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Abstract. The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with
temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem
is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner
and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function
of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along
with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the
influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent
effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of
thermal shock applied at the two boundary surfaces of the spherical shell.
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1. Introduction

Earlier in thermoelasticity theory it was assumed that the all thermal parameters are free from tem-
perature. But at high temperature, considering many practical and theoretical results of the materials
Noda [1] in 1991 reported a detail review on temperature-dependent material properties and showed
that thermal conductivity of the materials decreases exponentially with temperature. In recent years,
different researchers consider the generalized thermoelasticity theories by taking into account that ther-
mal parameters vary with temperature. It must be mentioned here that earlier in 1918, considering only
shear modulus depending on temperature, a thermoelastic model was solved by Suhara [2] and the effects
of temperature dependency of shear modulus were investigated. Youssef et al. [3] discussed the depen-
dency of modulus of elasticity and thermal conductivity of the material on temperature in generalized
thermoelasticity theory for an unbounded medium with a spherical cavity. Othman [4–7] investigated
the thermoelastic interactions in two-dimensional thermoelastic problems with temperature-dependent
elastic moduli. Zenkour and Abbas et al. [8] analyzed a problem with density and thermoelastic prop-
erties depending on temperature and discussed some characteristic features of temperature-dependent
properties of the materials.

The classical theory of thermoelasticity was given by Biot [9] and earlier it was widely being employed
to study problems in coupled thermomechanics. This theory removes the drawbacks of uncoupled theory
that mechanical disturbance does not affect the temperature field of the medium. But this thermoelasticity
theory is based on parabolic-type heat conduction equation and indicates an infinite speed of thermal wave
which is really not true in practical sense. Several experimental works are also carried out to verify that the
classical heat conduction law is inadequate in some typical situations, specially those which involve short
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time and/or high heat flux. During last few years, various efforts are made to understand this physical
drawback in classical thermoelasticity theory and subsequently some alternative theories are proposed to
deal with this issue. The very first generalized thermoelastic theory was proposed by Lord and Shulman
[10] in which Fourier’s law of heat conduction is replaced by the Maxwell–Cattaneo law that includes one
time relaxation parameter. After this generalized theory, Green and Lindsay [11] introduced an alternative
thermoelasticity theory with two relaxation parameters of time that were introduced in the constitutive
equation of stress and the entropy. However, Fourier’s law of heat conduction remained unchanged in
case of centrosymmetric properties. Experimental as well as theoretical studies verify that the effects of
relaxation parameters are prominent in certain cases, although it is very small and negligible in many
engineering applications. Both the above theories predict the finite speeds of propagation of heat waves.
Later on, Green and Naghdi [12–14] proposed three different generalized thermoelasticity theories termed
as GN-I, GN-II and GN-III theories by introducing a new term named thermal displacement gradient in
the constitutive relations. Further the linear form of GN-I is equivalent to the classical Fourier’s law of
heat conduction.

Tzou [15] and Chandrasekharaiah [16] developed new thermoelasticity theory with two phase-lag
parameters and termed it as thermoelasticity with dual-phase-lag effects. Tzou [15] replaced classical
Fourier’s law �q = −K�∇θ with �q (P, t + τq) = −K�∇θ (P, t + τθ) where τq and τθ are two delay times.
Further, Roychoudhuri [17] modified the GN-III model with the introduction of three different phase-
lags. The constitutive relation of heat flux and temperature gradient is considered in the form

�q (P, t + τq) = −
[
K�∇θ (P, t + τθ) + K∗�∇ν (P, t + τν)

]

where τν is another delay time, �∇ν is the thermal displacement gradient with
.
ν= θ and K∗ is a material

constant.
The thermoelasticity theories with phase-lags have drawn the attention of several researchers in order

to obtain the wellposedness of solutions under these cases. Some qualitative results are reported in this
direction. Quintanilla and Racke [18] discussed the stability, and Hetnarski and Ignaczak [19] show the
theoretical significance of dual-phase-lag generalized thermoelasticity theories. Recently in 2011, Quin-
tanilla [20] has reformulated the three-phase-lag model in an alternative way by defining τν > τq = τθ

and τ = τq − τν in the above equation. By combining this with energy equation −∇�q = c
.

