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Abstract. This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory
Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0) ≤ d and d is a positive constant) was
discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects:
Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0) < d; secondly, we
study the conditions on global existence or blow-up when J(u0) > d.
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1. Introduction and Main Results

In this paper, we consider the following thin-film equation:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxxx − (|ux|p−2ux

)

x
= |u|q−1u − 1

|Ω|
∫

Ω

|u|q−1udx, x ∈ Ω, t > 0,

ux = uxxx = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R is an open interval, p > 1, q > max{1, p − 1}, u0 ∈ H and

H �

⎧
⎨

⎩
φ ∈ H2(Ω)

∣
∣
∣
∣
∣
∣
φx|∂Ω = 0,

∫

Ω

φdx = 0

⎫
⎬

⎭
.

Throughout this paper, we denote by ‖ · ‖s the Ls(Ω) norm for 1 ≤ s ≤ ∞, and it is easy to see H
with the norm ‖uxx‖2 is a Banach space. Since H ↪→ Lq+1 continuously, we denote by A the optimal
embedding constant, i.e.,

1
A

= inf
u∈H\{0}

‖uxx‖2

‖u‖q+1
. (1.2)

In order to review the previous results precisely, we define some notations, functionals and sets as follows:

J(u) � 1
2
‖uxx‖2

2 +
1
p
‖ux‖p

p − 1
q + 1

‖u‖q+1
q+1,

I(u) � ‖uxx‖2
2 + ‖ux‖p

p − ‖u‖q+1
q+1,

N � {u ∈ H|I(u) = 0, ‖uxx‖2 �= 0},
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N+ � {u ∈ H | I(u) > 0},

N− � {u ∈ H | I(u) < 0},

Jα � {u ∈ H | J(u) < α}, (1.3)

where α is a constant. Then, the mountain pass level d is (see [15])

d � min
u∈N

J(u) = min
u∈H\{0}

max
s≥0

J(su). (1.4)

Finally, we let

E1 � q − 1
2(q + 1)

A− 2(q+1)
q−1 > 0, (1.5)

α1 � A− q+1
q−1 , (1.6)

where A is given in (1.2), and

J0(u) � J(u) − 1
p
‖ux‖p

p =
1
2
‖uxx‖2

2 − 1
q + 1

‖u‖q+1
q+1,

I0(u) � ‖uxx‖2
2 − ‖u‖q+1

q+1.

(1.7)

Problem (1.1) describes a series of physical phenomena (see [14,15,32]). One characteristic of problem
(1.1) is the nonlocal source |u|q−1u− 1

|Ω|
∫

Ω

|u|q−1udx, and there are a lot of papers dealing with this kind

of evolution equations (see [6,28,29] for the heat equations, see [10,12,13,20,24,25] for the p-Laplace
equations, see [1,2,30] for the porous medium equations).

Another problem related to (1.1) is the following problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxxx = |u|q−1u − 1
|Ω|

∫

Ω

|u|q−1udx, x ∈ Ω, t > 0,

ux = uxxx = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.8)

which was studied in (see [26,34]). The authors got the following conclusions:
(i) The weak solution of problem (1.8) blows up in finite time if J0(u0) ≤ 0 or 0 < J0(u0) ≤ E1 and

I0(u0) < 0;
(ii) The weak solution of problem (1.8) exists globally if 0 < J0(u0) < E1 and I0(u0) > 0 or J0(u0) = E1

and I0(u0) ≥ 0.
(iii) The blow-up time T satisfies

T ≤ (q + 1)|Ω| q−1
2 ‖u0‖−(q−1)

2

(q − 1)2
[

1 −
(
(q + 1)

(
1
2 − J0(u0)

α2
1

))− q+1
q−1

]

when 0 < J0(u0) < E1 and ‖u0xx‖2 > α1.
Problem (1.1) was firstly studied by Li et al. [15]. Next, we will introduce the main results of this

paper. Firstly, we give the definition of the weak solutions to (1.1).

Definition 1. [15] A function u ∈ L∞(0, T ;H) with ut ∈ L2
(
0, T ; L̃2(Ω)

)
is called a weak solution of

problem (1.1), if u(x, 0) = u0 ∈ H and u(x, t) satisfies problem (1.1) in the following sense, i.e.,
t∫

0

∫

Ω

⎡

⎣utφ + uxxφxx + |ux|p−2uxφx −
⎛

⎝|u|q−1u − 1
|Ω|

∫

Ω

|u|q−1udx

⎞

⎠φ

⎤

⎦dxdτ = 0, ∀t ∈ (0, T ) (1.9)
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for any φ ∈ L2(0, T ;H2(Ω)) with φx|∂Ω = 0, where

L̃2(Ω) �

⎧
⎨

⎩
u ∈ L2(Ω)

∣
∣
∣
∣
∣
∣

∫

Ω

udx = 0

⎫
⎬

⎭
.

The main results of [15] are the following four theorems.

Theorem 1. [15] If J(u0) < d and I(u0) > 0, then the weak solution of problem (1.1) exists globally.
Moreover, there exist a constant C > 0 such that ‖u‖2

2 ≤ ‖u0‖2
2e

−Ct, and u does not vanish in finite time.

