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Abstract. As a solid material between the crystal and the amorphous, the study on quasicrystals has become an important
branch of condensed matter physics. Due to the special arrangement of atoms, quasicrystals own some desirable properties,
such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrystals are expected to
be applied to the coating surfaces for engines, solar cells, nuclear fuel containers and heat converters. However, when the
quasicrystals are used as coating material, it is very hard to simulate the coupling fields by the finite elements numerical
methods because of its thin thickness and extreme stress gradient. This is the main reason why the structure of quasicrystal
coating cannot be calculated accurately and stably by various numerical platform. A general solution method which can
be used to solve this contact problem for a 1D hexagonal quasicrystal coating perfectly bonded to a transversely isotropic
semi-infinite substrate under the point force is presented in this paper. The solutions of the Green’s function under the
distributed load can be obtained through the superposition principle. The simulation results show that this method is
correct and effective, which has high calculation accuracy and fast convergence speed. The phonon–phason coupling field
and elastic field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution,
and the complicated coupling field of quasicrystals in coating contact space is explicitly presented in terms of elementary
functions. In addition, the relationship between the coating thickness or external force and the stress component is also
obtained to solve practical problems in engineering applications. The solutions presented not only bear theoretical merits,
but also can serve as benchmarks to clarify various approximate methods.
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1. Introduction

Since Shechtman [1] discovered the icosahedral quasicrystals (QCs) in Al–Mn alloys around 1984, the
structures and properties of quasicrystals had been intensively investigated in experimental and the-
oretical analysis [2]. Quasicrystals are such solid materials which do not have the lattice with periodic
orderly arrangement, but show long-range order [1]. The quasiperiodic symmetry structure presents great
theoretical significance. Numerous quasicrystals materials with stable property were produced; it will be
a new structure material and owns applied prospects. Now, the study of quasicrystals has become an
important branch of condensed matter physics [2].

Quasicrystals not only have high academic research value, but also have potential engineering applica-
tion prospect. The research of quasicrystals is the supplement and development about traditional crystal-
lography. It has opened up a new field in mineral crystal structure research, which is of great significance
in solid-state physics and material science. Quasicrystal materials have unique physical, mechanical and
chemical properties. Due to the special arrangement of atoms, quasicrystals have some desirable proper-
ties, such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrys-
tals are expected to be used as coating surfaces for engines, solar cells, nuclear fuel containers and heat
converters. Because of the special optical properties and sufficient thermal stability, quasicrystals are also
used as the thin materials of solar energy industrial.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-017-0842-4&domain=pdf
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1.1. The properties of quasicrystals

With the framework of Landau theory, the elastic energy of quasicrystals was formulated by Bak et al.
[3]. Unlike the normal crystals, there are a phonon field and a phason field simultaneously acting on
the quasicrystals, as discussed by Bak [3,4]. These two mechanical variables have completely different
properties. The phonon field displacement describes the grid wave which caused by the small vibrations
when the atom deviates from the equilibrium position. The quantum of this grid wave is the phonon.
The excitation of low-energy long wave element is the propagation-type. The phason field displacements
describe the re-arrangement of quasiperiodic structures, resulting in another type of excitation of low-
energy long wave element, which is diffusion-type and causes local energy perturbations. However, this is
not two independent systems, the phonon and phason field influence each other. Therefore, the constitu-
tive relation of the quasicrystals will include the phonon elastic constant, the phason elastic constant and
the phonon–phason coupling constant. Quasicrystals own complex structure and belong to new emerging
materials, so these constants are not fully accurate. By means of neutron diffraction and X-ray diffraction,
Letoublon et al. [5–7] measured the elastic constants of some icosahedral quasicrystals. The independent
elastic constants of the two-dimensional tenfold symmetric quasicrystal Al–Ni–Co are obtained in the
literature [8,9]. Particularly, the cooperation coefficient about the phonon–phason coupling field inter-
acting with the common elastic field still needs further theoretical research. Other physical properties of
quasicrystals, especially the linear elasticity theory, have been widely investigated [10–15].

1.2. The classification of quasicrystals

Quasicrystals are divided into 1D quasicrystals, 2D quasicrystals and 3D quasicrystals, according to the
arrangement of quasicrystal atoms. The atoms of 1D quasicrystals are arranged in quasiperiodic order
on the symmetry axis and periodically on the plane perpendicular to the symmetry axis. The atomic
structure of 2D quasicrystals is arranged in a periodic arrangement in the direction of the symmetry
axis and quasiperiod in a plane perpendicular to the axis. The atomic structure of 3D quasicrystals is
quasiperiodic arranged in the whole 3D space.

1.3. The Green’s function of quasicrystals

In the study of quasicrystal Green’s functions, the fundamental solutions are based on the relevant general
solutions. The general solution of quasicrystals has also experienced a lot of scientific inquiry. Dimensional
problems, three-dimensional problems, dynamic problems and thermoelastic problems [16–20] have been
proposed. In addition, the general solutions of multidimensional quasicrystals are obtained [21–24] at the
same time. With the improvement of quasicrystal general solution, the application of Green’s function
in solid mechanics becomes more and more mature. Based on De et al. [25] and Bachteler et al. [26],
Chen et al. [19] proposed a general solution to the 1D hexagonal quasicrystals elasticity equation. After
that, Wang [20] proposed a set of operator theory to solve the 1D hexagonal quasicrystals dynamical
problem, but this theory only meets the higher-order partial differential function, so it cannot be widely
used. Finally, Gao et al. [27] used the method of decomposition and superposition and developed a set
of solutions to meet the general quasiharmonic function. In 2013, Li et al. [28,29] studied the problem of
1D hexagonal quasicrystals infinite body acted by point heat source and obtained the two-dimensional
Green ’s function solutions. In 2014, Li et al. [30,31] deduced the fundamental solutions of 1D hexagonal
quasicrystals about piezoelectric effect and inferred the general solutions about thermo-electroelasticity as
well as the fundamental solutions in infinite and semi-infinite bodies. Gao et al. [32] studied the problem
of 2D quasicrystal infinite body under the action of concentrated force. On the basis of the 2D hexagonal
quasicrystal general solution, Wang et al. [33] solved the fundamental solution of the three-dimensional
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statics under concentrated force. Markus et al. [34] have recently done some research about the generalized
elasticity and dislocation theory. These studies have played an important role in solving problems such
as crack, contact and interlayer.

1.4. Research methods of coating materials

At present, the quantitative analysis method of coating structure can be divided into numerical method
and analytic method. Numerical method mainly includes finite element method (FEM) [35–37] and bound-
ary element method (BEM) [38,39]. The analytical method includes integral transformation method,
transfer matrix method and classical general solution method. Finite element method and boundary
element method are widely used in the field of solid mechanics to solve singular, infinite domain and
semi-infinite domain problems, because they have the advantages of clear structure and high precision.
However, both the finite element method and the boundary element method face the same problem when
dealing with coating problems. Because the coating material is extremely thin relative to the attached
substrate. When using finite element method, it will inevitably lead to unit distortion due to the very
small coating mesh, resulting in the increase in calculation and calculation error. If the boundary element
method is used, nearly singular integrals are generated when the coating boundary is calculated, which
increases the difficulty of calculation.