θ, he obtained
the heat conduction equation with a single delay term in the form

cν̈(t) = K�θ(t) + K∗�ν(t + τ)

which is termed as exact heat conduction with a delay.
He further discussed Taylor’s series approximation of the heat conduction equation in a form

c
..
ν= K�θ + K∗

(
�ν + τ�θ + · · · +

τ l

l!
�θ(l−1)

)

From the above equation with l = 0 and l = 1, we get the known thermoelasticity theories, while for
l = 2, a different thermoelastic theory is obtained as follows

..
ν −K∗τ2

2
� ..

ν= (K + K∗τ) � θ + K∗ � ν

Subsequently, Leseduarte and Quintanilla [21] investigated the stability and spatial behavior of the
solutions of this newly proposed model with single delay term. A Phragmen–Lindelof-type alternative
is obtained, and it has been shown that the solutions either decay in an exponential way or blow up
at infinity in an exponential way. The obtained results are extended to a thermoelasticity theory by
considering the Taylor series approximation of the equation of heat conduction to the delay term and
Phragmen–Lindelof-type alternative is obtained for the forward and backward in time equations. Kumari
and Mukhopadhyay [22] made an attempt to establish some important theorems in this context. A
uniqueness theorem has been established for an anisotropic body, and a variational principle as well as
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a reciprocity principle is established too. Recently, an uniqueness theorem and instability of solutions
for this model under the relaxed assumption that the elasticity tensor can be negative have been proved
by Quintanilla [23]. For the half-space, a detailed analysis of analytical and numerical results under the
current theory is provided by Kumar and Mukhopadhyay [24].

In the present work, we aimed at the investigation of thermoelastic interactions in a temperature-
dependent spherical shell under the recently proposed modified thermoelasticity theory by Quintanilla
[20]: an exact heat conduction model with a single delay term. The thermal properties of the medium
under the present thermoelasticity theory is taken as linear function of temperature. We consider the
problem to be studied under three different kinds of boundary conditions. Due to the consideration
of varying material properties, the governing equations reduce to nonlinear differential equations. We
apply Kirchhoff transformation along with Laplace integral technique to solve the problems. Inversion of
Laplace transform carried out by a numerical approach gives the final solution for different field variables
inside the medium. The numerical results of the field variables are shown in different graphs to study the
influence of temperature-dependent thermal parameters in the context of new model.

2. Problem formulation

We consider an isotropic elastic medium with temperature-dependent material properties and employ
the thermoelasticity theory based on the heat conduction model with a delay term as recently given by
Leseduarte and Quintanilla [21] to consider the thermoelastic interactions in the absence of any body
forces or heat sources. The basic governing equations in usual indicial notation therefore can be written
as follows:
The equation of motion:

μui,jj + (λ + μ) uj,ji − γθ,i = ρ
..
ui (1)

The equation of heat conduction:

∂

∂t
(Kθ,i),i +

(
1 + τ

∂

∂t
+

τ2

2
∂2

∂t2

)
(K∗θ,i),i =

∂

∂t

[
ρcE

∂θ

∂t
+ T0γ

∂e

∂t

]
(2)

The equation of stress–strain–temperature relation:

σij = 2μeij + (λekk − γθ) δij (3)
where ui are the components of displacement vector, t is the time, eij are the components of elastic
strain tensor, e = eii is the dilatation, σij are the components of stress tensor,θ = T − T0, i.e., θ is the
temperature variation above the uniform reference temperature, T0. λ and μ are the Lamé’s constants, ρ
is the mass density, γ = (3λ + 2μ)αt, where αt is the coefficient of linear thermal expansion, K, K∗ are
the thermal conductivity and conductivity rate, respectively. η is the thermal diffusivity, where η = ρcE

K
and cE is the specific heat at constant strain. τ is the delay parameter [11].

We consider a spherical shell of inner radius a and outer radius b, initially at uniform temperature
T0. Considering the center of the shell at the origin, introducing spherical polar coordinates (r, ϑ, ϕ), and
assuming spherical symmetry, Eqs. (1)–(3) reduce to

(λ + 2μ)
∂e

∂r
− γ

∂θ

∂r
= ρ

∂2u

∂t2
(4)

∂

∂t

[
K∇2θ +

∂K

∂θ

(
∂θ

∂r

)2
]

+
(

1 + τ
∂

∂t
+

τ2

2
∂2

∂t2

) [
K∗∇2θ +

∂K∗

∂θ

(
∂θ

∂r

)2
]

= ρcE
∂2θ

∂t2
+ ρ

∂cE

∂θ

(
∂θ

∂t

)2

+ γT0
∂2e

∂t2
(5)