Theorem 2. [15] If J(u0) < d and I(u0) < 0, then the weak solution of problem (1.1) blows up at a finite
time T , that is

lim
t→T

t∫

0

‖u(τ)‖2
2dτ = +∞. (1.10)

Theorem 3. [15] If J(u0) = d and I(u0) ≥ 0, then the weak solution of problem (1.1) exists globally
and I(u(t)) ≥ 0 for all t ≥ 0. Moreover, if I(u) > 0, then the solution does not vanish and there exist
constants C1 and C2 such that ‖u‖2

2 ≤ C1e−C2t. If not, the solution vanishes in finite time.

Theorem 4. [15] If J(u0) = d and I(u0) < 0, then the weak solution of problem (1.1) blows up at a finite
time T , that is

lim
t→T

t∫

0

‖u(τ)‖2
2 = +∞. (1.11)

In summary, in [15], the authors studied the conditions on global existence or blow-up when J(u0) ≤ d.
But there are two problems unsolved. Firstly, there is no estimates of blow-up time or asymptotic behavior
for the blow-up solutions, which are important to study blow-up problems (see [4,5,7,9,11,16–19,21–
23,27,31,33]); Secondly, when J(u0) > d, whether the solution exists globally or blows up in finite time
is unconsidered. The main task of this paper is to study these two problems.

In order to introduce the main results of this paper, we need some preparations. Firstly, we compare
the values of d and E1. It follows from (1.2) and (1.4) that

d ≥ min
u∈H\{0}

max
s≥0

J0(su)

= min
u∈H\{0}

J0(su)

∣
∣
∣
∣
∣
∣
∣s=

q−1

√
‖uxx‖2

2
‖u‖q+1

q+1

=
q − 1

2(q + 1)
min

u∈H\{0}

(‖uxx‖2

‖u‖q+1

) 2(q+1)
q−1

=
q − 1

2(q + 1)
A− 2(q+1)

q−1 = E1.

By definition of J(u), N , Jα and d, we can get

Nα � N ∩ Jα ≡
{

u ∈ N
∣
∣
∣
∣

(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

‖ux‖p
p < α

}

�= ∅ for all α > d. (1.12)

Since H1
0 (Ω) ↪→ Lp(Ω), we denote by μ > 0 the optimal embedding constant. Let u ∈ H, then

ux ∈ H1
0 (Ω), so we get

‖ux‖p ≤ μ‖uxx‖2.
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By (1.4), we can obtain

d = min
u∈N

{
1
2
‖uxx‖2

2 +
1
p
‖ux‖p

p − 1
q + 1

‖u‖q+1
q+1

}

= min
u∈N

{(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

‖ux‖p
p

}

≤ min
u∈N

{(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

μp‖uxx‖p
2

}

=
(

1
2

− 1
q + 1

)(

min
u∈N

‖uxx‖2

)2

+
(

1
p

− 1
q + 1

)

μp

(

min
u∈N

‖uxx‖2

)p

,

then there exists a unique positive constant σ depending on p, q, μ, d such that minu∈N ‖uxx‖2 ≥ σ.
Therefore,

dist(0,N ) = min
u∈N

‖uxx‖2 := κ ≥ σ > 0. (1.13)

For any u ∈ N−, i.e., I(u) < 0, we have ‖uxx‖2 �= 0 and ‖ux‖p �= 0. Combining the definition of N
and (1.2) we can obtain

‖uxx‖2
2 < ‖u‖q+1

q+1 ≤ Aq+1‖uxx‖q+1
2 = Aq+1‖uxx‖q−1

2 ‖uxx‖2
2,

‖uxx‖2 > α1 (1.14)

where α1 is defined in (1.6). The above inequality yields

dist(0,N−) = min
u∈N−

‖uxx‖2 ≥ α1 > 0. (1.15)

We now define

λα � inf{‖u‖2 |u ∈ Nα }, Λα � sup{‖u‖2 | u ∈ Nα} for all α > d. (1.16)

Clearly, we have the following monotonicity properties

α �→ λα is nonincreasing, α �→ Λα is nondecreasing.

For δ > 0, we define some modified functionals and sets as follows:

Iδ(u) � δ‖uxx‖2
2 + δ‖ux‖p

p − ‖u‖q+1
q+1,

Nδ � {u ∈ H|Iδ(u) = 0, ‖uxx‖2 �= 0}.

The modified potential wells and their corresponding sets are defined, respectively, by

d(δ) � inf
u∈Nδ

J(u),

Wδ(u) � {u ∈ H |Iδ(u) > 0, J(u) < d(δ)} ∪ {0},

Vδ(u) � {u ∈ H |Iδ(u) < 0, J(u) < d(δ)}.

