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Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material:
Part II—cutting method for finite cylinders

M. Pourseifi, R. T. Faal and E. Asadi

Abstract. This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic
material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar
cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and
outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite
and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material
containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dis-
location technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations
for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting
method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The
cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite
cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the
ensuing stress intensity factors of the cracks and the interaction between the cracks.
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1. Introduction

The introduction of the present study (including two companion part I and part II papers) is provided
in the part I paper. This paper deals with the in-plane analysis of cracks and is organized as follows. The
purpose of this paper is to formulate a mixed mode fracture analysis for a finite cylinder with multiple
cracks. The finite cylinder is weakened by axisymmetric penny-shaped, annular, and circumferential edge
cracks. To the best of the authors’ knowledge, the mixed mode problem of finite cylinder with multiple
axisymmetric interacting cracks was not investigated before. This problem is solved by introducing a
novel method namely “cutting method.” First, we use the fundamental prismatic and radial dislocation
solution for an infinite hollow cylinder with transversely isotropic material which is given in part I of
the paper. Next, we employ the dislocation solution to analyze related crack problems in a finite hollow
cylinder using cutting method. That is, a similar cracked infinite hollow cylinder is sliced by extending two
additional annular axisymmetric cracks. The related problem is solved by distributing edge dislocation
obtained for an infinite hollow cylinder. In fact, the number of the defects in a cracked infinite cylinder
is only two more than those in a cracked finite cylinder and the additional defects are two extended ring
crack to cut the infinite cylinder.

Analytical solutions of the intact infinite/finite cylinders under shear stresses on their inner and outer
surfaces are presented in Sect. 2. The cutting method was introduced in Sect. 3 and is used to analyze a
finite hollow cylinder with multiple axisymmetric planar cracks. By employing the dislocation solution of
the part I of the paper, the ensuing Cauchy-type singular integral equations for the hollow finite cylinder
weakened by several axisymmetric planar cracks are formulated and solved. Section 4 presents numerical
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Fig. 1. An infinite hollow cylinder under two pair of self-equilibrating shear stresses

examples to study the effect of loading, material anisotropy, and interaction of cracks on the resulting
stress intensity factors at the crack tips. Section 5 offers concluding remarks.

2. Solution of an intact cylinder under shear stresses on its inner and outer surfaces

2.1. An infinite cylinder under two self-equilibrating shear stresses on inner and outer surfaces

First, we consider an intact infinite hollow cylinder in which its outer surface subjected to a pair of
self-equilibrating shear stresses as σrz (Ro, z) = τ1 [H (z − h3) − H (z − h4)] , h3 < h4 and σrz (Ro, z) =
τ1 [H (z + h3) − H (z + h4)] as shown in Fig. 1.

Also we consider another pair of self-equilibrating shear stresses applying to the outer sur-
face of the cylinder as σrz (Ri, z) = τ2 [H (z − h1) − H (z − h2)] , h1 < h2 and σrz (Ri, z) =
τ2 [H (z + h1) − H (z + h2)] .

This problem is also symmetric with respect to the plane z = 0. Satisfying the boundary conditions
along the inner and outer surfaces of the cylinder for z > 0 implies that

σrr (Ro, z) = 0, σrr (Ri, z) = 0
σrz (Ro, z) = τ1 [H (z − h3) − H (z − h4)]
σrz (Ri, z) = τ2 [H (z − h1) − H (z − h2)] (1)

To solve the problem we employ the solution form (6) and also the resultant displacement and
stress field (8) of part I of the paper. Since the number of boundary conditions is four, we elimi-
nate the coefficients E (η) and F (η). The boundary conditions (1) are applied to Eq. (8) of part I of
the paper by means of the Fourier sine transform of the Heaviside step function, i.e., H (z − hk) =
2
π

