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Abstract. A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several
asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel–Mushtari–
Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding
neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further
complemented by an alternative WKB approximation that provides comparable information with significantly less effort.
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1. Introduction

Thin-walled cylinders are used extensively in many industrial applications and are typically subjected
to a variety of loadings, including axial, torsional and pressure loads; the main modes of failure in these
cases have been reasonably well understood for some time (cf. [1]). However, the collapse of cylindrical
shells under in-plane (or pure) bending is a significantly more complex situation that has, comparatively,
attracted much less attention. By ‘in-plane bending’ here, we mean that systems of forces are applied on
both ends of the cylinder such that they are each statically equivalent to a moment acting in the plane
of curvature of the shell. It is beyond the scope of the present study to pursue a comprehensive review
of the literature in this area, and we refer the interested reader to the excellent accounts given in [2,3].
To set the stage for the work included in the remainder of this paper, below we give a distilled historical
outline relevant to our immediate purposes.

As early as 1927, Brazier [4] succeeded in determining the maximum bending moment carried by an
infinitely long cylinder; he derived a nonlinear relation between the applied bending moment and the
change of axial curvature by means of a simple-minded energy approach. Those results revealed that
the cross section of the cylinder flattens progressively as the applied load increases, an effect which is
intimately linked to the longitudinal tension and compression resisting the applied bending moment (see
Fig. 1). Thus, the flexural stiffness of the deformed configuration is being reduced as the axial curvature
increases and, consequently, the bending moment, which is specified as the product between curvature
and flexural stiffness, reaches a maximum value. Brazier’s analysis did not take into account explicitly
the localised deformation present on the compressed side of the shell, a characteristic feature observed in
many experiments [5–7] and which is indicative of a bifurcation-type instability.

Building upon earlier work by Flügge [8], Seide and Weingarten [9] were the first to carry out a
numerical bifurcation analysis of the aforementioned problem by employing the Donnell–Mushtari–Vlasov
(DMV) theory for shallow shells (e.g. [10,11]) in conjunction with a linear membrane pre-buckling state.
The focus of their work was on short-length cylinders with simply supported ends. They found that

The original version of this article was revised: Due to a typesetting error, Eq. 5.9 was incorrect in the original
publication and it has been corrected now.
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Fig. 1. A sketch of the axial cross section of a cylindrical shell showing the longitudinal tension and compression stresses
due to the applied bending moment M . The thickness of the shell walls (the grey areas) is exaggerated for illustration
purposes

the maximum axial stress at the bifurcation point is nearly equal to the classical buckling stress for a
cylindrical shell subjected to uniform axial compression, and that the failure mode is characterised by
small ripples confined to the compressed side of the shell. The bifurcation bending moment calculated
in reference [9] is almost twice the value found by Brazier. This suggested that there are at least two
distinct types of collapse modes corresponding to short and long cylinders, respectively.

According to Axelrad [12,13] the two collapse mechanisms can be unified by applying the local buckling
hypothesis to a nonlinear pre-buckling deformation based upon a semi-membrane shell theory (e.g. see
[3,14]). In its simplest form, the local buckling hypothesis assumes that the critical compression stress
is equal to the buckling stress of a uniformly compressed cylinder, with the cylinder radius replaced by
the actual local radius of curvature in the buckling zone of the shell. Using this local buckling approach,
Axelrad concluded that the nonlinear pre-buckling deformation characterised by cross-sectional flattening
is a dominant effect on the reduction of the critical bending moment. For very short cylinders, such
ovalisation is prevented by the end conditions and the critical bending moment coincides with the result
of Seide and Weingarten. On the other hand, for longer cylinders the flattening is more pronounced and
the critical bending moment decreases, eventually approaching Brazier’s collapse bending moment for
infinitely long cylindrical shells. An idealised sketch of the moment–curvature diagram for a cylindrical
shell of arbitrary length is included in Fig. 2.

Axelrad’s work was later complemented by a more comprehensive investigation by Fabian [15], who
explored the interaction of bifurcation and limit-point failure in long cylindrical tubes under pressure,
axial compression and bending. A nonlinear pre-buckling solution was developed, based on an extension of
Reissner’s earlier work [14], and shallow shell theory was still adopted for the buckling and post-buckling
regimes. However, Fabian’s work did not clarify whether the bifurcation brings about collapse, but the
numerical results he presented showed that without axial load, the bifurcation and the limit moments
almost coincide. To examine the interaction between the bifurcation buckling and the limit failure of
long cylinders, Stephens et al. [16] investigated numerically the case of a long isotropic circular cylinder
under in-plane bending and defined a transition region between the classical buckling of short cylinders,
on the one hand, and the Brazier collapse of very long cylinders, on the other. In this transition region,
the circular cross section deforms into an oval shape after which the shell buckles into a short-wavelength
pattern. Thus, the failure is due to the interaction of the two modes. They also confirmed the accuracy of
Axelrad’s earlier results [12] and pointed out the inherent difficulties associated with detecting the onset
of the wrinkling deformations (originating in their very small amplitude relative to the other dimensions
of the shell). In order to excite the bifurcation from the nonlinear pre-buckling state, a small initial
imperfection with a short-wave axial mode was included in the analysis; the collapse due to bifurcation
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Fig. 2. Typical moment (M) versus (average) axial curvature (κ) diagram for a cylindrical shell subjected to pure bending.
The deformation of short shells follows the path AB. Medium-length configurations experience in addition a certain amount
of nonlinear behaviour (i.e. ovalisation of the cross section), and this corresponds to the path BC. Very long shells fail by
a limit-point instability—the location of this event is marked as E. For completeness, we also record the sub-critical paths
following the onset of the instability

was then assumed to be triggered when a relatively large growth of the imperfection occurred for a small
increase in the bending moment. The same technical device was used in [6,17] for studying elasto-plastic
bending of long tubes.