Integral transformation method is a common method in solving differential equations. Through a
series of integral transformation, the number of the original partial differential equations’ independent
variables continue to reduce and the ordinary differential equation could be obtained which is used
to obtain the algebraic equation. When dealing with the layered structure by integral transformation
method, the integral variable of each layer can be obtained directly through the whole system [40,41],
or by constructing the stiffness matrix and the flexibility matrix. But with the increase in the number
of layers, the whole structure matrix will become large and not conducive to the calculation. In contrast
to the integral transformation method, transfer matrix method [42–44] is usually used to calculate the
transfer matrix under fourth order because of its extensive calculation, although the linked matrix can
be established between layers to achieve the matrix integration. With the increase in the order of the
transfer matrix, the difficulty of the transfer matrix calculation is doubled, which brings great difficulties
to the calculation of 3D multi-field coupling problems.

The general solution theory [45–51] is a classical method of mechanics, which solves the general solution
of the partial differential equation directly through the control equation of the mechanical model and then
obtains the special solution according to the boundary condition of the concrete problem. Finally, the
corresponding solution is obtained by superposing the special solution and the general solution. The
general solution theory can solve the mechanical calculation problem of any multilayer structure and
has high accuracy. The general solution is usually composed of a harmonic function and one or more
higher-order functions, but there is no standard to choose the harmonic function, only by experience
accumulation and certain skills. So the application of general solution has its limitations.

1.5. The research emphasis of this paper

In this paper, the analytical solution of 1D hexagonal quasicrystals is derived. Not only the Green ’s
function solutions of 1D hexagonal quasicrystals in complete contact with transversely isotropic materials
are given, the relationships between the elastic field and the coating thickness as well as the external forces
are also obtained, when the quasicrystal is used as the coating material and acted by different kinds of
loads at the same time. The general solution of 1D hexagonal quasicrystals is derived based on the general
solution of transversely isotropic piezoelectric materials proposed by Ding et al. [52]. The corresponding
Green’s functions are derived by superposition principle and boundary condition of contact region. The
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potential equation theory is used to solve the integral equation, and the three-dimensional general solution
of the contact problem is obtained.

The Green’s function in this paper is the analytic solution of the whole field under the unit concen-
trated force. In order to obtain the solution under different distributed forces (cone force, cylindrical
force, uniform force, ellipsoid force, etc.), the matrix of the Green’s function solution should be super-
imposed appropriately. The analytical solution, without any increase in the calculation amount, will be
obtained through the combination of MATLAB programming skills and the Green’s function matrix.
This method can be used to simulate the solutions of quasicrystals quickly when working in different
conditions. Which provides a detailed theoretical basis for the industrial application of 1D hexagonal
quasicrystals.

2. General solutions for 1D hexagonal quasicrystals and transversely isotropic material

2.1. General solutions for 1D hexagonal quasicrystals

Considering 1D hexagonal quasicrystals whose atoms are arranged periodically in the rOφ plane and
quasiperiodically in the z -direction in cylindrical coordinates (r, φ, z), according to Chen et al. [19] and
Wang et al. [53], the constitutive laws of quasicrystals are
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where um (m = r, φ, z) and w are the strain components expressed in terms of the phonon displacements
and phason ones; σm, τmn are the components of stress in the phonon fields and Hm(m,n = r, φ, z) are
the stress components in the phason fields; cij , Rij and Kij represent the phonon, phason and phonon–
phason coupling elastic constants, respectively. The relation c66 = (c11 − c12)/2 holds for 1D hexagonal
quasicrystals with transverse isotropy.

Ignoring the effects of body force, the generalized equilibrium equations for 1D hexagonal quasicrystals
are:
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Taking the similarities between 1D hexagonal quasicrystals and transversely isotropic piezoelectric
material into account, the general solution for governing Eqs. (1, 2) could be substituted equivalently for
that presented by Ding et al. [52]. As for axisymmetric problem, the corresponding general solution is in
the following form:
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where ψj (j = 1, 2, 3) are functions which satisfy following quasiharmonic equations:(
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sj (j = 1, 2, 3), which satisfy Re(sj) > 0, are three eigenvalues of following algebraic equation of the
sixth orders:
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The coefficients k1j , k2j , ω1j and ω2j are given by
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It should be noted that the general solution given in Eq. (3) is only valid for the case of distinct
eigenvalues s1 �= s2 �= s3 �= s1 which is the most common case.

2.2. General solution for the transversely isotropic material

When the r−φ plane is parallel to the isotropic plane of material in cylindrical coordinates (r, φ, z), the
constitutive relations of transversely isotropic material are:
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where u′
m(m = r, φ, z) are the components of the displacement; σ′
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mn (m,n = r, φ, z) are the

components of normal and shear stresses, respectively; c′
ij (i, j = 1, 2, . . . , 6) are the elastic moduli. The
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12)/2 holds for transversely isotropic material.

Ignoring the effects of body force, the equilibrium equations are:
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Ding et al. [54] presented a compact general solution for governing Eqs. (1, 2). As for axisymmetric
problem, the corresponding general solution is presented in the following form:
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It should be noted that the general solution given in Eq. (3) is only valid for the case when the
eigenvalues s′

i (i = 1, 2) are distinct which is the most common.
There are two different fields coupling in quasicrystals; in order to balance the equations, the consti-

tutive relation of phason field in the transversely isotropic material is introduced.
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3. Green’s function for a normal point force acting on the surface of 1D hexagonal
quasicrystal coating

Consider a coating material with thickness h which is perfectly bonded to a semi-infinite substrate z ≤ 0
(Fig. 1). They are 1D hexagonal quasicrystals with isotropic plane perpendicular to the z axis. The
coating material can be modeled as an infinite plate with a free surface z = h and an interface z = 0
bonded to semi-infinite substrate z ≤ 0. A normal point force Pz is applied at the point on the free
surface of coating material. This is an axisymmetric problem; the phonon–phason coupling and elastic
field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution
(0, φ, h) on in Eqs. (3,12,23).

The boundary conditions on the free surface z = h are in the form of

σz(r, h) = 0, τzr(r, h) = 0, Hz(r, h) = 0, (24)

when the equilibrium for an infinite layer ε ≤ z ≤ h (0 < ε < h) is considered (Fig. 1), the equation
should be satisfied as follows:

− 2π

+∞∫
0

σz(r, ε)rdr + Pz = 0. (25)

The coating material 0 ≤ z ≤ h and the semi-infinite substrate z ≤ 0 are assumed to be perfectly
bonded. The compatibility conditions at the interface z = 0 are in form of

ur(r, 0) = u′
r(r, 0), uz(r, 0) = u′

z(r, 0),
σz(r, 0) = σ′

z(r, 0), τzr(r, 0) = τ ′
zr(r, 0),

Hz(r, 0) = H ′
z(r, 0), w(r, 0) = w′(r, 0), (26)

where the primed quantities refer to the variables in the semi-infinite substrate z ≤ 0 and the un-primed
quantities refer to those in coating material 0 ≤ z ≤ h.