Finally, we introduce some sets as following:

B � {u0 ∈ H| the solution u = u(t) of (1.1) blows up in finite time },

G � {u0 ∈ H| the solution u = u(t) of (1.1) exists for all t > 0},

G0 � {u0 ∈ G|u(t) �−→ 0 in H as t → ∞}. (1.17)

With the above preparations, we can introduce the main results of this paper. The first result is about
the estimate of the lower and upper bounds of the blow-up time, asymptotic behavior when J(u0) < d.
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Theorem 5. Let J(u0), I(u0), B be defined in (1.3) and (1.17). If J(u0) < d, I(u0) < 0 and q < 9, then
u0 ∈ B. Moreover, it holds

T ≥ ‖u0‖2−2γ
2

2(γ − 1)C0
(1.18)

and

‖u‖2 ≥ [2C0(γ − 1)]−
1

2(γ−1) (T − t)− 1
2(γ−1) , (1.19)

where T is the blow-up time,

γ =
3q + 5
9 − q

> 1, C0 = Ĉ
8(q+1)
9−q , (1.20)

Ĉ is the optimal constant of the Gagliardo–Nirenberg’s inequality [3,8]:

‖φ‖q+1 ≤ Ĉ‖φxx‖(1−θ)
2 ‖φ‖θ

2, ∀φ ∈ H, (1.21)

in which,

θ =
3q + 5

4(q + 1)
∈ (0, 1). (1.22)

For the upper bounds of blow-up time and asymptotic behavior, we cannot calculate them but for
J(u0) < E1, which is smaller than d and is given in (1.5).

Theorem 6. Let J(u0), I(u0), B be defined in (1.3) and (1.17). If J(u0) < E1 and I(u0) < 0, then u0 ∈ B.
Moreover, it holds

T ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ‖u0‖2
2

(q2 − 1)J(u0)
, if J(u0) < 0;

(q + 1)|Ω| q−1
2 ‖u0‖−(q−1)

2

(q − 1)2
[

1 −
(
(q + 1)

(
1
2 − J0(u0)

α2
1

))− q+1
q−1

] , if 0 ≤ J(u0) < E1,
(1.23)

and

‖u‖2 ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
(q2 − 1)‖u0‖−(q+1)

2 (−J(u0))
]− 1

q−1
(T − t)− 1

q−1 , if J(u0) < 0;

|Ω|(q + 1)
1

q−1

(q − 1)
1

q−1

⎡

⎢
⎣1 −

⎛

⎝
1

(q + 1)
(

1
2 − J0(u0)

α2
1

)

⎞

⎠

q+1
q−1

⎤

⎥
⎦

− 1
q−1

(T − t)− 1
q−1 , if 0 ≤ J(u0) < E1.

(1.24)

where T is the blow-up time, J0(u0) is defined in (1.7), E1 and α1 are given in (1.5) and (1.14), respec-
tively.

Remark 1. By [34, Remark 1.2], we know that (q + 1)
(

1
2 − J0(u0)

α2
1

)
> 1. So (1.23) and (1.24) make sense

for 0 ≤ J(u0) < E1.

At last, we give the conditions to ensure the solution exists globally or blows up in finite time with
J(u0) > d.

Theorem 7. Let λJ(u0),ΛJ(u0),N+,N−,G0,B be the constants or sets defined in (1.3), (1.16) and (1.17).
Assume J(u0) > d, then the following conclusions hold

(i) If u0 ∈ N+ and ‖u0‖2 ≤ λJ(u0), then u0 ∈ G0;
(ii) If u0 ∈ N− and ‖u0‖2 ≥ ΛJ(u0), then u0 ∈ B.
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Remark 2. By (2.1), we know that there indeed exists u0 satisfying the conditions of the above theorem.

By using (ii) of Theorem 7, we can get the following two corollaries.

Corollary 1. Assume J(u0) > d and let N−,B be the sets defined in (1.3) and (1.17), respectively.

(i) If

|Ω| q−1
2

2(q + 1)
q − 1

J(u0)
{≤ ‖u0‖q+1

2 , if 1 < p < 2;
< ‖u0‖q+1

2 , if p = 2,
(1.25)

then u0 ∈ N− ∩ B.
(ii) If p > 2 and

|Ω| q−1
2

p(q + 1)
q + 1 − p

J(u0) ≤ ‖u0‖q+1
2 , (1.26)

then u0 ∈ N− ∩ B.
The second corollary indicates that there exists blow-up solutions to (1.1) for any high initial energy.

Corollary 2. For any M > d, there exists uM ∈ N− such that J(uM ) = M and uM ∈ B.
The organizations of the remaining of this paper are as follows: In Sect. 2, we give some preliminaries,

which are important for our proofs. In Sect. 3, we give the proofs of the theorems and corollaries.

2. Preliminaries

In this section, we will give some useful lemmas and propositions for our later proofs. Throughout this
section, we will use the notations, sets, functionals and constants defined in Sect. 1.

Lemma 1. [15] Assume u ∈ H2(Ω), 0 < J(u) < d, and 0 < δ1 < 1 < δ2 satisfy the equation d(δ) = J(u),
then the sign of Iδ(u) does not change for δ1 < 1 < δ2.

Remark 3. By [15, Lemma 2.3], we know that there indeed exist δ1 and δ2 satisfying 0 < δ1 < 1 < δ2

and d(δ) = J(u) when 0 < J(u) < d.

Lemma 2. [15] Assume that u is a weak solution of problem (1.1) with 0 < J(u0) < d. Let 0 < δ1 < 1 < δ2

be the two roots of the equation d(δ) = J(u0) and T is the maximal existence time.