With this background in mind, the aims of this article are twofold. First, we show that the problem
studied by Seide and Weingarten [9] is amenable to a fairly natural multiple-scale asymptotic analysis.
Although this technique is prevalent in studies of nonlinear dynamics (e.g. [18]), its application to linear
boundary-value problems in the literature seems to be scarce. Two notable exceptions that belong to
the realm of fluid mechanics are those by Tam [19] and Long [20]; also, Wollkind [21] and Bouthier [22]
have given comparisons of the main similarities and differences between the method of multiple scales
and traditional matched asymptotics approaches. Second, we are motivated to extend the applicability
of the asymptotic strategy originally proposed by Coman and Haughton in [23] for a class of wrinkling
problems involving flat elastic plates subjected to in-plane loads (see also [24,25]). We show that this
is indeed feasible, by first making some additional simplifications in the DMV system governing the
bifurcations of our elastic tube. A slightly more general problem than that of [9], which includes variable
mechanical/geometrical properties, was tackled by Tovstik and Smirnov [26] with the help of a Maslov-
type WKB approximation. Their results are equivalent to those obtained in this paper by using the more
elementary multiple-scale approach, but they are intrinsically linear. By contrast, the route taken here
can be easily extended to cope with nonlinearities (e.g. post-buckling regime—see [27]).

The remainder of the paper is organised in the following way. We begin in the next section with a
succinct review of the bifurcation equations from [9]; unlike in that reference, here the DMV system is
kept in its standard form, without reducing it to a single eighth-order equation. The numerical investi-
gations outlined in Sect. 3 suggest that the neutral stability curve for our system has a parabola-shaped
appearance and is characterised by three distinct types of behaviour; these are associated with the global
minimum, and the right and left branches, respectively. In Sect. 4 we deal with an asymptotic approxi-
mation for the energy-minimum configurations of the bent elastic cylinder, while Sects. 5 and 6 contain
similar analyses for the other two regimes. A novel simplification of the bifurcation equations is also dis-
cussed briefly in Sect. 7, where we indicate how a traditional WKB strategy can lead to approximations
comparable to those obtained in the earlier sections. The paper concludes with a discussion of our main
findings.
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2. The bifurcation equations

We consider a thin cylindrical shell of length L, radius R and uniform thickness h (0 < h/R � 1)
subjected to compressive axial forces P > 0 and in-plane bending moments M > 0, as indicated in Fig. 3.
To accomplish the loading in the axial direction, the cylinder is assumed to be bounded by light bulkheads
or deep stiffeners, which are stiff in their own planes but may be readily warped out of their planes. The
cylinder is also assumed to be made of an isotropic elastic material characterised by the Young’s modulus
E > 0 and the Poisson’s ratio 0 < ν < 1/2.

The starting point for setting up the relevant bifurcation problem is the well-known Donnell–Mushtari–
Vlasov (DMV) shallow shell buckling equations (e.g. see [10,11]) formulated in terms of the transverse
displacement w ≡ w(x, θ) and a stress function F ≡ F (x, θ). If we let σ̊xx, σ̊xθ and σ̊θθ be the distribution
of pre-buckling membrane stresses in the cylinder, then the aforementioned equations can be expressed
as

D∇4w − h

(
σ̊xx

∂2w

∂x2
+ 2σ̊xθ

1
R

∂2w

∂x∂θ
+ σ̊θθ

1
R2

∂2w

∂θ2

)
− h

R

(
∂2F

∂x2

)
= 0, (2.1a)

∇4F +
E

R

(
∂2w

∂x2

)
= 0, (2.1b)

where D ≡ Eh3/12(1 − ν2) represents the bending rigidity and the Laplacian is defined according to

∇2 =
∂2

∂x2
+

1
R2

∂2

∂θ2
.

Following Seide & Weingarten [9], prior to buckling the deformation of the cylindrical shell is taken
to be described by a linear membrane state of stress. This leads to the well-known closed-form solution
for the in-plane stresses (e.g. see [11])

σ̊xx = −(σC + σB cos θ), σ̊xθ = σ̊θθ ≡ 0, (2.2)

where
σC ≡ P

2πRh
and σB ≡ M

πR2h
. (2.3)

On substituting (2.2) and (2.3) into (2.1), the resulting equations can be simplified by looking for solutions
with separable variables, [

w(x, θ)

F (x, θ)

]
=

[
G(θ)

H(θ)

]
sin

(
λmx

R

)
, (2.4)

where
λm :=

mπR

L
, (m = 1, 2, . . . ) (2.5)

Fig. 3. Nomenclature for the cylindrical shell
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represents the axial buckle half-wavelength, and the azimuthal amplitudes H ≡ H(θ), G ≡ G(θ) denote
the new main dependent variables. Use of (2.4) in (2.1) results in a set of two coupled fourth-order
ordinary differential equations for G and H, which are conveniently simplified further by introducing the
dimensionless quantities

G :=
G

R
, H := 12(1 − ν2)

H

Eh2
, μ :=

[
3(1 − ν2)

]1/2R

h
, (2.6a)

KC :=
σC

σ∗
, KB :=

σB

σ∗
, σ∗ :=

E

[3(1 − ν2)]1/2

(
h

R

)
. (2.6b)

We note in passing that σ∗ represents the theoretical compressive buckling stress for long elastic cylindrical
shells. Dropping the bars on the re-scaled variables, the reduced bifurcation equations can then be cast
more compactly as [L11 L12

L21 L22

][
G(θ)

H(θ)

]
=

[
0

0

]
for − π ≤ θ < π, (2.7)

where we have introduced the differential operators

L11 ≡ d4

dθ4
− 2λ2

m

d2

dθ2
+ λ2

m

[
λ2

m − 4μ(KC + KB cos θ)
]
, L12 ≡ λ2

m, (2.8a)

L21 ≡ −4λ2
mμ2, L22 ≡ d4

dθ4
− 2λ2

m

d2

dθ2
+ λ4

m. (2.8b)