98 Page 4 of 12 A. Kumar and S. Mukhopadhyay ZAMP

σrr = 2μ
∂u

∂r
+ λe − γθ (6)

σφφ = σνν = 2μ
u

r
+ λe − γθ (7)

where u is the single nonzero component of displacement vector for the present problem.
We assume that material properties like, the thermal conductivity, K, and conductivity rate, K∗, vary

with the temperature and assume that they are varying linearly in the form as

K(θ) = K0(1 + K1θ) (8)
K∗(θ) = K∗

0 (1 + K1θ) (9)

where K1 is a constant and it is zero at reference temperature. K0 and K∗
0 are the thermal conductivity

and thermal conductivity rate at reference temperature, T0, respectively. For the simplicity of the problem,
specific heat, cE , and other material parameters are assumed to be independent of temperature.

In view of Eqs. (8, 9), we find that Eq. (5) is nonlinear, and therefore to tackle the nonlinearity we
consider a new function Φ that is expressed in terms of temperature, θ with Kirchhoff transformation as

Φ =
1

K0

θ∫

0

K(p)dp =
1

K∗
0

θ∫

0

K∗(p)dp = θ +
1
2
K1θ

2 (10)

Hence, by using Eqs. (8)–(10) and the fact that | θ/T0 |<< 1, Eqs. (4)–(7), respectively, reduce to

(λ + 2μ)
∂e

∂r
− γ

∂Φ
∂r

= ρ
∂2u

∂t2
(11)

K0∇2
.

Φ + K∗
0

(
1 + τ

∂

∂t
+

τ2

2
∂2

∂t2

)
∇2Φ = ηK0

∂2Φ
∂t2

+ γT0
∂2e

∂t2
(12)

σrr = 2μ
∂u

∂r
+ λe − γΦ (13)

σφφ = σνν = 2μ
u

r
+ λe − γΦ (14)

Now, we use the following symbols and notations to make Eqs. (11)–(14) dimensionless:
r′ = c0ηr, u′ = c0ηu, t′ = c20ηt, τ ′ = c20ητ , Φ′ = Φ

T0
, e′ = e, σ′

ij = σij

(λ0+2μ0)
, c20 = (λ+2μ)

ρ , K∗ = cE(λ+2μ)
4 ,

a0 = K∗
0

K0c20η
, a1 = γT0

(λ+2μ) , a2 = γ
K0η , β2 = λ

(λ+2μ) .

Therefore, after dropping the primes for clarity, Eqs. (11)–(14) change to their dimensionless forms as
follows:

∂e

∂r
− a1

∂Φ
∂r

=
∂2u

∂t2
(15)

∇2
.

Φ + a0

(
1 + τ

∂

∂t
+

τ2

2
∂2

∂t2

)
∇2Φ =

∂2Φ
∂t2

+ a2
∂2e

∂t2
(16)

σrr =
(
1 − β2

) ∂u

∂r
+ β2e − a1Φ (17)

σφφ = σνν =
(
1 − β2

) u

r
+ β2e − a1Φ (18)
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3. Solution of the problem

Applying Laplace transform to Eqs. (15)–(18) with homogeneous initial conditions, we obtain

∂ē

∂r
− a1

∂Φ̄
∂r

= s2ū (19)

∇2Φ̄ =
2s2

b0(s)
Φ̄ +

2a2s
2

b0(s)
ē (20)

σ̄rr =
(
1 − β2

) ∂ū

∂r
+ β2ē − a1Φ̄ (21)

σ̄φφ = σ̄νν =
(
1 − β2

) ū

r
+ β2ē − a1Φ̄ (22)

where b0(s) = a0τ
2s2 + 2 (1 + a0τ) s + 2a0.

Now, taking divergence of Eq. (19), we get

∇2ē − a1∇2Φ̄ = s2ē (23)

We employ Eqs. (20) and (23) to get

∇2ē =
2a1s

2

b0(s)
Φ̄ +

(
2εs2

b0(s)
+ s2

)
ē (24)

where ε = a1a2. Applying ∇2 operator on Eq. (24) , we get

∇4ē =
2a1s

2

b0(s)
∇2Φ̄ +

(
2εs2

b0(s)
+ s2

)
∇2ē (25)

With the help of Eqs. (23) and (25), we find
[∇4 − b1(s)∇2 + b2(s)

]
ē = 0 (26)

where b1(s) = 2s2

b0(s)
+ 2εs2

b0(s)
+ s2 and b2(s) = 2s4

b0(s)
.

