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Abstract. In this paper, we study the limit cycles for m-piecewise discontinuous polynomial Liénard differential systems of
degree n with m/2 straight lines passing through the origin whose slopes are tan(α + 2jπ/m) for j = 0, 1, . . . , m/2 − 1,
and prove that for any positive even number m, if sin(mα/2) �= 0, then there always exists such a system possessing at

least
[
1
2
(n − m−2

2
)
]

limit cycles. This result verifies a conjecture proposed by Llibre and Teixerira (Z Angew Math Phys

66:51–66, 2015).
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1. Introduction and statement of the main results

In recent years, the non-smooth differential systems have been studied extensively. They appear and
play an intrinsic role in a wide range of science areas, not only in Mathematics, but also in Physics and
Engineering, for instance, in control systems, mechanical systems, nonlinear oscillations, and particular
electrical circuits. For more details on them, one can see [1,2,7] and the references therein. No matter
what in the theories or in the applications of non-smooth differential systems, the detection of limit cycles
is of fundamental importance.

A kind of typical non-smooth differential systems is the following so-called m-piecewise discontinuous
Liénard polynomial differential systems of degree n,

{
ẋ = y + sgn(gm(x, y))F (x),
ẏ = −x,

(1)

where F (x) is a polynomial of degree n and the zero set of the function sgn(gm(x, y)) with positive even
number m is the union of m/2 different straight lines passing through the origin of coordinates dividing
the plane into sectors of angle 2π/m. Here, sgn(z) denotes the sign function, i.e.,

sgn(z) =

⎧
⎪⎨

⎪⎩

−1 if z < 0,

0 if z = 0,

1 if z > 0.

The above systems in some sense generalize the class of Liénard differential systems to the non-smooth
differential systems; this is just the reason for the name.
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In a recent paper [5], the authors studied the limit cycles of systems (1). For m = 0, 2, 4, they
proved that there always exists a system (1) of degree n such that it has

[
n−1
2

]
,
[

n
2

]
,
[

n−1
2

]
limit cycles,

respectively, where [·] denotes the integer part function, and for general integers m, they presented a
conjecture which can be rewrite as follows:

Conjecture. For any even number m ≥ 6, there always exists a system (1) of degree n such that it can
have at least

[
1
2 (n − m−2

2 )
]

limit cycles.

In this paper, we shall prove that this conjecture is correct indeed. Moreover, if we assume that,
without loss of generality, the slopes of the m/2 straight lines of gm(x, y) = 0 are tan(α + 2jπ/m) for
j = 0, 1, . . . ,m/2 − 1, we will show that how the number of limit cycles for systems (1) of degree n
depends on α, i.e., we have the following theorem:

Theorem 1.1. For any positive even number m, if sin(mα/2) �= 0, then there always exists a system (1)
of degree n such that it can have at least

[
1
2 (n − m−2

2 )
]

limit cycles.

In [5], the authors also presented some analytical results and numerical computations for small m =
6, 8, 10 and α = π/2, π/8, π/2, respectively, but lack of rigorous proof. Their results become the particular
examples of Theorem 1.1 with its proof.

2. Proof of the main result

2.1. Proof of Theorem 1.1

Proof of Theorem 1.1. For proving Theorem 1.1, it suffices to construct such a system. For this, similarly
to [5], we also consider systems (1) with a small parameter ε,

{
ẋ = y + ε sgn(gm(x, y))F (x),
ẏ = −x,

(2)

where F (x) =
∑n

i=0 aix
i, an �= 0. In polar coordinates above systems become
{

ṙ = ε sgn(gm(r cos θ, r sin θ)) cos θF (r cos θ),
θ̇ = −1 − ε sgn(gm(r cos θ, r sin θ))1r sin θF (r cos θ),

Taking θ as the new independent variable system, they can be written as

dr

dθ
= −ε sgn(gm(r cos θ, r sin θ)) cos θF (r cos θ) + O

(
ε2

)
,

= εf(θ, r) + ε2f1(θ, r, ε), (3)

where f(θ, r) = −sgn(gm(r cos θ, r sin θ)) cos θF (r cos θ).