Given the nature of the main dependent variables in (2.7), appropriate periodicity conditions need to be
imposed on G ≡ G(θ) and H ≡ H(θ). Using the symmetry properties of the equations it turns out that
the eigenmodes can be either even (symmetric) or odd (anti-symmetric) functions. In the former case,
G(−θ) = G(θ) and H(−θ) = H(θ) for all θ ∈ (−π, π], and thus the boundary conditions can be expressed
as

G′ = G′′′ = H ′ = H ′′′ = 0, for θ ∈ {0, π}, (2.9)
whereas for the odd modes, which satisfy G(−θ) = −G(θ) and H(−θ) = −H(θ) for all θ ∈ (−π, π], these
boundary constraints must be changed to

G = G′′ = H = H ′′ = 0, for θ ∈ {0, π}. (2.10)

In the boundary-value problems consisting of Eq. (2.7) subject to either (2.9) or (2.10), the quantity
KC ∈ R is taken to be given, while KB = KB(λm;μ) represents the unknown eigenvalue. It is further
noted that λm > 0 (or equivalently m ∈ N) is also unknown at this stage and, for each fixed μ > 0,
this must be determined so that it renders the global minimum of the curve KB vs. λm. The critical
eigenvalue, K

(c)
B , and the critical buckle wavelength, λc

m, are thus defined by the requirements

K
(c)
B := min

λm>0
KB(λm;μ), with K

(c)
B = KB(λc

m;μ). (2.11)

3. Numerical solutions

A limited set of numerical results for the boundary-value problems described in the previous section was
originally reported by Seide & Weingarten [9]. Instead of (2.1) they relied on an equivalent form of the
DMV equations that involves only the transverse displacement (this simplification is essentially due to
Batdorf [28]), with the azimuthal amplitude G(θ) in (2.4) being resolved in a cosine Fourier series whose
unknown coefficients were subsequently identified via a systematic Galerkin-type computational strategy.
Our own numerical simulations of (2.7)-(2.9) have led to identical results as in [9]. In anticipation of the
later asymptotic analyses, we take this opportunity to expand on the earlier numerical results so that we
have a more rounded picture of the expected behaviour of the eigenmodes. For brevity, the main focus
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Fig. 4. A typical neutral stability curve for the pure bending problem (i.e. KC ≡ 0) corresponding to R/h = 500 and
ν = 0.3. The round markers, labelled Sj (j = 1, 2, . . . , 9), indicate sequences of points on either side of the absolute
minimum of this curve (S5)

will be on the case KC = 0; if KC �= 0 there are some obvious quantitative changes in the results reported
below, but the qualitative behaviour of the problem remains unaltered.

Although two different types of eigenmodes have been identified in the previous section, direct numer-
ical simulations show that the even modes have lower energy, so we need not be concerned with the
anti-symmetric ones. Included in Fig. 4 is a typical neutral stability curve, C (say), of the eigenprob-
lem (2.7)–(2.9) for R/h = 500; we remark that KB → ∞ as either λm → 0+ or λm → +∞. To
illustrate the changes undergone by the eigenmodes along the neutral stability curve, a number of arbi-
trary points Sj (j = 1, 2, . . . , 9) have been selected on either side of the unique global minimum point
marked as S5 (the abscissa of this point coincides with λc

m, while the vertical coordinate represents
K

(c)
B ). For convenience we shall write C = C(−) ∪ C(+), where C(+) ≡ {(λm,KB) ∈ R

2 | λm ≥ λc
m} and

C(−) ≡ {(λm,KB) ∈ R
2 | λm ≤ λc

m}.
The solutions corresponding to the left branch C(−) (i.e. Sj with j = 1, 2, . . . , 5) are plotted in Fig. 5;

for 0 < λm � λc
m, these functions take the form of a spatial fast oscillation modulated over a slower

spatial scale, but as λm grows the frequency of the fast oscillation decreases and its envelope steepens. In
the limit λm → λc+

m it turns out that the eigenmodes have a much simpler spatial structure in the form of
a ‘bump’ localised near θ = 0. Interestingly, on C(+) the corresponding solutions (e.g. Sj with j = 6, 7, 8, 9)
remain (almost) similar to the critical mode (S5), experiencing a slight growth in the transverse direction
as λm moves away from λc

m—see Fig. 6. It is perhaps worth emphasising that the modes H(θ) on both
branches share the same properties as the ones recorded in the aforementioned figures, and for this reason
they are left out.

From a practical point of view, the eigenmodes associated with the minima of the neutral stability
curves are the most important ones, as they correspond to energy-minimum configurations of the partially
wrinkled shell. The dependence of these functions on the (dimensionless) thickness parameter R/h is
investigated in Fig. 7. Displayed in the left window are a set of neutral stability curves for values 102 ≤
R/h ≤ 15 × 102; their minima are indicated by the round (red) markers, while the right window contains
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Fig. 5. Morphology of the localised eigenmodes along the left branch of the curve shown in Fig. 4. Each window contains
the pair (Sj , Sj+1) corresponding to: a j = 1, b j = 2, c j = 3, d j = 4; Sj is indicated by the dash line, while Sj+1

represents the continuous curve

the corresponding critical eigenmodes. It is clear that as the thickness decreases there is another form
of localisation that affects these critical modes. Furthermore, there is strong evidence in the left window
suggesting that limμ→∞ K

(c)
B = 1 and limμ→∞ λc

m � 1.
Due to the particular definition of the axial wavelength (2.5), the information in Fig. 4 can be presented

in a more informative way that takes explicitly into account that L and R are given quantities, whereas
m ∈ N is variable and has to be found as part of the solution. This information appears in Fig. 8,
where on the horizontal axis we record L/πR ≡ m/λm; in the left window the curves correspond to
m = 1, 2, . . . , 10, while on the right we have m = 33, 34, . . . , 61. The red solid section of each such curve
delineates the range of values L/πR for which the corresponding m ∈ N leads to a critical λc

m, and the
union of all these red sections forms the so-called neutral stability envelope. It should be clear that the
data included in the left window of Fig. 8 concern cylinders that are very short and for which the analysis
in this paper is not applicable. It is included here solely for contrast with the curves shown in the right
window. We also note that for realistic L/πR ratios the neutral stability envelope is almost flat and the
critical m tends to be large.