(i) If I(u0) > 0, then u ∈ W (δ) for δ1 < δ < δ2 and 0 < t < T ;
(ii) If I(u0) < 0, then u ∈ V (δ) for δ1 < δ < δ2 and 0 < t < T .

Lemma 3. [15] Let u ∈ H and

r(δ) =
(

δ

Aq+1

) 1
q−1

,

where A is defined in (1.2). Then

(i) if 0 < ‖uxx‖2 < r(δ), then Iδ(u) > 0;
(ii) if Iδ(u) < 0, then ‖uxx‖2 > r(δ);
(iii) if Iδ(u) = 0, then ‖uxx‖2 = 0 or ‖uxx‖2 ≥ r(δ).

Proposition 1. The two constants λα and Λα defined in (1.16) satisfy the following relationship:

0 < λα < Λα < +∞. (2.1)
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Proof. If u ∈ N , then it follows the definition of N and (1.21) that

‖uxx‖2
2 ≤ ‖u‖q+1

q+1 ≤ C‖uxx‖(1−θ)(q+1)
2 ‖u‖θ(q+1)

2 ,

where C = Ĉq+1, i.e.,

‖uxx‖β
2 ≤ C‖u‖ρ

2 for all u ∈ N , (2.2)

where β = 9−q
4 and ρ = 3q+5

4 .
Combining with (1.13) and (2.2), we have

λα = inf
u∈Nα

‖u‖2 ≥ inf
u∈N

‖u‖2

≥ C− 1
ρ

(

inf
u∈N

‖uxx‖2

) β
ρ

= C− 1
ρ κ

β
ρ > 0.

Furthermore, since p > 1, by (1.2), (1.12) and Hölder’s inequality, we can obtain

Λα = sup
u∈Nα

‖u‖2

≤ |Ω| q−1
2(q+1) sup

u∈Nα

‖u‖q+1

= |Ω| q−1
2(q+1)

[

sup
u∈Nα

(‖uxx‖2
2 + ‖ux‖p

p

)
] 1

q+1

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Ω| q−1
2(q+1)

[
2α(q + 1)

q − 1

] 1
q+1

, if 1 < p ≤ 2;

|Ω| q−1
2(q+1)

[
pα(q + 1)
q + 1 − p

] 1
q+1

, if p > 2,

< +∞.

Then the result follows. �

Lemma 4. Let u be the weak solution of (1.1), then it holds

‖u(t)‖2
2 = ‖u0‖2

2 − 2

t∫

0

I(u(τ))dτ (2.3)

and
t∫

0

‖uτ‖2
2dτ + J(u(t)) = J(u0). (2.4)

Proof. Let φ = u in (1.9). Noting that
∫

Ω

udx = 0, we get

t∫

0

∫

Ω

(
uτu + |uxx|2 + |ux|p − |u|q+1

)
dxdτ = 0,

which leads (2.3).
Now, we consider (2.4). Firstly we assume u is smooth enough such that ut ∈ L2(0, T ;H). Let φ = ut

in (1.9), note that
∫

Ω

utdx = 0, we have
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t∫

0

∫

Ω

[|uτ |2 + uxxuτxx + |ux|p−2uxuτx − |u|q−1uuτ

]
dxdτ = 0,

hence, we have
t∫

0

‖uτ‖2
2dτ +

1
2
‖uxx‖2

2 +
1
p
‖ux‖p

p − 1
q + 1

‖u‖q+1
q+1 =

1
2
‖u0xx‖2

2 +
1
p
‖u0x‖p

p − 1
q + 1

‖u0‖q+1
q+1,

i.e., (2.4) holds. Since L2
(
0, T ; L̃2(Ω)

)
is dense in L2(0, T ;H), by density argument and Definition 1, we

know that (2.4) holds for weak solutions of problem (1.1). �

Lemma 5. The following results hold true.
(i) J(u) > 0 for any u ∈ N+;
(ii) For all u ∈ N , we have J(u) = maxs≥0 J(su);
(iii) For any α > 0, it holds

‖uxx‖2
2 <

2(q + 1)
q − 1

α, ∀u ∈ Jα ∩ N+. (2.5)

Proof. Case (i). Since u ∈ N+ and q > max{1, p − 1}, we can obtain

J(u) =
1
2
‖uxx‖2

2 +
1
p
‖ux‖p

p − 1
q + 1

‖u‖q+1
q+1

>
1

q + 1

(
‖uxx‖2

2 + ‖ux‖p
p − ‖u‖q+1

q+1

)

=
1

q + 1
I(u)

> 0.

Case (ii). Since u ∈ N , it follows from the definitions of J(u) and I(u) in (1.3) that

d
ds

J(su) =
d
ds

(
s2

2
‖uxx‖2

2 +
sp

p
‖ux‖p

p − sq+1

q + 1
‖u‖q+1

q+1

)

= sq
(
s1−q‖uxx‖2

2 + sp−1−q‖ux‖p
p − ‖u‖q+1

q+1

)

= sq
[
‖uxx‖2

2 + ‖ux‖p
p − ‖u‖q+1

q+1 +
(
s1−q − 1

) ‖uxx‖2
2 +

(
sp−1−q − 1

) ‖ux‖p
p

]

= sq
[
I(u) +

(
s1−q − 1

) ‖uxx‖2
2 +

(
sp−1−q − 1

) ‖ux‖p
p

]

= s
(
1 − sq−1

) ‖uxx‖2
2 + sp−1

(
1 − sq−p+1

) ‖ux‖p
p.