Applying
(∇2 − s2

)
operator on Eq. (20) and using Eq. (23), we get

[∇4 − b1(s)∇2 + b2(s)
]
Φ̄ = 0 (27)

Now, Eqs. (26) and (27) can be rewritten as
(∇2 − n2

1

) (∇2 − n2
2

) (
Φ̄, ē

)
= 0 (28)

where n2
1 and n2

2 satisfy the equation

n4 − b1(s)n2 + b2(s) = 0 (29)

Clearly, (28) represents the modified spherical Bessel equations. Hence, the general solution of Eq.
(28) can be obtained as

Φ̄ =
1√
r

2∑
i=1

[
AiI1/2 (nir) + BiK1/2 (nir)

]
(30)

ē =
1√
r

2∑
i=1

[
CiI1/2 (nir) + DiK1/2 (nir)

]
(31)

where Ai, Bi, Ci and Di are arbitrary constants and Iα(r), Kα(r) are the representations of modified
Bessel functions of order α of the first and second kinds, respectively.
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Using Eqs. (23), (30) and (31) , we get

Ai = fiCi and Bi = fiDi. (32)

where fi = n2
i −s2

a1n2
i

, i = 1, 2.

With the help of Eqs. (19), (21), (22), (30) and (31), we get the solution of other physical variables
in Laplace transform domain as follows:

ū =
1√
r

2∑
i=1

[
Ci

ni
I3/2 (nir) − Di

ni
K3/2 (nir)

]
(33)

σ̄rr =
1√
r

2∑
i=1

[
Ci

{
s2

n2
i

I1/2 (nir) − 2
(
1 − β2

)
(nir)

I3/2 (nir)

}
+ Di

{
s2

n2
i

K1/2 (nir)

− 2
(
1 − β2

)
(nir)

K3/2 (nir)

}]
(34)

σ̄φφ = σ̄νν =
1√
r

2∑
i=1

[
Ci

{(
β2 − n2

i − s2

n2
i

)
I1/2 (nir) +

(
1 − β2

)
(nir)

I3/2 (nir)

}]

+
1√
r

2∑
i=1

[
Di

{(
β2 − n2

i − s2

n2
i

)
K1/2 (nir) −

(
1 − β2

)
(nir)

K3/2 (nir)

}]
(35)

4. Applications of the problem

Case-I: Unit step increase in temperature and zero stress on the boundary of an elastic spherical shell

We consider the thermoelastic spherical shell with initial conditions as homogeneous, and it is assumed
that the inner and outer boundaries r = a and r = b of the spherical shell are traction free and are
subjected to a unit step increase in temperature. Therefore, the boundary conditions in the dimensionless
forms can be written as:

θ(r, t) = θ∗
1H(t) and σ(r, t) = 0 at r = a (36)

θ(r, t) = θ∗
2H(t) and σ(r, t) = 0 at r = b (37)

where θ∗
1 and θ∗

2 are two constant temperatures and H(t) is the Heaviside unit step function.
Therefore, using Eq. (10) and applying Laplace transform to the boundary conditions given by (36)

and (37), we find that

Φ̄(a, s) =
θ∗
1

s

(
1 +

1
2
K1θ

∗
1

)
, Φ̄(b, s) =

θ∗
2

s

(
1 +

1
2
K1θ

∗
2

)
, σ̄(a, s) = 0 = σ̄(b, s). (38)

Case-II: Exponential variation in temperature and zero stress of the boundary of an elastic spherical
shell

It is assumed that both the inner boundary r = a and outer boundary r = b of the spherical shell are
traction free and the inner boundary is subjected to an exponential variation in temperature, whereas
the outer boundary is maintained as insulated as follows:
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θ(r, t) =
t2

ts
e−t/ts , t > 0 and σ(r, t) = 0 at r = a (39)

∂θ(r, t)
∂r

= 0 and σ(r, t) = 0 at r = b (40)

where ts is a constant parameter to control the nature of temperature prescribed on the inner boundary.
Hence, using Eqs. (10), (39) and (40), we get

Φ̄(a, s) =
2ts

(1 + sts)
3 +

3K1ts

4 (2 + sts)
5 , Φ̄(b, s) = 0, σ̄(a, s) = 0 = σ̄(b, s). (41)

Case-III: Sinusoidal varying temperature and zero displacement at the boundary of an elastic spherical
shell

Now, we assume that the inner boundary r = a of the spherical shell is rigidly fixed and is subjected to
a sinusoidal variation in temperature as follows:

θ(r, t) =

{
θ0 sin

(
πt
t0

)
, 0 < t < t0

0, otherwise
, t > 0 and u(r, t) = 0, at r = a (42)

The outer boundary is also kept rigidly fixed and insulated, i.e.,

∂θ(r, t)
∂r

= 0 and u(r, t) = 0 at r = b (43)

where t0 is a constant that controls the range of temperature to be positive on the inner boundary.
Therefore, we get in this case

Φ̄(a, s) =
θ0πt0

(π2 + s2t20)
(
1 + e−st0

)
+

K1θ
2
0π

2

s (4π2 + s2t20)
(
1 − e−st0

)
, Φ̄(b, s) = 0, (44)

ū(a, s) = 0 = ū(b, s). (45)

Now, for the Case-I, from Eqs. (30), (34) and (38) we obtain a linear system of four equations in four
unknowns as given by

2∑
i=1

[
fiI1/2 (nia) Ci + fiK1/2 (nia) Di

]
=

√
aθ∗

1

s

(
1 +

1

2
K1θ∗

1

)
(46)

2∑
i=1

[
fiI1/2 (nib) Ci + fiK1/2 (nib) Di

]
=

√
bθ∗

2

s

(
1 +

1

2
K1θ∗

2

)
(47)

2∑
i=1

{[
s2

n2
i

aI1/2 (nia) − 2
(
1 − β2

)

ni
I3/2 (nia)

]
Ci +

[
s2

n2
i

aK1/2 (nia) +
2

(
1 − β2

)

ni
K3/2 (nia)

]
Di

}
= 0 (48)

2∑
i=1

{[
s2

n2
i

bI1/2 (nib) − 2
(
1 − β2

)

ni
I3/2 (nib)

]
Ci +

[
s2

n2
i

bK1/2 (nib) +
2

(
1 − β2

)

ni
K3/2 (nib)

]
Di

}
= 0 (49)

After solving Eqs. (46)–(49), we can find the unknowns Ci and Di, hence the Ai and Bi, i = 1, 2 from
Eq. (32) and this completes the solution of the present problem in Case-I in Laplace transform domain.
We can obtain the solution for temperature θ by using Eqs. (10) and (30) in the Laplace transform
domain. The solutions in Laplace transform domain for the cases II and III can also be obtained in the
similar way.
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5. Numerical results and discussion

The solution in the physical domain can be derived by inverting the solutions obtained in the Laplace
transform domain as found out in the previous section. However, it is difficult to find the solutions in
space–time, (r, t) domain analytically since the solutions of the physical field variables θ̄, ū, σ̄rr and
σ̄φφ have the complicated expressions in Laplace transform parameter s. Therefore, we find the Laplace
inversion for the physical variables temperature, displacement, radial stress and shear stress with the help
of MATLAB software and by employing a suitable numerical method of Laplace inversion. We employ
here the method proposed by Graver–Stehfest et al. [25,26] in which if f(s) is the Laplace transform of
the function f(t), then

f(t) =
ln(2)

2

N∑
k=1

Vkf

(
k

ln(2)
t

)
(50)

where N is the suitable positive integer and Vk is given by

Vk = (−1)(k+N/2)

min(k,N/2)∑
j = [(k+1)/2]

j
N
2 (2j)!(

N
2 − j

)
! j! (j − 1)! (k − j)! (2j − k)!

(51)

We assume that the spherical shell is made of copper material and the physical data points for which
are taken as below [27].

λ = 7.76 × 1010 N m−2, μ = 3.86 × 1010 N m−2, αt = 1.78 × 10−5 K−1, η = 8886.73 s m−2,

cE = 383.1 J Kg−1 K−1, ρ = 8954Kg m−3, T0 = 293K.

We assume the following dimensionless values of the constants:

τ = 0.01, ts = 0.2, t0 = 1.0, θ0 = 1, θ∗
1 = 1, θ∗

2 = 1.