4. The critical case

In this section, our goal is to find an asymptotic approximation for K
(c)
B and λc

m defined in (2.11). This
is facilitated by tentatively introducing two spatial scales
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m| increases and the horizontal range has been restricted to [−π/3, π/3] for the sake of clarity
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Fig. 7. Left: sample of neutral stability curves for the boundary-value problem (2.7)–(2.9) corresponding to R/h = j × 102

(j = 1, 2, 3, 4, 5, 7, 10, 15) and KC ≡ 0; the arrow shows the direction in which this quantity increases. The round markers
identify the absolute minima of these curves, and their locus is represented by the dashed curve. The localisation of the
critical modes (G ≡ G(θ)) associated with the round markers is illustrated in the right window; in the interest of clarity,
the horizontal range has been restricted to [−π/3, π/3] and the direction of the arrows has the same connotation as on the
left

X1 ≡ μ1/2θ, X2 ≡ μ1/3θ,

and noting that the derivatives with respect to θ are transformed according to

d
dθ

= μ1/2D1 + μ1/3D2, Dj ≡ ∂

∂Xj
(j = 1, 2), (4.1)



ZAMP Asymptotic approximations for pure bending of thin cylindrical shells Page 9 of 20 82

0 0.06 0.12 0.18

1.005

1.015

1.025

1.035

L/πR

K
B

0.6 0.7 0.8 0.9 1

1.005

1.015

1.025

1.035

L/πR

Fig. 8. Dependence of KB on the (non-dimensional) length of the cylinder for KC ≡ 0 and R/h = 103

generalised appropriately to higher-order derivatives. We look for a solution of (2.7) with an ansatz of
the form

KB = K0 + K1μ
−2/3 + · · · , (4.2a)

λ2
m = η0μ + η1μ

2/3 + η2μ
1/3 + · · · , (4.2b)

and
u = u(0)(X1,X2) + μ−1/3u(1)(X1,X2) + μ−2/3u(2)(X1,X2) + . . . , (4.3)

where

u :=

[
G

μ−1H

]
, u(j) :=

[
Gj

Hj

]
, (j = 0, 1, 2, . . . ).

Substituting (4.2) and (4.3) in the bifurcation system (2.7), we get at leading order[
(D2

1 − η0)2 − 4η0K0 η0

−4η0 (D2
1 − η0)2

][
G0

H0

]
=

[
0

0

]
. (4.4)

Since this is a constant-coefficient system, we look for solutions in the form G0 = Ĝ0 exp(pX1) and
H0 = Ĥ0 exp(pX1), where p, Ĝ0 and Ĥ0 are yet to be found. The characteristic equation satisfied by p
can be rearranged to give an expression for K0 = K0(η0; p), namely

K0 =
1

4η0

[
(p2 − η0)2 +

4η2
0

(p2 − η0)2

]
. (4.5)

Minimising (4.5) with respect to η0 (i.e. solving dK0/dη0 = 0), we find

(p2 − η0)4 = 4η2
0 . (4.6)

This is just an eight-order algebraic equation in p which has the following roots

pαβ = (−1)α[η0 + (−1)β/2
√

2η0]1/2, (α = 1, 2; β = 1, . . . , 4). (4.7)

If η0 > 2, none of the solutions associated with these characteristic roots will lead to a spatial (purely)
harmonic behaviour. However, for η0 < 2 the roots pα2 (α = 1, 2) do meet this requirement, and we
define

ω0 := (
√

2η0 − η0)1/2, so that pα2 = (−1)αiω0, (α = 1, 2),
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where i ≡ √−1 ∈ C is the usual imaginary unit. Since the critical eigenmodes do not contain a fast
oscillatory component, we can set ω0 = 0, whereby η0 = 2; in conjunction with (4.5) this then leads
to K0 = 1. Having suppressed the dependence on X1, it remains that Gj = Gj(X2), Hj = Hj(X2) for
j = 0, 1, . . . and our main task for the remaining of this section will be to find the leading-order terms
G0 and H0, as well as K1 and η1 in (4.2).

We start by observing that in the differential operator that appears in (4.4) the derivative plays no
role now, and it is thus reduced to an ordinary matrix, M (say). Using the ansatz (4.2) and (4.3) as
indicated above, the first non-trivial equation we obtain can be expressed as

Mu(1) = f (1) := [R11,R12]T , (4.8)

R11 := 2η0D2
2G0 − η1H0, R12 := 4η1G0 + 2η0D

2
2H0 − 2η0η1H0.

A close look at the system (4.8) indicates that it is equivalent to

− 4G1 + 2H1 = 4D2
2G0 − η1H0. (4.9)

The next non-trivial equations that we get from (2.7) are

Mu(2) = f (2) := [R21,R22]T , (4.10)

R21 := −D4
2G0 + 2η0D

2
2G1 + 2η1D

2
2G0 − [

η2
1 − 4η0K1 + 2η0K0X

2
2

]
G0 − η1H1 − η2H0,

R22 := 4η1G1 + 4η2G0 − D4
2H0 + 2η0D

2
2H1 + 2η1D

2
2H0 − 2η0η1H1 − (η2

1 + 2η0η2)H0.

Multiplying the first equation in (4.10) by 2 and subtracting the result from the second equation, followed
by repeated use of (4.4) and (4.9), eventually lead to

d4G0

dX4
2

− η1
d2G0

dX2
2

+
(

η2
1 − 8K1

4
+ X2

2

)
G0 = 0. (4.11)

This must be solved subject to the boundary conditions

dG0

dX2
=

d3G0

dX3
2

= 0, for X2 = 0, (4.12)

G0 → 0 and
dG0

dX2
→ 0, as X2 → +∞. (4.13)

We note that Eq. (4.11) together with the constraints (4.12) constitute an eigenvalue problem in which
the eigenparameter K1 depends on η1 ∈ R. As in this section we are ultimately interested in the critical
wrinkling load, our aim is to minimise the function K1 = K1(η1). A standard numerical solution allows
us to identify the value η1 = η∗

1 for which the eigenvalue K1 is least, K∗
1 (say). In particular, we find

η∗
1 � −0.875 and K∗

1 � 0.45226, so our approximation for the critical point of the neutral stability curve
becomes

KB = 1 + 0.45226μ−2/3 + · · · and λm = 1.4142μ1/2 − 0.3094μ1/6 + · · · . (4.14)

These formulae produce approximations that are within less than 1% of the original values computed by
numerically integrating the (‘even’) boundary-value problem of Sect. 2.