Since p > 1, q > max{1, p − 1}, we obtained

d
ds

J(su)

⎧
⎨

⎩

> 0, if 0 < s < 1;
= 0, if s = 1;
< 0, if s > 1.

Hence, we get J(u) = maxs≥0 J(su).
Case (iii). For any u ∈ Jα ∩ N+, we have J(u) < α and I(u) > 0, then by p > 1, q > max{1, p − 1},

we get

α > J(u) =
1
2
‖uxx‖2

2 +
1
p
‖ux‖p

p − 1
q + 1

‖u‖q+1
q+1

=
1

q + 1

(
‖uxx‖2

2 + ‖ux‖p
p − ‖u‖q+1

q+1

)
+

q − 1
2(q + 1)

‖uxx‖2
2 +

q + 1 − p

p(q + 1)
‖ux‖p

p
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=
1

q + 1
I(u) +

q − 1
2(q + 1)

‖uxx‖2
2 +

q + 1 − p

p(q + 1)
‖ux‖p

p

>
q − 1

2(q + 1)
‖uxx‖2

2,

which implies (2.5). �
Lemma 6. If 0 ≤ J(u0) < E1 and I(u0) < 0, then ‖u0xx‖ > α1, where E1 and α1 are positive constants
given in (1.5) and (1.6), respectively. Let u be the weak solution of problem (1.1) with initial value u0,
then there is a positive constant α2 > α1 such that

‖uxx(·, t)‖2 ≥ α2, t ≥ 0, (2.6)

and

‖u‖q+1 ≥ Aα2, t ≥ 0, (2.7)

where A is a positive constant given in (1.2). Moreover,

α2

α1
≥

[

(q + 1)
(

1
2

− J0(u0)
α2

1

)]1/(q−1)

> 1, (2.8)

where J0(u0) is defined in (1.7).

Proof. By (1.14), we get ‖u0xx‖ > α1. The remaining proof is similar to [34, Lemma 2.2]. Although
[34, Lemma 2.2] only considered the case 0 < J0(u0) < E1, one can check the lemma also hold for all
0 ≤ J0(u0) < E1, and we omit it. �

The following lemma is similar to [34, Lemma 2.3], and we omit the proof.

Lemma 7. Let M(u) = E1 − J(u). Assume the assumptions in Lemma 6 hold. Then, M(u) satisfies the
following estimates:

0 < M(u0) ≤ M(u) ≤ 1
q + 1

‖u‖q+1
q+1. (2.9)

3. Proof of the Theorems

Proof of Theorem 5. By Theorem 2, the solution u of problem (1.1) blows up at some finite time T . From
(2.4), we get

J(u(t)) ≤ J(u0) (3.1)

holds for all t ∈ (0, T ).
Firstly, we consider the lower bound of T . Let

H(t) =
1
2
‖u‖2

2. (3.2)

By (2.3), we can obtain

d
dt

H(t) =
d
dt

(
1
2
‖u‖2

2

)

= −I(u) = −‖uxx‖2
2 − ‖ux‖p

p + ‖u‖q+1
q+1. (3.3)

Now we will prove I(u) < 0 for all t ∈ [0, T ). Otherwise, there must be a t0 ∈ (0, T ) such that I(u(t0)) = 0
and I(u) < 0 for t ∈ [0, t0). From Lemma 3(ii), ‖uxx‖ > r(1) for t ∈ [0, t0) and ‖u(t0)xx‖ ≥ r(1). The
above two facts about u(t0) imply u(t0) ∈ N . Hence, by the definition of d, we have J(u(t0)) ≥ d.
However, it follows from (3.1) that J(u(t0)) ≤ J(u0) < d, a contradiction. So we have I(u) < 0 for all
t ∈ [0, T ), i.e.,

‖uxx‖2
2 ≤ ‖uxx‖2

2 + ‖ux‖p
p < ‖u‖q+1

q+1.
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Combining the above inequality with (1.21) we obtain

‖u‖q+1
q+1 ≤ Ĉq+1

(‖uxx‖2
2

) (1−θ)(q+1)
2

(‖u‖2
2

) θ(q+1)
2

< Ĉq+1
(
‖u‖q+1

q+1

) (1−θ)(q+1)
2 (‖u‖2

2

) θ(q+1)
2 ,

(3.4)

which implies
(
‖u‖q+1

q+1

)1− (1−θ)(q+1)
2 ≤ Ĉq+1

(‖u‖2
2

) θ(q+1)
2 . (3.5)

By the value of θ in (1.22) and q < 9, we get

1 − (1 − θ)(q + 1)
2

=
9 − q

8
> 0,

θ(q + 1)
2

=
3q + 5

8
.