In references [3,4], the averaging theory for studying limit cycles of discontinuous piecewise differential
systems has been developed. We can apply the first-order averaging theorem(Theorem A of [3]) for
discontinuous systems to systems (3). That is, if the first-order averaged function

f0(r) =
1
2π

2π∫

0

f(θ, r)dθ

is not equal to zero identically, then the number of limit cycles of system (2) is equal to the number
of the simple positive zeros of f0(r). Without loss of generality, we assume that gm(x, y) = 0 consists
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of m/2 lines θ = α + 2jπ/m for j = 0, 1, . . . ,m/2 − 1 and sgn(gm(r cos θ, r sin θ)) = (−1)j if θ ∈
(α + 2jπ/m,α + 2(j + 1)π/m) for j = 0, 1, . . . , m − 1. Then f0(r) can be expressed as

f0(r) =
1
2π

2π∫

0

f(θ, r)dθ =
1
2π

α+2π∫

α

f(θ, r) dθ

= − 1
2π

n∑

i=0

air
i

α+2π∫

α

sgn(gm(r cos θ, r sin θ)) cosi+1 θ dθ

= − 1
2π

n∑

i=0

air
i

m−1∑

j=0

α+ 2(j+1)π
m∫

α+ 2jπ
m

(−1)j cosi+1 θ dθ.

Denoting by

di =
1
2π

m−1∑

j=0

α+ 2(j+1)π
m∫

α+ 2jπ
m

(−1)j+1 cosi+1 θ dθ, (4)

we have f0(r) =
∑n

i=0 aidir
i.

By the Descartes theorem below (more details can be seen in [5]), in order to study the simple zeros
of the polynomial f0(r), we must know if the constants di which depend on m are zero or not. According
to Propositions 5 and 6 of [5], if m = 4k, where k is a positive integer, then di = 0 for even number i,
and the polynomial f0(r) is odd; if m = 4k + 2 is not a multiple of 4, then di = 0 for odd number i, and
the polynomial f0(r) is even.

Descartes Theorem. Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · · + air
xir with r > 1,

0i1 < i2 < · · · < ir and the numbers aij
are not simultaneously zeros for j ∈ 1, 2, . . . , r. When aij

aij+1 < 0,
we say that aij

and aij+1 have a variation of sign. If the number of variations of signs is m, then p(x)
has at most m positive real roots. Moreover, it is always possible to choose the coefficients of p(x) in such
a way that p(x) has exactly r − 1 positive real roots.

Finally, the problem of proving Theorem 1.1 is reduced to decide how many di are not zero for a given
m. This can be finished easily using the following two theorems.

Theorem 2.1. For m = 4k + 2, l ∈ Z, then the following statements hold:
1. if sin mα/2 �= 0, then d2l = 0 for 0 ≤ l < k, and d2l �= 0 for all l ≥ k;
2. if sin mα/2 = 0, then d2l = 0 for all l.

Theorem 2.2. For m = 4k, l ∈ Z, then the following statements hold:
1. if sin mα/2 �= 0, then d2l+1 = 0 for 0 ≤ l < k − 1, and d2l+1 �= 0 for all l ≥ k − 1;
2. if sin mα/2 = 0, then d2l+1 = 0 for all l.

�

2.2. Proof of Theorems 2.1 and 2.2

We first introduce two simple but useful lemmas. Denoting by

ν = e− π
k i = cos

(π

k

)
− i sin

(π

k

)
, i =

√−1,

we have
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Lemma 2.1. If j = (2p + 1)k, p is an integer, then

1 +
(−νj

)
+

(−νj
)2

+ · · · +
(−νj

)2k−1
= 2k;

and if j is other integer, then

1 +
(−νj

)
+

(−νj
)2

+ · · · +
(−νj

)2k−1
= 0.

Proof. Note that νj = −1 if and only if j/k is odd, i.e. j = (2p + 1)k with p ∈ Z. Therefore
2k−1∑

m=0

νj =

{
2k, j = (2p + 1)k
1−(−νj)2k

1+νj = 0, j �= (2p + 1)k
.

�
Lemma 2.2. If sin ω > 0 (resp. sin ω < 0), then for any natural number p, we have

∑p
j=0 sin ((2j + 1)ω) ≥

0 (resp.
∑p

j=0 sin ((2j + 1)ω) ≤ 0).

Proof. The conclusion comes from
p∑

j=0

sin ((2j + 1)ω) =
1

sin ω

p∑

j=0

cos (2jω) − cos ((2j + 2)ω)
2

=
1 − cos ((2p + 2)ω)

2 sin ω
.

�
Now we begin to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. If m = 4k + 2, one can rewrite d2l as the following

d2l =
1
2π

α+ π
2k+1∫

α

4k+1∑

j=0

(−1)j+1 cos2l+1

(
θ − jπ

2k + 1

)
dθ.