∞∫

0

1
ξ cos (hkξ) sin (zξ) dξ, k = 1, 2, gives

A (ξ)
[

�5I0 (Riξ�1) − (b − 1)
�1
Riξ

I1 (Riξ�1)
]

+B (ξ)
[

�5K0 (Riξ�1) + (b − 1)
�1
Riξ

K1 (Riξ�1)
]

+C (ξ)
[

�6I0 (Riξ�2) − (b − 1)
�2
Riξ

I1 (Riξ�2)
]

+D (ξ)
[

�6K0 (Riξ�2) + (b − 1)
�2
Riξ

K1 (Riξ�2)
]

= 0
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− 2
π

∞∫

0

ξ[A (ξ) �1�5I1 (Riξ�1) − B (ξ) �1�5K1 (Riξ�1)

+C (ξ) �2�6I1 (Riξ�2) − D (ξ) �2�6K1 (Riξ�2)] sin (zξ) dξ

=
2τ2
π

∞∫

0

1
ξ

[cos (h1ξ) − cos (h2ξ)] sin (zξ) dξ

A (ξ)
[

�5I0 (Roξ�1) − (b − 1)
�1

Roξ
I1 (Roξ�1)

]

+B (ξ)
[

�5K0 (Roξ�1) + (b − 1)
�1

Roξ
K1 (Roξ�1)

]

+C (ξ)
[

�6I0 (Roξ�2) − (b − 1)
�2

Roξ
I1 (Roξ�2)

]

+D (ξ)
[

�6K0 (Roξ�2) + (b − 1)
�2

Roξ
K1 (Roξ�2)

]

= 0

− 2
π

∞∫

0

ξ[A (ξ) �1�5I1 (Roξ�1) − B (ξ) �1�5K1 (Roξ�1)

+C (ξ) �2�6I1 (Roξ�2) − D (ξ) �2�6K1 (Roξ�2)] sin (zξ) dξ

=
2τ1
π

∞∫

0

1
ξ

[cos (h3ξ) − cos (h4ξ)] sin (zξ) dξ (2)

The above equations are rewritten to take the form

A (ζ) Δ11 (ζ) + B (ζ) Δ12 (ζ) + C (ζ) Δ13 (ζ) + D (ζ) Δ14 (ζ) = 0
A (ζ) �1�5I1 (ζ�1) − B (ζ) �1�5K1 (ζ�1) + C (ζ) �2�6I1 (ζ�2) − D (ζ) �2�6K1 (ζ�2)

= Σ1 (ζ) A (ζ) Δ11 (αζ) + B (ζ)Δ12 (αζ) + C (ζ) Δ13 (αζ) + D (ζ) Δ14 (αζ) = 0
A (ζ) �1�5I1 (αζ�1) − B (ζ) �1�5K1 (αζ�1) + C (ζ) �2�6I1 (αζ�2) − D (ζ) �2�6K1 (αζ�2)

= Σ2 (ζ) (3)

where in the above equations we have Σ1 (ζ) = τ2R2
i

ζ2

[
cos
(

h2
Ri

ζ
)

− cos
(

h1
Ri

ζ
)]

and Σ2 (ζ) =
τ1R2

o

(αζ)2

[
cos
(

h4
Ro

αζ
)

− cos
(

h3
Ro

αζ
)]

= τ1R2
i

ζ2

[
cos
(

h4
Ri

ζ
)

− cos
(

h3
Ri

ζ
)]

. Solution of Eq. (3) gives the coef-
ficients of A (ζ) , B (ζ) , C (ζ), and D (ζ) which are similar to that given in Appendix B of part I of
the paper, but the parameters Λ1 (ζ) , Λ2 (ζ) , Λ3 (ζ), and Λ4 (ζ) are replaced by 0, Σ1 (ζ) , 0 and Σ2 (ζ) ,
respectively, and we eliminate the multiplier bzRi

2λ from the solution. Finally, the stress components are
given by

σrr (r, z) =
2

πR2
i

∞∫

0

{

A (ζ)
[

�5ζI0

(
r�1
Ri

ζ

)