Then (3.5) becomes

‖u‖q+1
q+1 ≤ C0

(‖u‖2
2

)γ
, (3.6)

where

C0 = Ĉ
8(q+1)
9−q , γ =

3q + 5
9 − q

> 1.

By combining (3.3) and (3.6) we get

H ′(t) = −‖uxx‖2
2 − ‖ux‖p

p + ‖u‖q+1
q+1

≤ ‖u‖q+1
q+1

≤ C0

(‖u‖2
2

)γ

= 2γC0[H(t)]γ .

(3.7)

We can prove that H(t) > 0 for any t ∈ [0, T ), if not, then there exists a t0 such that ‖u(t0)‖2
2 = 0, which

contradicts (3.4). Therefore, by (3.7) we have

[H(t)]−γH ′(t) ≤ 2γC0. (3.8)

Integrating above inequality from 0 to t, we get
1

1 − γ

[
H(t)1−γ − H(0)1−γ

] ≤ 2γC0t.

Since γ > 1, it follows

H(0)1−γ − H(t)1−γ ≤ 2γ(γ − 1)C0t.

By (1.10), we obtain limt→T H(t) = +∞. Since γ > 1, letting t → T in the above inequality, we obtain

H(0)1−γ = 2γ−1‖u0‖2−2γ
2 ≤ 2γ(γ − 1)C0T.

Then, (1.18) follows. Similarly, integrating (3.8) from t to T , we can get (1.19). �

Proof of Theorem 6. By Theorem 2, the solution u of problem (1.1) blows up at some finite time T . We
divide the remaining proof into two cases.

Case 1: J(u0) < 0. Let G(t) = −(q + 1)J(u), then by (2.4), we get
{

G′(t) = (q + 1)‖ut‖2
2 > 0, 0 < t < T,

G(0) = −(q + 1)J(u0) > 0,

which implies G(t) > 0 for all t ∈ (0, T ).
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Since p > 1, q > max{1, p − 1}, it follows from I(u0) < 0 and (3.3) that
{

H ′(t) = −I(u) ≥ G(t) > 0, 0 < t < T,
H(0) = 1

2‖u0‖2
2 > 0,

which implies H(t) > 0 for all t ∈ (0, T ).
By Schwartz’s inequality, we obtain

H(t)G′(t) =
q + 1

2
‖u‖2

2‖ut‖2
2

≥ q + 1
2

⎛

⎝

∫

Ω

uutdx

⎞

⎠

2

=
q + 1

2
[H ′(t)]2

≥ q + 1
2

H ′(t)G(t).

The above inequality can be rewritten as

G′(t)
G(t)

≥ q + 1
2

H ′(t)
H(t)

.

Integrating the above inequality from 0 to t, we get

G(t)

[H(t)]
q+1
2

≥ G(0)

[H(0)]
q+1
2

.

By using H ′(t) ≥ G(t) again, we get

H ′(t)

[H(t)]
q+1
2

≥ G(0)

[H(0)]
q+1
2

. (3.9)

Integrating (3.9) from 0 to T , note that limt→T H(t) = +∞, we get

T ≤ 2H(0)
(q − 1)G(0)

= − ‖u0‖2
2

(q2 − 1)J(u0)
.

Similarly, integrating (3.9) from t to T , we can obtain

‖u(t)‖2 ≤
[
(q2 − 1)‖u0‖−(q+1)

2 (−J(u0))
]− 1

q−1
(T − t)− 1

q−1 .

Case 2: 0 ≤ J(u0) < E1. The proof is similar to the proof of [34, Theorem 1.1], we give the details for
reader’s convenient. By (1.3) and Lemma 7, the functional H(t) satisfies

H ′(t) = −2E1 + 2M(u) +
1
p
‖ux‖p

p +
q − 1
q + 1

‖u‖q+1
q+1. (3.10)

By (1.5), (1.14) and (2.7), we get

2E1 =
q − 1
q + 1

A− 2(q+1)
q−1 =

q − 1
q + 1

(
AA− q+1

q−1

)q+1

=
q − 1
q + 1

(Aα1)
q+1 =

q − 1
q + 1

(
α1

α2

)q+1

(Aα2)q+1

≤ q − 1
q + 1

(
α1

α2

)q+1

‖u‖q+1
q+1.

(3.11)
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Then, it follows from (3.10) and (3.11) that

H ′(t) ≥ C̃‖u‖q+1
q+1 + 2M(u) +

1
p
‖ux‖p

p, (3.12)

where

C̃ =
q − 1
q + 1

[

1 −
(

α1

α2

)q+1
]

.

By Hölder’s inequality, we have

H
q+1
2 (t) ≤ C‖u‖q+1

q+1 (3.13)

with

C = 2− q+1
2 × |Ω| q−1

2 . (3.14)

So by (2.9), (3.12) and (3.13), we obtain

H ′(t) ≥ CH
q+1
2 (t) (3.15)

with C = C̃/C, which means

H(t) ≥
(

H− q−1
2 (0) − q − 1

2
Ct

)− 2
q−1

=
(

2
q−1
2 ‖u0‖−(q−1)

2 − q − 1
2

Ct

)− 2
q−1

.