Fig. 1. A normal point force Pz acting on the free surface of a 1D hexagonal quasicrystals coating material
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To simplify notations, the following quantities are introduced:
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z′
nikl = z′

i − hnkl, R′
nikl =

√
r2 + z′2

nikl, R′∗
nikl = R′

nikl − z′
nikl,

z′
nδkl = z′

δ − hnkl, R′
nδkl =

√
r2 + z′2

nδkl, R′∗
nδkl = R′

nδkl − z′
nδkl,

(n = 1, 2, . . . ,∞; j = 1, 2, 3; i = 1, 2; k = 1, 2, . . . , 2n; l = 1, 2, . . . , k), (27)

where s′
i are the eigenvalues of material in semi-infinite substrate z ≤ 0.

The harmonic functions in the coating material 0 ≤ z ≤ h can be assumed as

ψj =
∞∑

n=1

(ψ̄nj + ψnj), (j = 1, 2, 3), (28)

where

ψ̄nj =
2n∑

k=1

k∑
l=1

Ānjkl ln R̄∗
njkl, ψnj =

2n∑
k=1

k∑
l=1

Anjkl ln R∗
njkl,

(n = 1, 2, . . . ,∞; j = 1, 2, 3; k = 1, 2, . . . , 2n; l = 1, 2, . . . , k), (29)

Ānjkl and Anjkl are constants to be determined, R̄∗
njkl and R∗

njkl are defined in Eq. (27).
The corresponding phonon–phason coupling and elastic fields can be obtained by the substitution of

Eqs. (28, 29) into the general solution in Eq. (3) as follows:

ur =
∞∑

n=1

(ūrn + urn), uz =
∞∑

n=1

(ūzn + uzn), (30a)

w =
∞∑

n=1

(w̄n + wn), σr =
∞∑

n=1

(σ̄rn + σrn), σφ =
∞∑

n=1

(σ̄φn + σφn),

σz =
∞∑

n=1

(σ̄zn + σzn), τzr =
∞∑

n=1

(τ̄zrn + τzrn),

Hr =
∞∑

n=1

(
H̄rn + Hrn

)
, Hz =

∞∑
n=1

(
H̄zn + Hzn

)
, (30b)

where

ūrn =
3∑

j=1

2n∑
k=1

k∑
l=1

Ānjkl
r

R̄njklR̄∗
njkl

, urn =
3∑

j=1

2n∑
k=1

k∑
l=1

Anjkl
r

RnjklR∗
njkl

,

ūzn =
3∑

j=1

2n∑
k=1

k∑
l=1

sjk1jĀnjkl
−1

R̄njkl
, uzn =

3∑
j=1

2n∑
k=1

k∑
l=1

sjk1jAnjkl
1

Rnjkl
,

w̄n =
3∑

j=1

2n∑
k=1

k∑
l=1

sjk2jĀnjkl
−1

R̄njkl
, w̄n =

3∑
j=1

2n∑
k=1

k∑
l=1

sjk2jAnjkl
1

Rnjkl
,
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σ̄rn = 2c66

3∑
j=1

2n∑
k=1

k∑
l=1

Ānjkl
−1

R̄njklR̄∗
njkl

+
3∑

j=1

2n∑
k=1

k∑
l=1

s2jω1jĀnjkl
−z̄njkl

R̄3
njkl

,

σrn = 2c66

3∑
j=1

2n∑
k=1

k∑
l=1

Anjkl
−1

RnjklR∗
njkl

+
3∑

j=1

2n∑
k=1

k∑
l=1

s2jω1jAnjkl
znjkl

R3
njkl

,

σ̄φn = 2c66

3∑
j=1

2n∑
k=1

k∑
l=1

Ānjkl
1

R̄njklR̄∗
njkl

+
3∑

j=1

2n∑
k=1

k∑
l=1

(s2jω1j − 2c66)Ānjkl
−z̄njkl

R̄3
njkl

,

σφn = 2c66

3∑
j=1

2n∑
k=1

k∑
l=1

Anjkl
1

RnjklR∗
njkl

+
3∑

j=1

2n∑
k=1

k∑
l=1

(s2jω1j − 2c66)Anjkl
znjkl

R3
njkl

,

σ̄zn =
3∑

j=1

2n∑
k=1

k∑
l=1

ω1jĀnjkl
z̄njkl

R̄3
njkl

, σzn =
3∑

j=1

2n∑
k=1

k∑
l=1

ω1jAnjkl
−znjkl

R3
njkl

,

τ̄zrn =
3∑

j=1

2n∑
k=1

k∑
l=1

sjω1jĀnjkl
r

R̄3
njkl

, τzrn =
3∑

j=1

2n∑
k=1

k∑
l=1

sjω1jAnjkl
−r

R3
njkl

,

H̄rn =
3∑

j=1

2n∑
k=1

k∑
l=1

sjω2jĀnjkl
r

R̄3
njkl

, H̄rn =
3∑

j=1

2n∑
k=1

k∑
l=1

sjω2jAnjkl
−r

R3
njkl

,

H̄zn =
3∑

j=1

2n∑
k=1

k∑
l=1

ω2jĀnjkl
z̄njkl

R̄3
njkl

, Hzn =
3∑

j=1

2n∑
k=1

k∑
l=1

ω2jAnjkl
−znjkl

R3
njkl

,

(n = 1, 2, · · · ,∞). (31)

The harmonic functions in the semi-infinite substrate z ≤ 0 can be assumed as

ψ′
i =

∞∑
n=1

ψ′
ni, (i = 1, 2), (32a)

ψ′
δ =

∞∑
n=1

ψ′
nδ, (32b)

where

ψ′
ni =

2n∑
k=1

k∑
l=1

A′
nikl ln R′∗

nikl,

ψ′
nδ =

2n∑
k=1

k∑
l=1

A′
nδkl ln R′∗

nδkl,

(n = 1, 2, . . . ,∞; i = 1, 2), (33)