− (b − 1) Ri�1I1

(
r�1
Ri

ζ

)

/r

]

+B (ζ)
[

�5ζK0

(
r�1
Ri

ζ

)

+ (b − 1) Ri�1K1

(
r�1
Ri

ζ

)

/r

]

+C (ζ)
[

�6ζI0

(
r�2
Ri

ζ

)

− (b − 1) Ri�2I1

(
r�2
Ri

ζ

)

/r

]
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+D (ζ)
[

�6ζK0

(
r�2
Ri

ζ

)

+ (b − 1) Ri�2K1

(
r�2
Ri

ζ

)

/r

]}

cos
(

z
ζ

Ri

)

dζ

σrz (r, z) = − 2
πR2

i

∞∫

0

ζ

[

A (ζ) �1�5I1

(
r�1
Ri

ζ

)

− B (ζ) �1�5K1

(
r�1
Ri

ζ

)

+C (ζ) �2�6I1

(
r�2
Ri

ζ

)

− D (ζ) �2�6K1

(
r�2
Ri

ζ

)]

sin
(

z

Ri
ζ

)

dζ

σzz (r, z) =
2

πR2
i

∞∫

0

ζ

[

A (ζ) �7I0

(
r�1
Ri

ζ

)

+ B (ζ) �7K0

(
r�1
Ri

ζ

)

+C (ζ) �8I0

(
r�2
Ri

ζ

)

+ D (ζ) �8K0

(
r�2
Ri

ζ

)]

cos
(

z

Ri
ζ

)

dζ (4)

2.2. Tension of an intact finite hollow cylinder under lateral shear tractions

We consider an intact finite hollow cylinder with height 2h and inner and outer radii Ri and Ro, respec-
tively, Fig. 2, in which the flat surfaces of the cylinder, that is, z = ±h are stress-free. Also, the inner
curved surface of the cylinder is left stress-free except for regions h1 < z < h2 and −h2 < z < −h1.
Similarly, the outer lateral surface of the cylinder is kept stress-free except for regions h3 < z < h4

and −h4 < z < −h3. In the inner surface, the cylinder is under constant shear tractions τ2 and −τ2
which are applied in the opposite directions. Analogously, the outer surface is subjected to constant shear
tractions τ1 and −τ1. In fact, the cylinder is subjected to two identical bidirectional tractions on each
curved surface, which are applied near the two ends of cylinder in the opposite directions. The lateral
boundary conditions of the problem are exactly the same as the intact infinite hollow cylinder, that is,
Eq. (1). The upper and lower faces of the cylinder are stress-free. Therefore, the boundary conditions
σpz (r,±h) = 0, p = r, z should be applied. The problem of an intact finite hollow cylinder is symmetric
with respect to z = 0. Therefore, solution to Eq. (5) of part I is given in the series form as [1]

Fig. 2. A finite hollow cylinder under lateral constant bidirectional shear tractions
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χ (r, z) =
∞∑

i=1

1
η3

i

[AiI0 (�1ηir) + BiK0 (�1ηir) + CiI0 (�2ηir) + DiK0 (�2ηir)] sin (ηiz)

+
∞∑

n=1

1
λ3

n

[
En sin h

(
�1λnz/

√
f
)

+ Fn sin h
(
�2λnz/

√
f
)]

[J0 (λnr) + TnY0 (λnr)] (5)

where Ai, Bi, Ci,Di, En, Fn, and Tn are the unknown coefficients and ηi = iπ/h and λn are the roots of
the equation J1 (λnRi) − J1(λnRo)

Y1(λnRo)
Y1 (λnRi) = 0. It is worth mentioning that λ1 = 0 is the trivial root

of this equation. Substituting Eq. (5) into relations (3) of part I, the stress components are derived as
follows:

σrr (r, z) =
∞∑

i=1

{

Ai

[

�5I0 (�1ηir) − (b − 1) �1
ηir

I1 (�1ηir)
]

+Bi

[

�5K0 (�1ηir) +
(b − 1) �1

ηir
K1 (�1ηir)

]

+Ci

[

�6I0 (�2ηir) − (b − 1) �2
ηir

I1 (�2ηir)
]

+ Di

[

�6K0 (�1ηir) +
(b − 1) �2

ηir
K1 (�2ηir)

]}

cos (ηiz) + A0

[

�5 − (b − 1) (�1)
2

2

]

+ C0

[

�6 − (b − 1) (�2)
2

2

]

+
1√
f

×
∞∑

n=1

{

�1

{
f − a�21

f
[J0 (λnr) + TnY0 (λnr)] +

(b − 1)
rλn

[J1 (λnr) + TnY1 (λnr)]
}

En cos h

(
�1λn√

f
z

)

+ �2

{
f − a�22

f
[J0 (λnr) + TnY0 (λnr)]

+
(b − 1)
rλn

[J1 (λnr) + TnY1 (λnr)]
}

Fn cos h

(
�2λn√

f
z

)}

σrz (r, z) = −
∞∑

i=1

{�1�5 [AiI1 (�1ηir) − BiK1 (�1ηir)]

+ �2�6 [CiI1 (�2ηir) − DiK1 (�2ηir)]} sin (ηiz)

+
1
f

∞∑

n=1

[
(
f − a�21

)
En sin h

(
�1λn√

f
z

)

+
(
f − a�22

)
Fn sin h

(
�2λn√

f
z

)]

[J1 (λnr) + TnY1 (λnr)]

σzz (r, z) = A0�7 + �8C0

+
∞∑

i=1

{�7 [AiI0 (�1ηir) + BiK0 (�1ηir)] + �8 [CiI0 (�2ηir) + DiK0 (�2ηir)]} cos (ηiz)

+
1√
f

∞∑

n=1

{

�1
(
�21 − c

)
En cos h

(
�1λn√

f
z

)

+ �2
(
�22 − c

)
Fn cos h

(
�2λn√

f
z

)}

[J0 (λnr) + TnY0 (λnr)] (6)

The terms with coefficients A0, C0 are coming from i = 0 for cosine series including the term cos (ηiz).
By choosing Tn = − J1(λnRi)

Y1(λnRi)
= − J1(λnRo)

Y1(λnRo)
and making use of the Fourier sine series of the Heaviside

step function, i.e., the series H (z − hk) = 2
h

∑∞
i=1

1
ηi

cos (ηihk) sin (ηiz) , k = 1, 2, 3, 4. The boundary
conditions (1) and σrz (r, h) = 0 are applied, giving
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A0

[

�5 − (b − 1) (�1)
2

2

]

+ C0

[

�6 − (b − 1) (�2)
2

2

]

= 0

AiΠ2 (ηiRi, �1, �5) + BiΠ3 (ηiRi, �1, �5) + CiΠ2 (ηiRi, �2, �6) + DiΠ3 (ηiRi, �2, �6)

=
∞∑

n=1

Π1

(
�1/
√

f,Ri, ηi, λn

)
En + Π1

(
�2/
√

f,Ri, ηi, λn

)
Fn, i = 0, 1, 2, . . .

AiΠ2 (ηiRo, �1, �5) + BiΠ3 (ηiRo, �1, �5) + CiΠ2 (ηiRo, �2, �6) + DiΠ3 (ηiRo, �2, �6)

=
∞∑

n=1

Π1

(
�1/
√

f,Ro, ηi, λn

)
En + Π1

(
�2/
√

f,Ro, ηi, λn

)
Fn, i = 0, 1, 2, . . .