Denote by

w = e− π
2k+1 i, z = eθi, Cn,k =

(
n

k

)
=

n!
k!(n − k)!

.

Since

cos
(

θ − jπ

2k + 1

)
=

zwj + z̄w̄j

2
,

and

cos2l+1

(
θ − jπ

2k + 1

)
=

(
zwj + z̄w̄j

2

)2l+1

=
1

22l+1

2l+1∑

i=0

C2l+1,i

(
zwj

)i (
z̄w̄j

)2l+1−i

=
1

22l+1

2l+1∑

i=0

C2l+1,iz
2i−2l−1wj(2i−2l−1),

then by Lemma 2.1, the following equalities hold:
4k+1∑

j=0

(−1)j+1 cos2l+1

(
θ − jπ

2k + 1

)
= − 1

22l+1

2l+1∑

i=0

C2l+1,iz
2i−2l−1

4k+1∑

j=0

(−w2i−2l−1
)j

= − 1
22l+1

∑

0≤i≤2l+1,2k+1|2i−2l−1

C2l+1,iz
2i−2l−1(4k + 2).
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Letting 2i − 2l − 1 = (2s + 1)(2k + 1) and hs = (2l + 1 + (2s + 1)(2k + 1))/2 ∈ Z, s ∈ Z, we have
4k+1∑

j=0

(−1)j+1 cos2l+1

(
θ − jπ

2k + 1

)

= −2k + 1
22l

∑

−(2l+1)≤(2s+1)(2k+1)≤2l+1

C2l+1,hs
z(2s+1)(2k+1)

= −2k + 1
22l

∑

0≤(2s+1)(2k+1)≤2l+1

C2l+1,hs

(
z(2s+1)(2k+1) + z−(2s+1)(2k+1)

)

= −2(2k + 1)
22l

∑

0≤s≤ l−k
2k+1

C2l+1,hs
cos ((2s + 1)(2k + 1)θ) .

If 0 ≤ l ≤ k − 1, then there does not exist s ∈ Z so that −(2l + 1) ≤ (2s + 1)(2k + 1) ≤ 2l + 1; thus,
4k+1∑

j=0

(−1)j+1 cos2l+1

(
θ − jπ

2k + 1

)
= 0,

and this implies d2l = 0.
If l ≥ k, setting ω = (2k + 1)α, then

d2l =
1
2π

α+ π
2k+1∫

α

4k+1∑

j=0

(−1)j+1 cos2l+1

(
θ − jπ

2k + 1

)
dθ

= −2k + 1
22lπ

∑

0≤s≤ l−k
2k+1

C2l+1,hs

α+ π
2k+1∫

α

cos ((2s + 1)(2k + 1)θ) dθ

= − 1
22lπ

∑

0≤s≤ l−k
2k+1

C2l+1,hs

sin
(
(2s + 1)(2k + 1)

(
α + π

2k+1

))
− sin ((2s + 1)(2k + 1)α)

2s + 1

=
1

22l−1π

∑

0≤s≤ l−k
2k+1

C2l+1,hs

2s + 1
sin ((2s + 1)ω) . (5)

If sinω �= 0, without loss of generality, we can assume that sin ω > 0. Noticing that (2l + 1)/2 ≤ hs ≤
2l + 1, C2l+1,hs

/(2s + 1) decreases along with the increase in s. Then for any natural number p such that
0 ≤ (2p + 1)(2k + 1) ≤ 2l + 1, by Lemma 2.2, we have

p∑

s=0

C2l+1,hs

2s + 1
sin ((2s + 1)ω)

=
C2l+1,hp

2p + 1

p∑

s=0

sin ((2s + 1)ω) +
(

C2l+1,hp−1

2p − 1
− C2l+1,hp

2p + 1

) p−1∑

s=0

sin ((2s + 1)ω)

+ · · · +
(

C2l+1,h0 − C2l+1,h1

3

)
sin ω

≥
(

C2l+1,h0 − C2l+1,h1

3

)
sin ω > 0.

Thus, d2l > 0, and the first statement holds.
If sinω = 0, then sin ((2s + 1)ω) = 0, d2l = 0, i.e. the second statement holds. �
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Proof of Theorem 2.2. When m = 4k, we can rewrite d2l+1 as the following form

d2l+1 =
1
2π

α+ π
2k∫

α

4k−1∑

j=0

(−1)j+1 cos2l+2

(
θ − jπ

2k

)
dθ.