Recalling definitions (2.6), it follows from (4.14) that σ → σ∗ as h → 0. Since the work [9] was entirely
numerical, the conclusion reached by Seide and Weingarten was that the critical maximum membrane
compressive stress was only slightly greater than that of the axially loaded shell. Libai and Durban [29]
adopted the displacement form of the DMV equations with the basic state (2.2) in which KC = 0, and
made use of an ingenious series solution that allowed them to show that the two values actually coincide
in the limit h → 0.
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5. The right branch

Routine scaling arguments suggest that for μ � 1 the solutions of (2.7) situated on C(+) are confined
within a layer of thickness O(μ−1/4) centred at θ = 0. Thus, we are led to introduce the new re-scaled
coordinate

Z = μ1/4θ, Z = O(1),

and set λ2
m = ημ for some η = O(1). Since we are exclusively interested in the right-hand branch of the

neutral stability curve, it is clear that η > 2.
We look for a solution of (2.7) with an ansatz of the form

KB = K0 + K1μ
−1/2 + K2μ

−1 + . . . , (5.1)

and
u = u(0)(Z) + μ−1/2u(1)(Z) + μ−1u(2)(Z) + . . . , (5.2)

where

u :=

[
G

μ−1H

]
, u(j) :=

[
Gj

Hj

]
, (j = 0, 1, 2, . . . ).

The constants Kj = O(1) in (5.1) and the individual terms u(j) on the right-hand side of (5.2) are found
as usual by substituting the assumed solution in the differential equations, collecting like powers of μ,
and setting to zero the corresponding coefficients. The outcome is a hierarchy of equations that can be
cast as

Au(j) = b(j), (j = 0, 1, 2, . . . ), (5.3)

with

A :=

[
η(η − 4K0) η

−4η η2

]
, b(j) :=

[Rj1

Rj2

]
,

and the components of the vectors b(j) will be recorded below as we go along.
For the zeroth-order equations, we find R01 = R02 ≡ 0, so that we have a homogeneous system. This

is consistent only if the determinant of the coefficient matrix is zero, that is

K0 =
1
4

(
η +

4
η

)
. (5.4)

Clearly, K0 > 1 for all η ∈ (2,∞), which reassures us that the leading-order approximation predicts the
expected behaviour consistent with the regime we are presently investigating. Next, the right-hand side
for the first-order equations corresponds to the components

R11 := 2η
d2G0

dZ2
+ 4ηK1G0 − 2ηK0Z

2G0, R12 := 2η
d2H0

dZ2
. (5.5)

Since for j = 1 Eq. (5.3) represents an inhomogeneous system, its solvability demands that the right-hand
side, b(1), is orthogonal on the null space of the adjoint system. The solution of the adjoint equations is
ū =

[ − 1, 1/η
]T , so the solvability requirement turns out to lead to

d2G0

dZ2
+ (γ1 − γ2Z

2)G0 = 0, (5.6)

where

γ1 :=
2η2K1

η2 − 4
and γ2 :=

η2K0

η2 − 4
.
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Fig. 9. Comparisons between the asymptotic predictions (5.9) (discrete markers) and direct numerical simulations of the
original bifurcation problem (2.7)–(2.9) (continuous line) for ν = 0.3; R/h = 200 (left) and R/h = 500 (right)

If we further ask for G0(Z) → 0 as Z → ±∞, then we can extract K1 from the resulting eigenvalue
problem. We recall that the Weber–Hermite eigenvalue problem,⎧⎨

⎩
W ′′ +

(
q +

1
2

− ζ2

4

)
W = 0, −∞ < ζ < ∞, (5.7a)

W (ζ) → 0 as ζ → ±∞, (5.7b)

admits non-trivial solutions only if q is a non-negative integer q = 0, 1, 2, . . . (e.g. see [30]). By changing
the independent variable in (5.6) according to Z =: (4γ2)−1/4 Z , then G0 ≡ G0(Z) satisfies a Weber–
Hermite-type differential equation. Thus, in light of the remarks made above, we immediately deduce
that γ1/

√
γ2 = 2i + 1 for i = 0, 1, 2, . . . ; the lowest eigenvalue K1 corresponds to i = 0. Putting together

this result and (5.4), we then get

KB =
η2 + 4

4η
+

(η4 − 16)1/2

4η3/2
μ−1/2 + . . . , (5.8)

or, after eliminating η = λ2
mμ−1,

KB =
1
4μ

(
λ2

m +
4μ2

λ2
m

)1/2
[(

λ2
m +

4μ2

λ2
m

)1/2

+
1

λm

(
λ2

m − 4μ2

λ2
m

)1/2
]

+ . . . . (5.9)

Formula (5.9) represents an approximation for C(+) valid for μ � 1 and λm > λc
m. For the sake of

completeness, in Fig. 9 we illustrate a sample of comparisons between this asymptotic result and direct
numerical simulations of (2.7)–(2.9).