�1�5 [AiI1 (�1ηiRi) − BiK1 (�1ηiRi)] + �2�6 [CiI1 (�2ηiRi) − DiK1 (�2ηiRi)]

= −2τ2
hηi

[cos (ηih1) − cos (ηih2)] , i = 1, 2, . . .

�1�5 [AiI1 (�1ηiRo) − BiK1 (�1ηiRo)] + �2�6 [CiI1 (�2ηiRo) − DiK1 (�2ηiRo)]

= −2τ1
hηi

[cos (ηih3) − cos (ηih4)] , i = 1, 2, . . .

(
f − a�21

)
En sin h

(
�1λn√

f
h

)

+
(
f − a�22

)
Fn sin h

(
�2λn√

f
h

)

= 0 (7)

where

Π1 (x, y, ηi, λn) = −2 (−1)i
x2
(
1 − ax2

)
λn sin h (xλnh) Z (λny)

h
[
(xλn)2 + η2

i

]

Π2 (x, y, t) = tI0 (xy) − (b − 1) y

x
I1 (xy) ,Π3 (x, y, t) = tK0 (xy) +

(b − 1) y

x
K1 (xy) (8)

in which δi0 is Kronecker delta and Z (λny) = J0 (λny) − J1(λnRi)
Y1(λnRi)

Y0 (λny). Using the last equation
of (7) the coefficients Π1

(
�1/

√
f,Rj , ηi, λn

)
En + Π1

(
�2/

√
f,Rj , ηi, λn

)
Fn, j = i, O are simplified to

2(−1)i+1(f−a	2
1)((	1)

2−(	2)
2)λn sin h

(
�1λn√

f
h
)
η2

i Z(λnRj)

hf2

[(
�1λn√

f

)2
+η2

i

][(
�2λn√

f

)2
+η2

i

] En. Applying the remainder boundary condition, i.e.,

σzz (r, h) = 0, by virtue of the last equation of (7), leads to

A0�7 + �8C0 +
∞∑

i=1

{�7 [AiI0 (�1ηir) + BiK0 (�1ηir)]

+ �8 [CiI0 (�2ηir) + DiK0 (�2ηir)]} (−1)i = − 1√
f

∞∑

n=1

{

�1
(
�21 − c

)
cos h

(
�1λn√

f
h

)

− �2
(
�22 − c

)
(
f − a�21

)

(f − a�22)
sin h

(
�1λn√

f
h

)

cot h

(
�2λn√

f
h

)}

Z (λnr) En (9)

The Fourier–Bessel’s series of the function f (r) in terms of the eigenfunctions Z (λnr) is f (r) =
∞∑

n=1
AnZ (λnr) in which An = 1

Z(λnr)2

Ro∫

Ri

rf (r) Z (λnr) dr and Z (λnr) is the norm of the eigenfunctions.

Therefore, Eq. (9) is rewritten as follows
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En = ωn

⎧
⎨

⎩
(A0�7 + �8C0)

Ro∫

Ri

rZ (λnr) dr

+
∞∑

i=1

⎧
⎨

⎩
�7

⎡

⎣Ai

Ro∫

Ri

rI0 (�1ηir) Z (λnr) dr + Bi

Ro∫

Ri

rK0 (�1ηir) Z (λnr) dr

⎤

⎦

�8

⎡

⎣Ci

Ro∫

Ri

rI0 (�2ηir) Z (λnr) dr + Di

Ro∫

Ri

rK0 (�2ηir) Z (λnr) dr

⎤

⎦

⎫
⎬

⎭
(−1)i

⎫
⎬

⎭
(10)

in which ωn and Z (λnr) =

{
Ro∫

Ri

r [Z (λnr)]2 dr

} 1
2

are as follows

Z (λnr) =

{
1
2

(Ro)
2

[

J0 (λnRo) − J1 (λnRi)
Y1 (λnRi)

Y0 (λnRo)
]2

− 2
(πλnY1 (λnRi))

2

} 1
2

ωn =
−√

f sin h
(

	1λn√
f

h
)