A′
njk are constants to be determined, R′∗

njk are defined in Eq. (27).
Substituting Eqs. (32, 33) into general solution (12,23) yields

u′
r =

∞∑
n=1

u′
rn, u′

z =
∞∑

n=1

u′
zn,

w′ =
∞∑

n=1

w′
n, (34a)
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σ′
r =

∞∑
n=1

σ′
rn, σ′

φ =
∞∑

n=1

σ′
φn,

σ′
z =

∞∑
n=1

σ′
zn, τ ′

zr =
∞∑

n=1

τ ′
zrn,

H ′
r =

∞∑
n=1

H ′
rn, H ′

z =
∞∑

n=1

H ′
zn, (34b)

where

u′
rn =

2∑
i=1

2n∑
k=1

k∑
l=1

A′
nikl

r

R′
niklR

′∗
nikl

, u′
zn =

2∑
i=1

2n∑
k=1

k∑
l=1

s′
ik

′
iA′

nikl

−1
R′

nikl

,

σ′
rn = 2c′

66

2∑
i=1

2n∑
k=1

k∑
l=1

A′
nikl

−1
R′

niklR
′∗
nikl

+
2∑

i=1

∑
k=12n

k∑
l=1

s′2
i ω′

iA′
nikl

−z′
nikl

R′3
nikl

,

σ′
φn = 2c′

66

2∑
i=1

2n∑
k=1

k∑
l=1

A′
nikl

1
R′

niklR
′∗
nikl

+
2∑

i=1

2n∑
k=1

k∑
l=1

(s′2
i ω′

i − 2c′
66)A′

nikl

−z′
nikl

R′3
nikl

,

σ′
zn =

2∑
i=1

2n∑
k=1

k∑
l=1

ω′
iA′

nikl

z′
nikl

R′3
nikl

, τ ′
zrn =

2∑
i=1

2n∑
k=1

k∑
l=1

s′
iω

′
iA′

nikl

r

R′3
nikl

,

w′
n =

2n∑
k=1

k∑
l=1

s′
δA′

nδkl

−1
R′

nδkl

,

H ′
rn =

2n∑
k=1

k∑
l=1

s′
δKrA′

nδkl

r

R′
nδkl3

, H ′
zn =

2n∑
k=1

k∑
l=1

KrA′
nδkl

z′
nδkl

R′
nδkl3

,

(n = 1, 2, . . . ,∞). (35)

Considering the form of Eq. (30), the boundary conditions in Eq. (24) for free surface z = h can be
separated into following form:

σ̄z1(r, h) = 0, τ̄zr1(r, h) = 0, H̄z1(r, h) = 0, (36a)
σzn(r, h) + σ̄z(n+1)(r, h) = 0, τzrn(r, h) + τ̄zr(n+1)(r, h) = 0,

Hzn(r, h) + H̄z(n+1)(r, h) = 0, (n = 1, 2, . . . ,∞). (36b)

Considering the form of Eqs. (30, 34), the compatibility conditions in Eq. (36) for interface z = 0 can
be separated into following form:

ūrn(r, 0) + urn(r, 0) = u′
rn(r, 0), ūzn(r, 0) + uzn(r, 0) = u′

zn(r, 0),
σ̄zn(r, 0) + σzn(r, 0) = σ′

zn(r, 0), τ̄zrn(r, 0) + τzrn(r, 0) = τ ′
zrn(r, 0),

H̄zn(r, 0) + Hzn(r, 0) = H ′
zn(r, 0), w̄n(r, 0) + wn(r, 0) = w′

n(r, 0),
(n = 1, 2, . . . ,∞). (37)

Substitution of Eq. (31) into Eq. (36a) gives

Ā1121 = Ā1122 = Ā1211 = Ā1222 = Ā1311 = Ā1321 = 0, (38)
s1ω11Ā1111 + s2ω12Ā1221 + s3ω13Ā1322 = 0. (39)
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Substituting Eq. (31) into Eq. (36b) with using following identities:

z̄(n+1)1(2n+2)λ(h) = h1 − (2n + 2 − λ)h2 − (λ − 1)h3,

z̄(n+1)2λλ(h) = −(2n + 2 − λ)h1 + h2 − (λ − 1)h3,

z̄(n+1)3λ1(h) = −(2n + 2 − λ)h1 − (λ − 1)h2 + h3,

(n = 1, 2, . . . ,∞; λ = 1, 2, . . . , 2n + 2), (40a)
zn111(h) = −z̄(n+1)111(h) = −z̄(n+1)221(h) = −z̄(n+1)322(h) = 2nh1,

zn2(2n)1(h) = −z̄(n+1)1(2n+1)1(h) = −z̄(n+1)2(2n+2)1(h) = −z̄(n+1)3(2n+2)2(h) = 2nh2,

zn3(2n)(2n)(h) = −z̄(n+1)1(2n+1)(2n+1)(h) = −z̄(n+1)2(2n+2)(2n+1)(h) = −z̄(n+1)3(2n+2)(2n+2)(h) = 2nh3,

zn1(m+1)1(h) = zn2m1(h) = −z̄(n+1)1(m+1)1(h) = −z̄(n+1)2(m+2)1(h) = −z̄(n+1)3(m+2)2(h)
= (2n − m)h1 + mh2,

zn1(m+1)(m+1)(h) = zn3mm(h) = −z̄(n+1)1(m+1)(m+1)(h)
= −z̄(n+1)2(m+2)(m+1)(h) = −z̄(n+1)3(m+2)(m+2)(h) = (2n − m)h1 + mh3,

zn2(2n)(m+1)(h) = zn3(2n)m(h) = −z̄(n+1)1(2n+1)(m+1)(h) = −z̄(n+1)2(2n+2)(m+1)(h)
= −z̄(n+1)3(2n+2)(m+2)(h) = (2n − m)h2 + mh3,

zn1(α+1)(β+1)(h) = zn2α(β+1)(h) = zn3αβ(h)
= −z̄(n+1)1(α+1)(β+1)(h) = −z̄(n+1)2(α+2)(β+1)(h) = (2n − α)h1 + (α − β)h2 + βh3,

(n = 1, 2, . . . ,∞; m = 1, 2, . . . , 2n − 1; α = 2, 3, . . . , 2n − 1; β = 1, 2, . . . , α − 1), (40b)

one can obtain

Ā(n+1)1(2n+2)λ = Ā(n+1)2λλ = Ā(n+1)3λ1 = 0, (n = 1, 2, . . . ,∞; λ = 1, 2, . . . , 2n + 2),

ω11Ā(n+1)111 + ω12Ā(n+1)221 + ω13Ā(n+1)322 = −ω11An111, (41a)

ω11Ā(n+1)1(2n+1)1 + ω12Ā(n+1)2(2n+2)1 + ω13Ā(n+1)3(2n+2)2 = −ω12An2(2n)1,

ω11Ā(n+1)1(2n+1)(2n+1) + ω12Ā(n+1)2(2n+2)(2n+1) + ω13Ā(n+1)3(2n+2)(2n+2) = −ω13An3(2n)(2n),

ω11Ā(n+1)1(m+1)1 + ω12Ā(n+1)2(m+2)1 + ω13Ā(n+1)3(m+2)2 = − (
ω11An1(m+1)1 + ω12An2m1