6. The left branch

The numerical solutions included in Sect. 3 suggested that on the left-hand branch of the neutral stability
curve, C(−), the solutions of (2.7) consist of a harmonic spatial oscillation modulated over a slower
scale. This behaviour is very similar to that encountered in the related problem of a linear beam on an
inhomogeneous Winkler foundation [27] (see also [31]). One of the main differences lies in the fact that
here we have to deal with a system of two simultaneous equations.
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Let us start by defining the re-scaled coordinates

X1 ≡ μ1/2θ, X2 ≡ μ1/4θ,

and note that the derivatives with respect to θ are now transformed according to
d
dθ

= μ1/2D1 + μ1/4D2, Dj ≡ ∂

∂Xj
(j = 1, 2), (6.1)

generalised appropriately to higher-order derivatives. We shall look for a solution of (2.7) with an ansatz
of the form

KB =
∞∑

j=0

Kjμ
−j/2 and u =

∞∑
j=0

μ−j/4u(j)(X1,X2), (6.2)

where

u :=

[
G

μ−1H

]
, u(j) :=

[
Gj

Hj

]
, (j = 0, 1, 2, . . . ) ;

the constants Kj = O(1) and the individual terms u(j) on the right-hand side of (6.2) are found as already
explained in Sect. 5, by making the appropriate substitutions. This time the outcome is two hierarchies
of equations that can be cast succinctly as

Lu(j) = f (j), for j = 0, 1, 2, . . . , (6.3)

where L denotes the (matrix) differential operator that appears in (4.4) in which η0 → η and f (j) :=
[Rj1,Rj2]

T ; the components of this column vector will be recorded as we go along.
Note that we have already dealt with the zeroth-order problem, which corresponds to f (0) ≡ 0. Its

solution is given by
G0 = A(X2) cos (ω0X1), H0 = 2G0, (6.4)

where the amplitude A = A(X2) will be fixed at higher orders; without loss of generality, we have set the
phase angle to zero.

For the first-order problem, it transpires that

R11 := −4D3
1D2G0 + 4ηD1D2G0 and R12 := −4D3

1D2H0 + 4ηD1D2H0,

and the solution has the form

G1 = B(X2) sin (ω0X1), H1 = 2G1 − 4
√

2ω0η
−1/2A′(X2) sin (ω0X1), (6.5)

where the ‘dash’ denotes differentiation with respect to X2.
Proceeding to the next order, routine calculations allow us to identify

R21 := −4D3
1D2G1 − 6D2

1D
2
2G0 + 4ηD1D2G1 + 2ηD2

2G0 + 4ηK1G0 − 2ηK0X
2
2G0,

R22 := −4D3
1D2H1 − 6D2

1D
2
2H0 + 4ηD1D2H1 + 2ηD2

2H0.

Before we can find G2 and H2, the consistency condition needs to be imposed on the second-order system
(6.3) (with j = 2). To this end, we multiply the first equation in the aforementioned system by 2 and
subtract the result from the second one. Using (6.4) and (6.5), the resulting expressions can be simplified
to yield

L#[A] ≡ 8ω2
0A

′′ + η(2K1 − X2
2 )A = 0, (6.6)

which is easily recognised as being just a re-scaled version of the Weber–Hermite equation already encoun-
tered in the previous section. Letting X2 =: 21/4ω

1/2
0 η−1/4X2 Eq. (6.6) changes into the standard form

(5.7a), whereby we deduce that
K1 =

√
2 ω0η

−1/2. (6.7)
The two-term asymptotic approximation obtained so far is accurate relatively far from the critical point
(λc

m,K
(c)
B ), but in its close proximity it overestimates the numerical result because K1 → 0+ as λm →
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λc
m

+, so the expansion (6.2a) loses its asymptotic character. Of course, within that range the critical
regime approximation of Sect. 4 becomes relevant, so this is not a serious shortcoming. However, it turns
out that this issue can be fixed, at least partially, by calculating the next-order term K2 in (6.2a). Since
the corresponding calculations are quite lengthy (but otherwise elementary), only a brief outline is given
next.

The right-hand side of (6.3) for the third-order problem has components given by

R31 := −4D1D
3
2G0 − 6D2

1D
2
2G1 − 4D3

1D2G2 + 2ηD2
2G1

+ 4ηD1D2G2 + 4ηK1G1 − 2ηX2G1, (6.8)

and

R32 := −4D1D
3
2H0 − 6D2

1D
2
2H1 − 4D3

1D2H2 + 2ηD2
2H1 + 4ηD1D2H2.

Enforcing the consistency of the corresponding system as before yields the inhomogeneous Weber–Hermite
equation

L#[B] = −4
√

2ω0

(
2η1/2 −

√
2
)

A′′′. (6.9)

A particular solution of (6.9) is

B(X2) = −1
3
(2η −

√
2η)

[(
η1/2

2
√

2ω0

)
X3 − 6X

]
A(X2), (6.10)

which then fixes the first-order terms (6.5).
The coefficient K2 will be found from the next-order problem as it appears in the expression of the

right-hand side f (4), namely

R41 := −D4
2G0 − 4D1D

3
2G1 − 6D2

1D
2
2G2 − 4D3

1D2G3 + 2ηD2
2G2 + 4ηD1D2G3

+ 4ηK1G2 + 4ηK2G0 − 2ηX2G2 − 2ηK1X
2G0 +

1
6
ηX4G0, (6.11)

and

R42 := −D4
2H0 − 4D1D

3
2H1 − 6D2

1D
2
2H2 − 4D3

1D2H3 + 2ηD2
2H2 + 4ηD1D2H3.

In enforcing the consistency of the equations at this order (as was done before), we need the solution
of the earlier second-order problem that contains a degree of arbitrariness, in the sense that G2 =
C(X2) cos(ω0X1), and the function C ≡ C(X2) is unknown at that stage. The result of the consistency
condition can be shown to take the form of the second-order inhomogeneous Weber–Hermite equation

L#[C] = d13B
′′′ + d04A

′′′′ + d00A − 2ηK2A, (6.12)

with

d13 ≡ 8ω0(
√

2η1/2 − 1), d04 ≡ 18 − 46
√

2η1/2 + 32η, d00 ≡ ηX2
2

(
K1 − X2

2

12

)
.