Z (λnr)2
{

�1 (�21 − c) cot h
(

	1λn√
f

h
)

− �2 (�22 − c) (f−a	2
1)

(f−a	2
2)

cot h
(

	2λn√
f

h
)} (11)

Also we arrive at A0�7 + �8C0 = 0. Therefore, viewing the first equation of (7) we conclude that
A0 = C0 = 0. Evaluating the integrals in Eq. (10) can be downed by relations given in Appendix A of
this part as

En = ωn

{ ∞∑

i=1

{

�7{Ai

[

�1 (�1ηi, λn) − �2 (�1ηi, λn)
J1 (λnRi)
Y1 (λnRi)

]

+Bi

[

�3 (�1ηi, λn) − �4 (�1ηi, λn)
J1 (λnRi)
Y1 (λnRi)

]}

+ �8

{

Ci

[

�1 (�2ηi, λn) − �2 (�2ηi, λn)
J1 (λnRi)
Y1 (λnRi)

]

+Di

[

�3 (�2ηi, λn) − �4 (�2ηi, λn)
J1 (λnRi)
Y1 (λnRi)

]}

(−1)i

}

(12)

Substituting En from the above equation into the last equation of (7) and substituting the ensuing
equations into the first equations of (7) yields

AiΠ2 (ηiRi, �1, �5) + BiΠ3 (ηiRi, �1, �5) + CiΠ2 (ηiRi, �2, �6) + DiΠ3 (ηiRi, �2, �6)

=
2 (−1)i+1 (

f − a�21
) (

(�1)
2 − (�2)

2
)

η2
i

hf2

∞∑

n=1

λn sin h
(

	1λn√
f

h
)

Z (λnRi) ωn
[(

	1λn√
f

)2
+ η2

i

] [(
	2λn√

f

)2
+ η2

i

]

⎧
⎨

⎩

∞∑

j=1

{

�7{Aj

[

�1 (�1ηj , λn) − �2 (�1ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]

+Bj

[

�3 (�1ηj , λn) − �4 (�1ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]}
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+ �8

{

Cj

[

�1 (�2ηj , λn) − �2 (�2ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]

+Dj

[

�3 (�2ηj , λn) − �4 (�2ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]}

(−1)j

}

, i = 0, 1, 2, . . .

AiΠ2 (ηiRo, �1, �5) + BiΠ3 (ηiRo, �1, �5) + CiΠ2 (ηiRo, �2, �6) + DiΠ3 (ηiRo, �2, �6)

=
2 (−1)i+1 (

f − a�21
) (

(�1)
2 − (�2)

2
)

η2
i

hf2

∞∑

n=1

λn sin h
(

	1λn√
f

h
)

Z (λnRo) ωn
[(

	1λn√
f

)2
+ η2

i

] [(
	2λn√

f

)2
+ η2

i

]

⎧
⎨

⎩

∞∑

j=1

{

�7{Aj

[

�1 (�1ηj , λn) − �2 (�1ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]

+Bj

[

�3 (�1ηj , λn) − �4 (�1ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]}

+ �8

{

Cj

[

�1 (�2ηj , λn) − �2 (�2ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]

+Dj

[

�3 (�2ηj , λn) − �4 (�2ηj , λn)
J1 (λnRi)
Y1 (λnRi)

]}

(−1)j

⎫
⎬

⎭
, i = 0, 1, 2, . . . (13)

The truncated form (the infinite series are truncated with N terms) of the above equations in associ-
ation with the third and fourth equation of (7) constructs a system of 4N × 4N algebraic equations in
terms of the unknowns {Ai, Bi, Ci,Di, i = 1, 2, . . . , N}.