Let

T ∗ =
2

q+1
2

C(q − 1)
‖u0‖−(q−1)

2 ∈ (0,∞), (3.16)

then H(t) blows up at some finite time T ≤ T ∗. Next we estimate T . By (2.8), (3.16) and the values of
C̃, C,C, we have

T ≤ C2
q+1
2

C̃(q − 1)
‖u0‖−(q−1)

2 =
(q + 1)|Ω| q−1

2 ‖u0‖−(q−1)
2

(q − 1)2
[

1 −
(

α1
α2

)q+1
]

≤ (q + 1)|Ω| q−1
2 ‖u0‖−(q−1)

2

(q − 1)2
[

1 −
(
(q + 1)

(
1
2 − J0(u0)

α2
1

))− q+1
q−1

] .

Integrating (3.15) from t to T , note that limt→T H(t) = +∞, we get

H(t) ≤
[
(q − 1)C

2

]− 2
q−1

(T − t)− 2
q−1

≤ |Ω|(q + 1)
2

q−1

2(q − 1)
4

q−1

⎡

⎢
⎣1 −

⎛

⎝
1

(q + 1)
(

1
2 − J0(u0)

α2
1

)

⎞

⎠

q+1
q−1

⎤

⎥
⎦

− 2
q−1

(T − t)− 2
q−1 .

�
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Proof of Theorem 7. We denote by T (u0) or T the maximal existence time of the solution to the problem
(1.1) with initial value u0. If T (u0) = ∞, we denote by

ω(u0) �
⋂

t≥0

{u(s) : s ≥ t}H

the ω-limit set of u0.
Now, we prove the first conclusion. Assume that u0 ∈ N+ satisfies ‖u0‖2 ≤ λJ(u0). We claim that

u(t) ∈ N+ for all t ∈ [0, T ). By contradiction, if there exist s ∈ (0, T ) such that u(t) ∈ N+ for 0 ≤ t < s and
u(s) ∈ N , then by (3.1), we have J(u(s)) ≤ J(u0), i.e., u(s) ∈ JJ(u0), hence u(s) ∈ NJ(u0). Furthermore,
according to the definition of λJ(u0), we get

‖u(s)‖2 ≥ λJ(u0). (3.17)

Note that I(u(t)) > 0 for t ∈ [0, s), it follows from (2.3) that

‖u(s)‖2 < ‖u0‖2 ≤ λJ(u0).

This contradicts (3.17). So u(t) ∈ N+ and then u(t) ∈ JJ(u0) for all t ∈ [0, T ). By (2.5), we obtain

‖uxx(t)‖2
2 <

2(q + 1)
q − 1

J(u0), ∀t ∈ [0, T ),

which shows that the orbit {u(t)} remains bounded in H for t ∈ [0, T ) so that T = ∞. Now for any
ω ∈ ω(u0), by (2.3) and (2.4), we have

‖ω‖2 < λJ(u0), J(ω) ≤ J(u0).

Note the definition of λJ(u0), we can get ω(u0) ∩ N = ∅. Then, ω(u0) = {0}, i.e., u0 ∈ G0.
Next, we prove the second conclusion. Assume that u0 ∈ N− satisfies ‖u0‖2 ≥ ΛJ(u0). We claim

that u(t) ∈ N− for all t ∈ [0, T ). By contradiction, if there exist s ∈ (0, T ) such that u(t) ∈ N− for
0 ≤ t < s and u(s) ∈ N , then by (3.1), we have J(u(s)) ≤ J(u0), i.e., u(s) ∈ JJ(u0), hence u(s) ∈ NJ(u0).
Furthermore, according to the definition of ΛJ(u0), we get

‖u(s)‖2 ≤ ΛJ(u0). (3.18)

Note that I(u(t)) < 0 for t ∈ [0, s), it follows from (2.3) that

‖u(s)‖2 > ‖u0‖2 ≥ ΛJ(u0).

This contradicts (3.18). Assume T (u0) = +∞, then for every ω ∈ ω(u0), (2.3) and (2.4) imply that

‖ω‖2 > ΛJ(u0), J(ω) ≤ J(u0).

Note the definition of ΛJ(u0), we can get ω(u0) ∩ N = ∅. Then, ω(u0) = {0}. However, it follows from
(1.13) that dist(0,N−) > 0, we also have 0 /∈ ω(u0). That means ω(u0) = ∅, which contradicts to
ω(u0) = {0}. Hence, we conclude that T (u0) < ∞, and the proof of Theorem 7 is complete. �

Proof of Corollary 1. Since J(u0) > d and u0 ∈ H, one can easily prove ‖u0xx‖2 > 0 and ‖u0x‖p > 0.
Case (i): 1 < p < 2. By using (1.25) and Hölder’s inequality, we have

|Ω| q−1
2

2(q + 1)
q − 1

J(u0) ≤ ‖u0‖q+1
2 ≤ |Ω| q−1

2 ‖u0‖q+1
q+1. (3.19)