Before we can solve (6.12), we need to ensure that the usual Fredholm solvability condition is satisfied.
Imposing the orthogonality of the right-hand side on the null space of the differential operator L#

produces

2ηK2

+∞∫
−∞

A2(ζ) dζ = d13

+∞∫
−∞

B′′′(ζ)A(ζ) dζ + d04

+∞∫
−∞

A′′′′(ζ)A(ζ) dζ +

+∞∫
−∞

d00A
2(ζ) dζ,

whence

K2 =
1

32ω2
0

(
64 + 50η − 95

√
2η1/2

)
. (6.13)
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Fig. 10. Left branch comparisons—as per Fig. 9

To compare the three-term asymptotic approximation with full numerical simulations of (2.7)–(2.9), we
make the substitution η = λ2

m/μ and finally get

KB = 1 +
√

2

(√
2μ1/2 − λm

λmμ

)1/2

+
64μ + 50λ2

m − 95
√

2λmμ1/2

32λmμ(
√

2μ1/2 − λm)
+ . . . . (6.14)

Figure 10 illustrates the accuracy of the predictions of (6.14) in relation to direct numerical simulations.
In the left window, which corresponds to R/h = 200, the relative errors (R.E.) range from 0.3% at λm � 11
to 1.6% when λm � 24. For the larger value of R/h(= 500) recorded in the right window of the same
figure, the agreement improves; for instance, R.E. � 0.11% at λm � 10, increasing to 0.14% for λm � 25,
while the R.E. is merely 0.3% when λm � 37.

7. A WKB approximation

In the limit μ � 1, the original boundary-value problem (2.7)-(2.9) can be also simplified by using the
asymptotic strategy proposed by Coman and Haughton [23]. We are going to be primarily interested in
the critical case, so we set λ2

m = ημ, for some η = O(1). Letting H =: μH̃ and dividing the first and
the second equations in (2.7) by μ and μ2, respectively, after neglecting the terms μ−1(d4G/dθ4) and
μ−1(d4H̃/dθ4), we find ⎧⎪⎪⎨

⎪⎪⎩
−2η

d2G

dθ2
+ λ2

m(η − 4KB cos θ)G + λ2
mH̃ = 0, (7.1a)

−4λ2
mG − 2η

d2H̃

dθ2
+ ηλ2

mH̃ = 0. (7.1b)

The advantage of this new set of equations lies in the fact that H̃ can be easily eliminated. Indeed, from
(7.1a) we have H̃ in terms of G and its derivatives, while Eq. (7.1b) allows us to express d2H̃/dθ2 in a
similar way. Differentiating twice (7.1a) and making use of this result leads to the fourth-order differential
equation

d4G

dθ4
+ 2λ2

mP(θ)
d2G

dθ2
+ 2λ2

mR(θ)
dG

dθ
+ λ4

mQ(θ)G = 0, (7.2)
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Fig. 11. Comparisons between the approximate equation (7.4) (discrete markers) and direct numerical simulations of the
original bifurcation problem (2.7)–(2.9) (continuous line) for ν = 0.3; R/h = 200 (left) and R/h = 500 (right)

where

P(θ) := −1
2

(
1 − 2KB

η
cos θ

)
, R(θ) := −2

η
KB sin θ, (7.3a)

Q(θ) :=
[(

η2 + 4
4η2

)
− 1

η

(
1 +

2
λ2

m

)
KB cos θ

]
. (7.3b)

Since λm � 1, Eq. (7.2) is amenable to a WKB treatment that could potentially lead to further
approximations for the loading parameter KB . However, to motivate the analysis that follows it is useful
to first gauge the accuracy of (7.2) vis-à-vis the original bifurcation problem. To this end, it will be more
convenient to express the approximate equation in a form that features the large parameter (μ) explicitly;
straightforward manipulations indicate that such an equation has the form

d4G

dθ4
− (λ2

m − 2μKB cos θ)
d2G

dθ2
− 4μKB sin θ

dG

dθ
+ λ2

m

[
λ4

m + 4μ2

4λ2
m

− μ

(
1 +

2
λ2

m

)
KB cos θ

]
G = 0.

(7.4)
For a fixed μ—see definition (2.6a), this equation subject to the boundary conditions (2.9) constitutes an
eigenvalue problem for KB = KB(λm). We mention in passing that since the number of original boundary
conditions on G matches the order of (7.4) no ambiguity arises. In Fig. 11 the ‘critical part’ of the curve
KB vs. λm obtained from (7.4) is compared against the full direct numerical simulations of (2.7)-(2.9).
It is clear that even for modest values of R/h the agreement is excellent.

We are going to look for a WKB approximation of (7.2) with an ansatz of the form

G(θ) = exp [iλmΩ(θ)] , Ω(θ) :=

θ∫
•

S1(ζ) dζ + λ−1
m

θ∫
•

S2(ζ) dζ, (7.5)

where i ≡ √−1 and the (possibly) complex-valued functions Sj (j = 1, 2) are found as explained below;
the lower integration limits in the above integrals are immaterial at this stage (this is indicated by the
‘bullet’ notation in (7.5b)). We also note in passing that the O(λ−2

m ) term that enters the expression of
Q in (7.3) can be discarded without impacting the analysis included below.
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Substituting (7.5) in (7.2) and then collecting like powers of λm show that S1 ≡ S1(θ) satisfies the
bi-quadratic

t4 − 2P(θ)t2 + Q(θ) = 0, (7.6)

whence
S2
1 = S2

1j := P + (−1)j+1
√

P2 − Q, (j = 1, 2). (7.7)

To identify the roots of this last equation, it is convenient to introduce the notations

S(±)
11 := ±

(
P +

√
P2 − Q

)1/2

and S(±)
12 := ±

(
P −

√
P2 − Q

)1/2

,

and we conclude that S1 in (7.5) can be taken to be any of these four functions (which is consistent with
the fact that our equation is of the fourth order).