To analyze the numerically computed solutions for nondimensional temperature, displacement, ra-
dial stress and tangential stress in space-time domain inside the spherical shell, the results under three
different cases are displayed in Figs. 1a–d to 3a–d. In each figure, we plotted the graphs for the fields
at three different times, t = 0.30, t = 0.35, t = 0.40 and for three different values of the coefficient of
temperature-dependent effect, K1(0.0,−0.3,−0.5). Specially, we aim to understand the effect of temper-
ature dependency on the solutions at various times of interaction. The specific features related to the
effect of temperature dependency under various cases of prescribed boundary conditions arising out from
our investigation are highlighted as follows:

Case-I:

In this case, we find the effect of temperature-dependent material properties on the distributions of various
fields inside the spherical shell when the inner and outer surfaces of the shell are subjected to thermal
shock. The variations of displacement, temperature, radial stress and circumferential stress are shown in
Fig. 1a–d, respectively. Figure 1a shows that the variation in displacement is prominently affected only
near the boundaries and through the middle region of the shell, the effect of time- and temperature-
dependent property on displacement is negligible. The amplitude of displacement u increases with time t.
It is further evident that at higher time, the absolute value of displacement decreases with larger numerical
value of K1 and for smaller time, the dependency of thermal parameters is negligible for displacement u.

Figure 1b shows the variation of temperature, θ in spherical shell for Case-I. It is clear from Fig. 1b
that for a fixed time, the temperature starts increasing from inner boundary of the shell and after getting
maximum value starts decreasing till the outer boundary of the shell. In this case, the temperature field
is more sensitive to the temperature-dependent material properties. The temperature increases with the



ZAMP Investigation on the effects of temperature dependency Page 9 of 12 98

Fig. 1. a Variation of displacement, u versus r for the Case-I. b Variation of temperature, θ versus r for the Case-I. c
Variation of radial stress, σrr versus r for the Case-I. d Variation of tangential stress, σφφ versus r for the Case-I

increase of the temperature-dependent coefficient K1. It can also be seen from Fig. 1b that temperature
distribution is in agreement with the boundary conditions given for the problem.

Radial stress σrr and shear stress σφφ are shown in Fig. 1c, d, respectively, and it is observed that
both the stress components show significant variations near the boundaries of the shell and in the middle
region of the shell. The stresses increase with higher negative value of K1 for all time. One important fact
is observed that the effect of temperature dependency of stresses is independent of time, implying that
at any time, a similar effect of temperature dependency is observed for the stress components in Case-I.

Case-II:

Figure 2a–d displays the variation of field variables for the exponentially varying temperature on the
inner boundary. It is observed that there is no adequate effect of temperature-dependent material prop-
erties on any physical quantities excluding the temperature. At any time, the same effect of temperature
dependency is noted for all the field variables. Figure 2a shows the distribution of displacement u. It can
be seen that the effective value of displacement u increases with increase in time. Displacement tends to
zero through the radial distance r for all times. Figure 2b shows the variation of temperature with radial
distance, and it can be seen that values of temperature increase with respect to the time and K1 both.



98 Page 10 of 12 A. Kumar and S. Mukhopadhyay ZAMP

Fig. 2. a Variation of displacement, u versus r for the Case-II. b Variation of temperature, θ versus r for the Case-II. c
Variation of radial stress, σrr versus r for the Case-II. d Variation of tangential stress, σφφ versus r for the Case-II

Figure 2c,d measures the variation of stress components, and it can be seen that radial stress σrr satisfies
the boundary condition. It could be observed that the effective regions of stress components increase with
increase in time t.

Case-III:

Distributions of displacement, temperature and stress components for the current generalized thermoe-
lasticity in Case-III are displayed in Fig. 3a–d, respectively. It is observed that like Case-I, the influence of
temperature-dependent properties is prominent in this case. From Fig. 3a, it is clear that the displacement
is in agreement with the boundary conditions. The displacement, u, is positive throughout the distance
r and gets a local maximum value within middle region of the shell. The effect of temperature-dependent
property is more prominent at higher times. The displacement increases with time implying that the
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Fig. 3. a Variation of displacement, u versus r for the Case-III. b Variation of temperature, θ versus r for the Case-III. c
Variation of radial stress, σrr versus r for the Case-III. d Variation of tangential stress, σφφ versus r for the Case-III

region of influence for u increases with the time. However, it decreases with larger numerical value of
K1.

Figure 3b shows the variation for temperature, θ. It is depicted in the graph that the tempera-
ture is influenced significantly by the temperature-dependent property of the material. The tempera-
ture, θ, increases with time and also with the increase of the coefficient K1. The variation of stress
components in Case-III is shown in Fig. 3c,d, respectively. The stresses are compressive in nature
throughout region of the medium, and the influence of temperature-dependent properties on stress
distributions is much prominent in this case. This effect on stresses is higher near the inner bound-
ary of the shell, and it approaches to zero as r → b, where b is the outer radius of the spherical
shell.
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