x ∈ Ω, with some ξ(x) ∈ [(1 − ε)g(x) − f(x), g(x)], in accordance with the definition of g(x) and
(5.5), we have

−dΔu − a(x)u + b(x)u2 − κ

= −d(1 − ε)Δg + dΔf − a(x)(1 − ε)g(x) + a(x)f(x) + b(x) [(1 − ε)g(x) − f(x)]2 − κ

= −d(1 − ε)Δg + dΔf + a(x) [εg(x) + f(x)] + b(x) [(1 − ε)g(x) − f(x)]2 − b(x)g2(x)
= −d(1 − ε)Δg + dΔf + a(x) [εg(x) + f(x)] − 2b(x)ξ(x)[εg(x) + f(x)]
≤ −d(1 − ε)Δg + dΔf + 2b(x)[εg(x) + f(x)] {g(x) − c1 − [(1 − ε)g(x) − f(x)]}
≤ 0, (5.6)

by first fixing ε small, and then d > 0 small. Thus, (5.4), combined with (5.6), indicates that u is indeed
a lower solution of (5.1) for small d > 0.

In a similar fashion, one can show that u is an upper solution for all sufficiently small d > 0. So it is
necessary that u ≤ ud ≤ u on Ω. That is, for any small ε > 0, if d > 0 is small enough, it holds

(1 − ε)g(x) − ε ≤ ud ≤ (1 + ε)g(x) + ε on Ω.

This clearly implies that ud(x) → g(x) uniformly on Ω as d → 0.
Now for the general case a, b ∈ Cα(Ω). Since C2(Ω) is dense in Cα(Ω), for any given small ε > 0, we can

find ai, bi ∈ C2(Ω), such that 0 < a1(x) < a(x) < a2(x), 0 < b2(x) < b(x) < b1(x), and |a(x)− ai(x)| ≤ ε,
|b(x) − bi(x)| ≤ ε, i = 1, 2. Let ui and gi, respectively, be the unique positive solution of (5.1) and
hi(τ) = 0 with a, b replaced by ai, bi. Using what was just proved, it follows that ui → gi uniformly on
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Ω as d → 0. Clearly, u1 and u2 form a lower–upper solution pair of (5.1). Moreover, u1 < u2 for small
d > 0 since g1 < g2. Thus, thanks to the uniqueness of positive solution to (5.1), u1(x) ≤ u(x) ≤ u2(x)
on Ω. Consequently,

lim sup
d→0

u(x) ≤ lim
d→0

u2(x) = g2(x),

lim inf
d→0

u(x) ≥ lim
d→0

u1(x) = g1(x)

uniformly on Ω. The conclusion follows readily from the arbitrariness of small ε > 0. �
Lemma 5.2. Let d > 0. Then for any constant 0 < m < a∗

b∗ , there exists κ0 = κ0(m) > 0 such that for
any 0 < κ ≤ κ0, the problem

{−dΔu = a(x)u − b(x)u2 − κ, x ∈ Ω,
∂u

∂ν
= 0, x ∈ ∂Ω

(5.7)

admits a unique positive solution ud larger than m. Furthermore, ud(x) → g+(x) uniformly on Ω as
d → 0, where g+(x) is the larger positive root of h(τ) := a(x)τ − b(x)τ2 − κ = 0.

Proof. Straightforward calculations show that there exists a constant κ1 satisfying 0 < κ1 < b∗m2, such
that m is a lower solution of (5.7) for all 0 < κ < κ1. Obviously, a sufficiently large positive constant is
an upper solution. Thus, the lower–upper solution argument ensures that (5.7) has a minimal solution
u1 and a maximal solution u2, with u1, u2 ≥ m on Ω.

To prove the uniqueness, it suffices to show u1 ≡ u2. Proceeding similarly as in the proof of Lemma
5.1, we find ∫

Ω

[b(x)u1u2 − κ] (u1 − u2) = 0.

Due to 0 < κ < b∗m2 and u1, u2 ≥ m, this is impossible. Hence the uniqueness is established.
It is easily checked that for all 0 < κ <

a2
∗

4b∗ , h(τ) = a(x)τ − b(x)τ2 −κ = 0 admits exactly two positive

roots, with one smaller than a(x)
2b(x) and one larger than a(x)

2b(x) . Let κ0 = min{κ1,
a2

∗
4b∗ } > 0. The asymptotic

behavior of ud can be obtained in the same fashion as in the argument of Lemma 5.1, and hence we omit
the details. �
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