Next, the remaining unknown S2 ≡ S2(θ) is determined by solving the algebraic equation

2iRS(±)
1j − 4PS(±)

1j S2 + 4S(±) 3
1j S2 + 2iPS(±)′

1j − 6iS(±) 2
1j S(±)′

1j = 0, (7.8)

where the ‘dash’ indicates differentiation with respect to θ. Further use of (7.7) and simple manipulations
of (7.8) lead to the expression

S2 = S(±)
2j :=

i
2

{
(−1)j+1 P ′ − R√P2 − Q +

d
dθ

[
log(S(±)

1j

√
P2 − Q)

]}
, (j = 1, 2). (7.9)

Finally, going back in (7.5) with the functions Sj (j = 1, 2) found above, we obtain the WKB approxi-
mations for a set of four linearly independent solutions of (7.2),

G
(±)
j (θ) =

1
4

√
S2
1j(θ)[P2(θ) − Q(θ)]

exp

{
iλm

∫ θ

•
S(±)
1j (ζ) dζ

− 1
2
(−1)j+1

∫ θ

•

P ′(ζ) − R(ζ)√P2(ζ) − Q(ζ)
dζ

}
, (j = 1, 2). (7.10)

These expressions break down when the denominator of the pre-factor multiplying the exponential is
zero. In particular, this takes place for those values of θ ∈ [0, π] for which

Q(θ) = 0, or cos θ =
η2 + 4
4ηKB

, (7.11)

and

P2(θ) − Q(θ) = 0, or cos2 θ =
1

K2
B

. (7.12)

The solutions of these trigonometric equations define two sets of so-called turning points for the differential
equation (7.2). The situation we have here is far from straightforward, and a more complete WKB analysis
of this equation will be reported elsewhere [33]. In the meantime, we can take advantage of the fact that
Steele [32] (see §5.2 in his work) has solved a similar problem (albeit for a somewhat simpler equation)
and his analysis can be formally adapted to our case, as explained next.

If we let θ0 denote the unique root of (7.11) and consider the root 0 < θ1 < π/2 of (7.12), it is clear
that θ0 < θ1. Steele’s quantisation condition [32] expressed in our notation reads λm

∫ θ0

0
S
(+)
11 (θ) dθ =

(n − 3/4)π, for n = 1, 2, . . . , with the critical wrinkling load corresponding to n = 1. Before we are able
to exploit this simple condition, the integrand has to be expressed in terms of θ0. To this end, we use
(7.11) to get KB as a function of θ0 and η. If we introduce the function F defined by

F(θ; θ0, η) :=
η2 + 4
4η2

⎡
⎣
(

cos θ

cos θ0
− 2η2

η2 + 4

)
+

√(
cos θ

cos θ0

)2

− 16η2

(η2 + 4)2

⎤
⎦ , (7.13)
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Table 1. Comparison between the asymptotic results (7.15) and full numerical simulations of the bifurcation problem
(2.7)–(2.9); here ν = 0.3

R/h λc
m K

(c)
B λc

m K
(c)
B

(asymptotics) (asymptotics) (numerical) (numerical)

300 30.83 1.005600 30.71 1.007204
400 35.66 1.004626 35.61 1.005958
500 39.90 1.004000 39.81 1.005126
700 47.36 1.003193 47.11 1.004100
1000 56.65 1.002518 56.51 1.003228

then the quantisation condition can be cast in the form
θ0∫
0

√
F(θ; θ0, η) dθ =

π

λm

(
n − 3

4

)
, n = 1, 2, . . . . (7.14)

To facilitate comparison with the original bifurcation problem (2.7)-(2.9), we still need to replace η =
λ2

m/μ, but these details are left out in the interest of brevity. For fixed μ and λm (i.e. η), Eq. (7.14) can
be solved to find the turning point θ0, so that

KB =
λ4

m + 4μ2

4λ2
mμ cos θ0

. (7.15)

By minimising this expression with respect to λm, we can then obtain a WKB approximation for the
critical wrinkling load. In Table 1, we exemplify the quality of these predictions by comparison of the
critical values λc

m and K
(c)
B with some direct numerical computations of the full system over a range of

values of the ratio 3× 102 ≤ R/h ≤ 103. It is clear that agreement is excellent in all of the cases included
in our table.

8. Concluding remarks

The onset of partial wrinkling in a thin elastic cylinder subjected to in-plane bending has been revisited
from the point of view of multiple-scale asymptotics. Our main interest has been in understanding the
multi-scale structure of the neutral stability curves obtained previously by Seide and Weingarten [9].
These curves have a parabola-like appearance, with the vertex corresponding to the energy-minimum
configuration of the wrinkled cylinder. By a suitable introduction of a large parameter μ ∝ R/h � 1,
we have showed that the left branches of these curves involve the interplay between two distinct spatial
scales, X1 = O(μ1/2) and X2 = O(μ1/4), respectively. As we approach the vertex, the fast scale weakens
its effect, while close to the vertex the slow scale changes to X3 = O(μ1/3). Furthermore, to the right
of the vertex the behaviour changes once again, with the system now evolving on an O(μ1/4) scale.
This overall picture has been augmented by an expedient solution based on the classical WKB method.
Although this route has the advantage of producing a leading-order approximation with minimum effort,
it is not immediately clear how one might pursue higher-order terms systematically.

Comparisons between the asymptotic predictions obtained and full numerical simulation of the bifur-
cation equations have revealed unusually good agreement, even for modest values of the ratio R/h. Of
course, this is a direct consequence of the fact that the differential operators that appear in the bifurcation
system have constant coefficients and the only variable term occurs in the expression of L11 (cf. (2.8)).
Nevertheless, the asymptotic methods used in this paper are not limited in any way by the complexity of
the coefficients of the differential equations in question. We remark in passing that the method of multiple
scales can be used to investigate the post-buckling behaviour of the cylindrical shell and its imperfection
sensitivity as was done, for instance, in [27,34] for some simpler problems.
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The membrane pre-buckling state adopted in [9] (and in our Sect. 2) does impose some limitations, not
only because of its intrinsic linearity but also due to the fact that its expression is length independent. The
analysis presented in this work is expected to be valid for cylinders with L/R � O(1); longer cylinders
would require the inclusion of nonlinear effects and taking into account the progressive ovalisation of the
cross section within the pre-buckling range. This aspect has also been recently completed by the author
[35].
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