Now we take

w = e− π
2k i, z = eθi.

Since

cos
(

θ − jπ

2k

)
=

zwj + z̄w̄j

2
,

and

cos2l+2

(
θ − jπ

2k

)
=

(
zwj + z̄w̄j

2

)2l+2

=
1

22l+2

2l+2∑

i=0

C2l+2,i

(
zwj

)i (
z̄w̄j

)2l+2−i

=
1

22l+2

2l+2∑

i=0

C2l+2,iz
2i−2l−2wj(2i−2l−2),

then by Lemma 2.1, we obtain

4k−1∑

j=0

(−1)j+1 cos2l+2

(
θ − jπ

2k

)
= − 1

22l+2

2l+2∑

i=0

C2l+2,iz
2i−2l−2

4k−1∑

j=0

(−w2i−2l−2
)j

= − k

22l

∑

0≤i≤2l+2, i−l−1
k is odd

C2l+2,iz
2i−2l−2

= − k

22l

∑

−(l+1)≤(2s+1)k≤l+1

C2l+2,hs
cos((2s + 1)2kθ)

= − k

22l−1

∑

0≤(2s+1)k≤l+1

C2l+2,hs
cos((2s + 1)2kθ),

where (i − l − 1)/k = 2s + 1 and hs = (2s + 1)k + l + 1, s ∈ Z.
If 0 ≤ l < k − 1, then there does not exist s ∈ Z so that 0 ≤ (2s + 1)k ≤ l + 1; thus,

4k−1∑

j=0

(−1)j+1 cos2l+2

(
θ − jπ

2k

)
= 0,

and this implies d2l+1 = 0.
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If l ≥ k − 1, setting ω = 2kα, then we have

d2l+1 =
1
2π

α+ π
2k∫

α

4k−1∑

j=0

(−1)j+1 cos2l+2

(
θ − jπ

2k

)
dθ

= − k

22lπ

α+ π
2k∫

α

⎛

⎝
∑

0≤s≤ l−k+1
2k

C2l+2,hs
cos ((2s + 1)2kθ)

⎞

⎠ dθ

=
1

22lπ

∑

0≤s≤ l−k+1
2k

C2l+2,hs

sin ((2s + 1)2kα)
2s + 1

=
1

22lπ

∑

0≤s≤ l−k+1
2k

C2l+2,hs

2s + 1
sin ((2s + 1)ω) . (6)

If sin ω �= 0, similarly to the case m = 4k + 2, we assume sin ω > 0. Here C2l+2,hs
/(2s + 1) still

decreases along with the increase in s. Then for any natural number p such that 0 ≤ (2p + 1)k ≤ l + 1,
by Lemma 2.2, we have

p∑

s=0

C2l+2,hs

2s + 1
sin ((2s + 1)ω)

=
C2l+2,hp

2p + 1

p∑

s=0

sin ((2s + 1)ω) +
(

C2l+2,hp−1

2p − 1
− C2l+2,hp

2p + 1

) p−1∑

s=0

sin ((2s + 1)ω)

+ · · · +
(

C2l+2,h0 − C2l+2,h1

3

)
sin ω

≥
(

C2l+2,h0 − C2l+2,h1

3

)
sin ω > 0.

Thus, d2l+1 > 0.
If sinω = 0, then sin ((2s + 1)ω) = 0, d2l+1 = 0. The proof is finished. �

Remark 2.1. Noticing that the conditions imposed on gm(x, y), the plane is divided into m congruent
sectors of angle 2π/m by the discontinuity set gm(x, y) = 0. This symmetry of the regions is the main
reason leading to the lower bound

[
1
2 (n − m−2

2 )
]

decreases with the number m when n is fixed. Indeed,
in [6], the author showed that, without this symmetry, that is, if the discontinuity set gm(x, y) = 0
consists of m rays starting at the origin whose slopes can be taken freely, then there exists an α-piecewise
discontinuous polynomial Liénard differential system of degree n which has n limit cycles.

Remark 2.2. From the construction of system (2), it is not difficult to see that, for sufficiently small ε,
each of the limit cycles considered above intersects the discontinuity set of system (2) only at crossing
points, while for the original system (1), there may also be another type of limit cycles, which are not
considered here, intersecting the sliding region of the discontinuity set. One can find the definitions of
the crossing region and the sliding region in [3].
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