)
,

ω11Ā(n+1)1(m+1)(m+1) + ω12Ā(n+1)2(m+2)(m+1) + ω13Ā(n+1)3(m+2)(m+2)

= − (
ω11An1(m+1)(m+1) + ω13An3mm

)
,

ω11Ā(n+1)1(2n+1)(m+1) + ω12Ā(n+1)2(2n+2)(m+1) + ω13Ā(n+1)3(2n+2)(m+2)

= − (
ω12An2(2n)(m+1) + ω13An3(2n)m

)
,

ω11Ā(n+1)1(α+1)(β+1) + ω12Ā(n+1)2(α+2)(β+1) + ω13Ā(n+1)3(α+2)(β+2)

= − (
ω11An1(α+1)(β+1) + ω12An2α(β+1) + ω13An3αβ

)
,

(n = 1, 2, . . . ,∞; m = 1, 2, . . . , 2n − 1; α = 2, 3, . . . , 2n − 1; β = 1, 2, . . . , α − 1), (41b)
s1ω11Ā(n+1)111 + s2ω12Ā(n+1)221 + s3ω13Ā(n+1)322 = s1ω11An111,

s1ω11Ā(n+1)1(2n+1)1 + s2ω12Ā(n+1)2(2n+2)1 + s3ω13Ā(n+1)3(2n+2)2 = s2ω12An2(2n)1,

s1ω11Ā(n+1)1(2n+1)(2n+1) + s2ω12Ā(n+1)2(2n+2)(2n+1) + s3ω13Ā(n+1)3(2n+2)(2n+2) = s3ω13An3(2n)(2n),

s1ω11Ā(n+1)1(m+1)1 + s2ω12Ā(n+1)2(m+2)1 + s3ω13Ā(n+1)3(m+2)2

= s1ω11An1(m+1)1+s2ω12An2m1,

s1ω11Ā(n+1)1(m+1)(m+1) + s2ω12Ā(n+1)2(m+2)(m+1) + s3ω13Ā(n+1)3(m+2)(m+2)

= s1ω11An1(m+1)(m+1)+s3ω13An3mm,

s1ω11Ā(n+1)1(2n+1)(m+1) + s2ω12Ā(n+1)2(2n+2)(m+1) + s3ω13Ā(n+1)3(2n+2)(m+2)
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= s2ω12An2(2n)(m+1)+s3ω13An3(2n)m,

s1ω11Ā(n+1)1(α+1)(β+1) + s2ω12Ā(n+1)2(α+2)(β+1) + s3ω13Ā(n+1)3(α+2)(β+2)

= s1ω11An1(α+1)(β+1)+s2ω12An2α(β+1)+s3ω13An3αβ ,

(n = 1, 2, . . . ,∞; m = 1, 2, . . . , 2n − 1; α = 2, 3, . . . , 2n − 1; β = 1, 2, . . . , α − 1), (41c)
ω21Ā(n+1)111 + ω22Ā(n+1)221 + ω23Ā(n+1)322 = −ω21An111,

ω21Ā(n+1)1(2n+1)1 + ω22Ā(n+1)2(2n+2)1 + ω23Ā(n+1)3(2n+2)2 = −ω22An2(2n)1,

ω21Ā(n+1)1(2n+1)(2n+1) + ω22Ā(n+1)2(2n+2)(2n+1) + ω23Ā(n+1)3(2n+2)(2n+2) = −ω23An3(2n)(2n),

ω21Ā(n+1)1(m+1)1 + ω22Ā(n+1)2(m+2)1 + ω23Ā(n+1)3(m+2)2 = − (
ω21An1(m+1)1 + ω22An2m1

)
,

ω21Ā(n+1)1(m+1)(m+1) + ω22Ā(n+1)2(m+2)(m+1) + ω23Ā(n+1)3(m+2)(m+2)

= − (
ω21An1(m+1)(m+1) + ω23An3mm

)
ω21Ā(n+1)1(2n+1)(m+1) + ω22Ā(n+1)2(2n+2)(m+1) + ω23Ā(n+1)3(2n+2)(m+2)

= − (
ω22An2(2n)(m+1) + ω23An3(2n)m

)
,

ω21Ā(n+1)1(α+1)(β+1) + ω22Ā(n+1)2(α+2)(β+1) + ω23Ā(n+1)3(α+2)(β+2)

= − (
ω21An1(α+1)(β+1) + ω22An2α(β+1) + ω23An3αβ

)
,

(n = 1, 2, . . . ,∞; m = 1, 2, . . . , 2n − 1; α = 2, 3, . . . , 2n − 1; β = 1, 2, . . . , α − 1). (41d)

Substituting Eqs. (31, 35) into Eq. (37) with using following identities:

z̄njkl(0) = −znjkl(0) = z′
nikl(0) = z′

nδkl(0) = −hnkl,

R̄njkl(r, 0) = Rnjkl(r, 0) = R′
nikl(r, 0) = R′

nδkl(r, 0) =
√

r2 + h2
nkl,

R̄∗
njkl(r, 0) = R∗

njkl(r, 0) = R′∗
nikl(r, 0) = R′∗

nδkl(r, 0) =
√

r2 + h2
nkl + hnkl,

(n = 1, 2, . . . ,∞; i = 1, 2; k = 1, 2, . . . , 2n; l = 1, 2, . . . , k), (42)

one can obtain

3∑
j=1

(Ānjkl + Anjkl

)
=

2∑
i=1

A′
nikl,

3∑
j=1

(
sjk1jĀnjkl − sjk1jAnjkl

)
=

2∑
i=1

s′
ik

′
iA′

nikl,

3∑
j=1

(
ω1jĀnjkl + ω1jAnjkl

)
=

2∑
i=1

ω′
iA′

nikl,

3∑
j=1

(
sjω1jĀnjkl − sjω1jAnjkl

)
=

2∑
i=1

s′
iω

′
iA′

nikl,

3∑
j=1

(
ω2jĀnjkl + ω2jAnjkl

)
= KrA′

nδkl,

3∑
j=1

(
sjk2jĀnjkl − sjk2jAnjkl

)
= s′

δA′
nδkl,

(n = 1, 2, . . . ,∞; j = 1, 2, 3; k = 1, 2, . . . , 2n; l = 1, 2, . . . , k). (43)
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Substituting Eq. (31) into equilibrium Eq. (25) with using following integral:∫
z̄njkl

R̄3
njkl

rdr = − z̄njkl

R̄njkl
,

∫
znjkl

R3
njkl

rdr = − znjkl

Rnjkl
, (44)

one can obtain
∞∑

n=1

3∑
j=1

2n∑
k=1

k∑
l=1

ω1j

[
Ānjkl

z̄njkl(ε)
R̄njkl(r, ε)

− Anjkl
znjkl(ε)

Rnjkl(r, ε)

]r=+∞

r=0

= −Pz

2π
. (45)