89 Page 14 of 17 Z. Dong and J. Zhou ZAMP

Then, it follows from (3.19) and the definition of I(u0) and J(u0) that

J(u0) =
1
2
‖u0xx‖2

2 +
1
p
‖u0x‖p

p − 1
q + 1

‖u0‖q+1
q+1

>
1
2
‖u0xx‖2

2 +
1
2
‖u0x‖p

p − 1
q + 1

‖u0‖q+1
q+1

=
1
2
I(u0) +

(
1
2

− 1
q + 1

)

‖u0‖q+1
q+1

=
1
2
I(u0) +

q − 1
2(q + 1)

‖u0‖q+1
q+1

≥ 1
2
I(u0) + J(u0),

(3.20)

which means I(u0) < 0, thus we have u0 ∈ N−.
For any u ∈ NJ(u0), by (1.12), we have

‖u‖q+1
2 ≤ |Ω| q−1

2 ‖u‖q+1
q+1

= |Ω| q−1
2

(‖uxx‖2
2 + ‖ux‖p

p

)

= |Ω| q−1
2

1
1
2 − 1

q+1

[(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
2

− 1
q + 1

)

‖ux‖p
p

]

≤ |Ω| q−1
2

2(q + 1)
q − 1

[(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

‖ux‖p
p

]

< |Ω| q−1
2

2(q + 1)
q − 1

J(u0).

Therefore, taking the supremum of above inequality over NJ(u0), we can obtain

Λq+1
J(u0)

≤ |Ω| q−1
2

2(q + 1)
q − 1

J(u0) ≤ ‖u0‖q+1
2 ,

i.e., ‖u0‖2 ≥ ΛJ(u0). Then, Theorem 7 shows that u0 ∈ B.
Case (ii): p = 2. Since the first inequality of (3.19) is strict, we can also get I(u0) < 0 by changing the

“>”with “=”and the “≥”with “>”in the second line and last line of (3.20), respectively, the remaining
proof is the same as case(i).

Case (iii): p > 2. By using (1.26) and Hölder’s inequality, we have

|Ω| q−1
2

p(q + 1)
q + 1 − p

J(u0) ≤ ‖u0‖q+1
2 ≤ |Ω| q−1

2 ‖u0‖q+1
q+1. (3.21)

By (3.21) and the definition of I(u0) and J(u0), we get

J(u0) =
1
2
‖u0xx‖2

2 +
1
p
‖u0x‖p

p − 1
q + 1

‖u0‖q+1
q+1

>
1
p
‖u0xx‖2

2 +
1
p
‖u0x‖p

p − 1
q + 1

‖u0‖q+1
q+1

=
1
p
I(u0) +

(
1
p

− 1
q + 1

)

‖u0‖q+1
q+1

=
1
p
I(u0) +

q + 1 − p

p(q + 1)
‖u0‖q+1

q+1

≥ 1
p
I(u0) + J(u0),
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which means that I(u0) < 0, thus we have u0 ∈ N−.
For any u ∈ NJ(u0), by (1.12), we have

‖u‖q+1
2 ≤ |Ω| q−1

2 ‖u‖q+1
q+1

= |Ω| q−1
2

(‖uxx‖2
2 + ‖ux‖p

p

)

= |Ω| q−1
2

1
1
p − 1

q+1

[(
1
p

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

‖ux‖p
p

]

≤ |Ω| q−1
2

p(q + 1)
q + 1 − p

[(
1
2

− 1
q + 1

)

‖uxx‖2
2 +

(
1
p

− 1
q + 1

)

‖ux‖p
p

]

< |Ω| q−1
2

p(q + 1)
q + 1 − p

J(u0).

Therefore, taking the supremum of above inequality over NJ(u0), we can obtain

Λq+1
J(u0)

≤ |Ω| q−1
2

p(q + 1)
q + 1 − p

J(u0) ≤ ‖u0‖q+1
2 .

i.e., ‖u0‖2 ≥ ΛJ(u0). Then, Theorem 7 shows that u0 ∈ B. �

Proof of Corollary 2. We assume M > d and Ω1,Ω2 be two arbitrary disjoint open subdomains of Ω.
Furthermore, we assume v ∈ H ∩ H2

0 (Ω1) be an arbitrary nonzero function, then we take α large enough
such that J(αv) ≤ 0 (since p > 1, q > max{1, p − 1}) and

‖αv‖q+1
2 >

⎧
⎪⎪⎨

⎪⎪⎩

|Ω| q−1
2

2(q + 1)
q − 1

M, if 1 < p ≤ 2;

|Ω| q−1
2

p(q + 1)
q + 1 − p

M, if p > 2.

Next, we fix such a number α > 0 and choose a function ω ∈ H ∩ H2
0 (Ω2) satisfying M = J(ω) + J(αv).

Then, uM = αv + ω satisfies J(uM ) = J(αv) + J(ω) = M and

‖uM‖q+1
2 ≥ ‖αv‖q+1

2 >

⎧
⎪⎪⎨

⎪⎪⎩

|Ω| q−1
2

2(q + 1)
q − 1

J(uM ), if 1 < p ≤ 2;

|Ω| q−1
2

p(q + 1)
q + 1 − p

J(uM ), if p > 2.

Hence, it shows uM ∈ N− ∩ B by Corollary 1. �
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