Using following limits:

lim
r→∞

z̄njkl(ε)
R̄njkl(r, ε)

= lim
r→∞

znjkl(ε)
Rnjkl(r, ε)

= 0, lim
r→0

z̄njkl(ε)
R̄njkl(r, ε)

= −1, lim
r→0

znjkl(ε)
Rnjkl(r, ε)

= 1,

(n = 1, 2, . . . ,∞; j = 1, 2; k = 1, 2, . . . , 2n), (46)

Eq. (45) can be transferred into
∞∑

n=1

3∑
j=1

2n∑
k=1

k∑
l=1

ω1j

(Ānjkl + Anjkl

)
= −Pz

2π
. (47)

Using Eqs. (38,41) and following identities:
∞∑

n=1

3∑
j=1

2n∑
k=1

k∑
l=1

ω1j

(Ānjkl + Anjkl

)
=

3∑
j=1

2∑
k=1

k∑
l=1

ω1jĀ1jkl

+
∞∑

n=1

2n+2∑
λ=1

ω11Ā(n+1)1(2n+2)λ +
∞∑

n=1

2n+2∑
λ=1

ω12Ā(n+1)2λλ +
∞∑

n=1

2n+2∑
λ=1

ω13Ā(n+1)3λ1

+
∞∑

n=1

(
ω11Ā(n+1)111 + ω12Ā(n+1)221 + ω13Ā(n+1)322 + ω1An111

)

+
∞∑

n=1

(
ω11Ā(n+1)1(2n+1)1 + ω12Ā(n+1)2(2n+2)1 + ω13Ā(n+1)3(2n+2)2 + ω12An2(2n)1

)

+
∞∑

n=1

(
ω11Ā(n+1)1(2n+1)(2n+1) + ω12Ā(n+1)2(2n+2)(2n+1) + ω13Ā(n+1)3(2n+2)(2n+2) + ω13An3(2n)(2n)

)

+
∞∑

n=1

2n−1∑
m=1

(
ω11Ā(n+1)1(m+1)1 + ω12Ā(n+1)2(m+2)1 + ω13Ā(n+1)3(m+2)2 +ω11An1(m+1)1 + ω12An2m1

)

+
∞∑

n=1

2n−1∑
m=1

(
ω11Ā(n+1)1(m+1)(m+1) + ω12Ā(n+1)2(m+2)(m+1) + ω13Ā(n+1)3(m+2)(m+2)

+ω11An1(m+1)(m+1) + ω13An3mm

)

+
∞∑

n=1

2n−1∑
m=1

(
ω11Ā(n+1)1(2n+1)(m+1) + ω12Ā(n+1)2(2n+2)(m+1) + ω13Ā(n+1)3(2n+2)(m+2)

+ω12An2(2n)(m+1) + ω13An3(2n)m

)

+
∞∑

n=1

2n−1∑
α=2

α−1∑
β=1

(
ω11Ā(n+1)1(α+1)(β+1) + ω12Ā(n+1)2(α+2)(β+1) + ω13Ā(n+1)3(α+2)(β+2)

+ω11An1(α+1)(β+1) + ω12An2α(β+1) + ω13An3αβ

)
, (48)
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Table 1. Material property of 1D hexagonal quasicrystals [58]

1D hexagonal quasicrystals Numerical value

phonon elastic constants (109 N/m2)
c11 = 150, c12 = 100, c13 = 90
c33 = 130, c44 = 50

phason elastic constants (109 N/m2) K1 = 0.3, K2 = 0.18

phonon–phason coupling constants (109 N/m2) R1 = −1.50, R2 = 1.20, R3 = 1.20

Table 2. Material property of steel [59]

Steel Numerical value

Elastic modulus (109 N/m2) 206

Shear modulus (109 N/m2) 79.23
Poisson’s ratio 0.3

Cooperation constants (10−11 N/m2) Kr = 17, Kz = 25

Equation (47) can be simplified to

ω11Ā1111 + ω12Ā1221 + ω13Ā1322 = −Pz

2π
. (49)

Thus, Ā1jkl (j = 1, 2, 3; i = 1, 2; k = 1, 2; l = 1, 2) can be determined by these 9 equations in Eqs.
(38, 39, 49). Then, A1jkl, A′

1ikl and A′
1δkl (j = 1, 2, 3; i = 1, 2; k = 1, 2; l = 1, 2) can be determined

by these 6 equations in Eq. (43). And then, Ā2jkl (j = 1, 2, 3; i = 1, 2; k = 1, 2; l = 1, 2, . . . k) can be
determined by these 24 equations in Eq. (41). Therefore, for an arbitrary n, Anjk and A′

njk (j = 1, 2, 3;
k = 1, 2, . . . , 2n; l = 1, 2, . . . k) can be determined by those recursive equations in Eq. (43), and Ā(n+1)jk

(j = 1, 2, 3; k = 1, 2, . . . , 2n; l = 1, 2, . . . , k) can be determined by those recursive equations in Eq. (41).
Thus, the phonon–phason coupling and elastic field of Eqs. (30, 31) in the coating material 0 ≤ z ≤ h
and the phonon–phason coupling and elastic field of Eqs. (34, 35) in semi-infinite substrate z ≤ 0 can be
determined.

4. Numerical results

By virtue of the solutions derived above, some further numerical analysis is made. According to the rela-
tionship between computational accuracy and iterations, a more precise conclusion about the influence
of the coating thickness as well as the magnitude of the force on the distribution of stresses and displace-
ment on the interface can be obtained. Thus, the coating thickness, according to the different load, can
be determined in practical applications.

According to Sterzel et al. [55], the shear modulus of Zn–Mn–Y quasicrystals is about 46 Gpa. Accord-
ing to Edagawa [56], Zhu and henley [57], the phonon–phason coupling coefficient of Mn–Ga–Al–Zn qua-
sicrystals is −0.03μ and K2/K1 ≈ 0.6, K1 = 0.3 Gpa. Based on these experimental analyzes and predicted
theories about quasicrystals, this paper gives the assumed material parameters as follows.

The Green’s function obtained previously is based on the substrate which is transversely isotropic
material. Considering the substrate of quasicrystal coating is usually made of steel materials, the consti-
tutive relationship of transversely isotropic material needs be degenerated to apply to steel substrate. It
is not accurate for the cooperation constants between quasicrystals and steel materials which still need
to be further confirmed by the experiment. The material parameters of steel are presented as follows.

The following non-dimensional components are used in the figures:

cm =
c1m

c33
(m = 1, 2, 3) , c4 =

c44
c33

, c6 =
c66
c33

,
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Fig. 2. Non-dimensional Green’s stress τξζ along the interface z = 0 under the point force

Knn =
Kn

c33
(n = 1, 2, r, z), Rnn =

Rn

c33
(n = 1, 2, 3) ,

τkl =
τij

c33
, σk =

σi

c33
(i, j = r, φ, z; k, l = ξ, ς, ζ),

ξ =
r

h
, ζ =

z

h
, ς =

φ

h
, (50)

where h is the coating thickness layer, and the normal point force is

Pz = −c33h
2
0. (51)

4.1. Computational accuracy

The following Scarborough criterion is used to estimate the accuracy of above solution:

|εa| 〈εs, (52)

where εa is the relative percentage error and εs =
(
0.5 × 102−m

)
% is the tolerance of relative percentage

error. This criterion can keep at least that the first m significant digits are correct.
Consider that the coating–substrate system is composed of 1D hexagonal quasicrystals and isotropic

material. The figures of τξζ along the interface z = 0 for different iterations n are plotted in Fig. 2.
As the value of n changes, there is no significant change about τξζ in the graph, indicating that the

numerical algorithm is convergent and accurate. When n = 10, the relative percentage error is only 0.01.
Usually, the requirement for the computational accuracy in engineering is two significant digits. Therefore,
the calculation results are also valuable.

Since the force acting on the coating is dimensionless unit force, the output of stress and displacement
is very small in numerical value. In order to see its change rule more clearly, the value of the image
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Fig. 3. Influence of the coating thickness on the distribution of the maximum σζ along the interface under the same point
force

is enlarged. The integral density of all contours is 0.02, which can not only ensure the accuracy of the
output results, but also make the contour continuous and smooth.

4.2. The influence of the coating thickness and the magnitude of forces on the interface

In this section, the contours of the influence of the coating thickness and the magnitude of forces on the
interface are given to present the use of this mathematical method in quantitative analysis. The contours
are plotted in Figs. 3, 4 and 5, and some conclusions from the contours follow behind.

Some observations and suggestions from these contours are illustrated below:
1. Figure 3 and 4 present that the thinner the coating thickness, the more dramatic changes in the stress

elastic field along the interface under the same point force. If the coating is thickened continuously,
the stress increase is no longer significant. The stress distribution of other stress components, like
σξ, σς , Hζ , Hξ, are similar to σζ , τζξ.

2. When h ≤ 0.216, the curvature of the stress curve in Fig. 3 is greater than 50, which means at this
time if the thickness decreases a little, the stress will increase a lot. The same change rule occurs in
Fig. 4 when h ≤ 0.193. This phenomenon indicates that, when the quasicrystals are used as coating
material, the properties are very sensitive to its thickness and both the shear and normal stress
should be considered simultaneously.

3. Figs. 3 and 4 present that the shear stress and normal stress of coating are closely related to the h.
From Eq. (51), we get

Pz ∝ h2
0, (53)

then
H = h/h0, (54)

where h is the real thickness of the coating, H is the non-dimensional thickness of the coating and h0 is
the standard thickness of the coating.
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Fig. 4. Influence of the coating thickness on the distribution of the maximum τζξ along the interface under the same point
force
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Fig. 5. Influence of the force on the distribution of σζ × 102 along the interface under the same coating thickness

From Eqs. (53) and (54), it can be known that Pz at this time is affected by the real thickness h, because
H is constant value. But in fact, what needs to be discussed about the influence of thickness is working
under the constant tangential point force Pz. Therefore, when the input data of real thickness increased,
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Fig. 6. Contour of non-dimensional Green’s stress τζξ × 102 in phonon field under the point force

the output results of stress components should be quantitatively reduced. Finally, the relationship between
the stress components and the thickness can be obtained by Dimensional Method:

σz ∝ 1
h2

, τzr ∝ 1
h2

. (55)

5. Contours of stress components in the phonon and phason fields at the origin under the
point force

In this section, based on the obtained Green’s function solution and MATLAB programming, the contours
of non-dimensional stress components τζξ, σξ, σς , σζ in phonon field, Hξ, Hζ in phason field and phason
displacements w are given to present the application of this mathematical method in quantitative analysis.
The contours are plotted in Figs. 6, 7, 8, 9, 10, 11 and 12, and some conclusions from the contours follow
behind.

Some observations and suggestions from these contours are illustrated below:
1. It is observed that all stress components tend to zero in the far field and are tightly gathered around

the point where the normal point force is acted. It can be found that there exists relatively large
stresses and stress gradients in coating layer, especially near the point loading. This phenomenon
means that most of the elastic energy is bounded in the coating layer and tells us a high strength
level is needed for a good coating material.

2. The contours of the stress τζξ and σζ are continuous at the interface in Figs. 6 and 9. This is
coincident to the interface compatibility conditions. The gradient of stress is discontinuous when they
travel across the interface. This phenomenon is caused by the difference of the material properties
between coating and substrate, and this is more obvious in the contours of quasicrystals and non-
quasicrystals.
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Fig. 7. Contour of non-dimensional Green’s stress σξ × 102 in phonon field under the point force

Fig. 8. Contour of non-dimensional Green’s stress σς × 10 in phonon field under the point force
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Fig. 9. Contour of non-dimensional Green’s stress σζ × 102 in phonon field under the point force

Fig. 10. Contour of non-dimensional Green’s stress Hξ × 102 in phason field under the point force
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Fig. 11. Contour of non-dimensional Green’s stress Hζ × 103 in phason field under the point force

Fig. 12. Contour of non-dimensional Green’s phason displacements w × 102 under the point force
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3. It can be found that there are several zero contours for the stress components where stress gradient
changes largely. This dramatic change of stress field can result in the convergence of mechanical
energy, and the micro-cracks would appear due to the generation of energy. In particular, the zero
stress contours in Figs. 7, 8, 9, 10 and 11 which are normal stress components are more than that
in Fig. 6 which are shear stress, leading to the energy convergence effect in the former more serious
than the latter, which is more easily to be the failure of quasicrystal coating.

4. After comparison, the zero contours of stress usually occur in the vicinity of the point force below
or on both sides of the ζ-axis. However, it should be noted that these areas prone to damage are
not only confined to the coating. In Figs. 6, 7 and 8, a wide range of stress mutation also occurs in
the substrate.

5. It can be known that the normal and shear stresses at the interface may lead to tension and shear
delamination, respectively. The normal stress at the interface is negative under the normal point
force. Figure 6 presents that the maximum shear stress appears at the interface near the ζ-axis.

6. Since the stresses in Figs. 6 and 10 are discontinuous across the ζ-axis, this interfacial effect can
cause the opposite stress state on both sides of the ζ-axis. The opposite stress states are the main
reason of cracks appearing at the symmetry plane, and the accumulation and expansion of cracks
can lead to interface delamination. Therefore, in the design of quasicrystal coating, this dangerous
stress state should be avoided as much as possible.

7. It can be found that there are only a few zero contours in the substrate about the phason stress
component Hζ , Hξ, which is caused by relatively small cooperation constants Kr and Kz. The
phenomenon observed in Figs. 10 and 11 presents that relatively large phason stress component
appears in coating layer, especially near the point loading. But the phason stress gradient is much
smaller than phonon’s.

8. Figure 12 presents that the contours of the non-dimensional Green’s phason displacements w under
the point force Pz. The phason displacements w is continuous at the interface z = 0. This is
coincident to the interface compatibility conditions.

By observing, the value of these stress components is much smaller relative to the external force, indicating
that quasicrystals own well-elastic properties and have a strong rigidity and stability compared to other
materials. With the contours of these stress components, the interaction between the phonon–phason
coupling field of the coating and the elastic field of the substrate when acted by force field can be
observed directly, which can be used to determine the location where the physical model is prone to
damage, so as to provide a theoretical basis for the quasicrystal used as new coating material.

6. Contours of stress components in the phonon and phason fields under the different
distributed forces

The Green’s function obtained previously is the analytic solution of the whole field under the unit concen-
trated force. In order to obtain the solution under different distributed forces (cone force, cylindrical force,
uniform force, ellipsoid force, uneven force etc.), the functions of distributed force need to be introduced
and the matrix of the Green’s function solution should be superimposed appropriately.

The function of ellipsoidal distribution is:

σz (r, φ) = − 3Pz

2πab

√
1 − r2 cos2 φ

a2
− r2 sin2 φ

b2
. (56)

The function of conic distribution is:

σz (r, φ) = − Pz

πa2
cosh−1

(a

r

)
. (57)
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Fig. 13. Loading diagram of the uneven distributed force

The function of cylindrical distribution is:

σz (r, φ) = − Pz

2πa

(
a2 − r2

)−1/2
. (58)

The loading diagram of the uneven distributed force is shown in Fig. 13, and the sine function of the
distributed force is:

σz (r) = Pz(sin(r − 1.07) + 2). (59)
In this way, the analytical solution under the distributed forces, without any increase in the calculation

amount, will be obtained through the combination of MATLAB programming skills and the Green’s
function matrix. This method can be used to simulate the solutions of quasicrystals quickly when working
in different conditions, which provides a detailed theoretical basis for the industrial application of 1D
hexagonal quasicrystals.

The contours of non-dimensional Green’s stress components σζ and τζξ under the different distributed
forces are given to present the application of this mathematical method in quantitative analysis. The
contours are plotted in Figs. 14 ,15, 16, 17, 18, 19, 20, 21, 22 and 23 and some conclusions follow behind.

Some observations and suggestions from these contours are illustrated below:
1. The contours of the distributed force have the same distribution as the point force. The stress com-

ponents are continuous at the interface, which is consistent with the interface continuity condition.
The larger stress is mainly distributed in the coating. Where the stress gradient is large, the elastic
energy is concentrated. Therefore, these areas should be taken into account in the processing.

2. In all of the figures above, the larger stress is mainly distributed in the contact area, and the gradient
is relatively gentle. The smaller stress is distributed at the edge of the contact area, however, resulting
in a sharp increase in stress gradient. This is also the main cause of fracture at the boundary.

3. A stress mutation occurs at the contact area’s boundary in both the cylindrical and uniform external
forces, whereas the same area is relatively smooth in both the ellipsoidal and conical.

4. In Figs. 18 and 19, the stress is concentrated on the cone point and the cone contact area, and
the stress gradient changes dramatically below the cone point in the coating. On the contrary, in
Figs. 20 and 21, the large gradient occurs at the cylindrical edge.

5. By contrasting those stress contours, the characteristics of cylindrical distribution is same as the
uniform force’s, and the distribution of the cone is a combination of the point force and the ellipsoidal
force.

6. Figures 22 and 23 show that the stress field inside the coating and the substrate change sharply and
become more complicated when the outer surface is subjected to an uneven distributed external
load. A large number of 0 contours make the structure of the quasicrystal coating more unstable,
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Fig. 14. Contour of non-dimensional Green’s stress σζ × 102 under the uniform force

Fig. 15. Contour of non-dimensional Green’s stress τζξ × 102 under the uniform force



95 Page 26 of 32 P.-F. Hou, B.-J. Chen and Y. Zhang ZAMP

Fig. 16. Contour of non-dimensional Green’s stress σζ × 102 under the ellipsoidal force

Fig. 17. Contour of non-dimensional Green’s stress τζξ × 102 under the ellipsoidal force
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Fig. 18. Contour of non-dimensional Green’s stress σζ × 102 under the conical force

Fig. 19. Contour of non-dimensional Green’s stress τζξ × 102 under the conical force
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Fig. 20. Contour of non-dimensional Green’s stress σζ × 102 under the cylindrical force

Fig. 21. Contour of non-dimensional Green’s stress τζξ × 102 under the cylindrical force
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Fig. 22. Contour of non-dimensional Green’s stress σζ × 102 under the uneven distributed force

Fig. 23. Contour of non-dimensional Green’s stress τζξ × 102 under the uneven distributed force



95 Page 30 of 32 P.-F. Hou, B.-J. Chen and Y. Zhang ZAMP

prone to delamination damage. Therefore, an accurate and efficient analytical method is particularly
important for the application of quasicrystal coating, which is also the advantage of this paper.

With the knowledge obtained above, it can be found that the stress distributions are multifarious under
the different distributed forces. It is presented that the coupled field components under the distributed
load are not singular and satisfy the surface boundary condition when the superposition principle are
used, although all the coupled field components are singular under the point force. This means that
the Green’s function solution under the point load can be used to solve various engineering problems
effectively. Thus, the coating thickness and material can be changed to adapt to various application
requirements, so as to obtain a more ideal stress state.

7. Conclusions

The desired harmonic functions (in Eqs. 28, 29, 32, 33) of three-dimensional Green’s function for 1D hexag-
onal quasicrystals used as coating material have been deduced. And the relationship between phonon–
phason coupling field of 1D hexagonal quasicrystals and the elastic field of transversely isotropic materials
are presented when the coating surface is acted by different forms of forces, which is widely used in engi-
neering, especially in coating surfaces for engines, solar cells, nuclear fuel containers and heat converters.
Based on the principle of superposition, the newly developed Green’s solution of 1D hexagonal quasicrys-
tals in coating contact space is explicitly presented in terms of elementary functions. The interactions
among the force field and the phonon–phason coupling elastic field are also revealed. This Green’s function
is essential in the boundary element method as well as the study of cracks, defects and inclusions.

In addition, the Green’s solutions under different distributed forces (cone force, cylindrical force,
uniform force, ellipsoid force, uneven force, etc.) are obtained through the combination of MATLAB
programming skills and the Green’s function matrix. This method can be used to simulate the solutions
of quasicrystals quickly when working in different conditions, which provides a detailed theoretical basis
for the industrial application of 1D hexagonal quasicrystals.

Because the obtained solution is expressed in terms of elementary functions, it is convenient to use.
Numerical examples show us that the interfacial debonding and coating tensile failure should be paid
attention to during the analysis and design of the coating materials.
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