3. A finite hollow cylinder with multiple axisymmetric cracks: cutting method

Stress analysis of a finite hollow cylinder with some axisymmetric planar cracks can be followed by one
of the following methods:

1. It is possible to solve the dislocation problem in a finite hollow cylinder. Next, using this solution,
the problem of a cracked finite cylinder can also be solved. This is beyond the scope of this paper
because the dislocation solution in the finite domains should be in the complicated series form.
As it can be seen, the series solution obtained in Sect. 2.2 for tension analysis of an intact finite
hollow cylinder is complex enough that we cannot simply extend it for a finite hollow cylinder with
dislocation. In fact, we need an additional dislocation solution besides that accomplished at part I.

2. It is possible to consider an equivalent infinite hollow cylinder with two additional annular cracks
besides the existing cracks of the finite hollow cylinder. In this case, the infinite hollow cylinder
can be cut by extension of these two annular cracks and it can be changed to a finite hollow cylin-
der (we named it “cutting method”), Fig. 3. Validity of such a cutting method is shown in the
following.

In this study, we pursue the second method [2]. We consider a finite hollow cylinder with length
2h which is subjected to two self-equilibrating distributed tractions, Fig. 2. One of these distributed
tractions is defined by Eq. (1), and the other one is its image with respect to the middle plane of the
cylinder (z = 0). The stress field of an intact infinite hollow cylinder (Eq. 4) and an intact finite hollow
cylinder (Eq. 6) can be compared for a short finite cylinder (for example, h = 1.5Ri and Ri = 0.5Ro)
in Figs. 4, 5 and 6 (for some sample values of z). Also we set h1 = h3 = 0.8Ri and h2 = h4 = Ri as
well as τ1 = τ2 = τ0. The cylinder is made of the magnesium whose material properties are chosen from
Table 1. As we expect for short cylinders these stress fields must be different. Figures 4, 5, and 6 show
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Fig. 3. The configuration describing the cutting method

the considerable discrepancies between the values of the stress components of the infinite and those of the
finite hollow cylinders. In order to apply the “cutting method,” we consider an infinite hollow cylinder by
two annular axisymmetric cracks located at z = ±h. The inner radii of these cracks are condensed to the
inner radius of hollow cylinder, and the outer radii of them are extended to the outer radius of the cylinder.
Consequently, a finite cylinder is obtained provided that an identical loading between −h ≤ z ≤ h to be
applied on both infinite and finite cylinders. To show the validity of such a method, we distribute four
dislocations with densities bz1 (t) , bz2 (t) , br1 (t) and br2 (t) on the surfaces of two annular axisymmetric
cracks. These cracks are located at z1 = h and z2 = −h of an infinite hollow cylinder, respectively.

Using Eqs. (19) and (25) of part I of the paper, the stress field emanating of these dislocation distri-
butions is given by replacing ε with rj (t) and z with |z − zj | where rj (t) = 0.5 [(Ro − Ri) t + (Ro + Ri)]
and Lj = 0.5 (Ro − Ri) , j = 1, 2. Also according to the remark noted before (we mean part I),
the term sgn (z − zj) is multiplied to the relevant stress component whenever needed. By setting
r = ri (s) = 0.5 [(Ro − Ri) s + (Ro + Ri)] , i = 1, 2,−1 ≤ s ≤ 1 in Eqs. (19) and (25) of part I of

the paper and considering the closure equation, i.e.,
1∫

−1

bzj (t) dt = 0,
1∫

−1

brj (t) dt = 0, j = 1, 2 two integral

equations are derived. They are used to calculate the dislocation density functions bz1 (t) , bz2 (t) , br1 (t),
and br2 (t). The left-hand side of the above-mentioned equations, i.e., the stress components σrz (ri (s) , zi)
and σzz (ri (s) , zi), is given by [see Eq. (4)]. For the case τ1 = τ2 = τ0,by virtue of Buckner’s principle [3],
the total the stress component σrz (r, z) in the remainder slice of infinite cylinder, which in now a finite
cylinder, is given, for example, as follows
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Fig. 4. The graph of the stress component σrr (r, z) /τ0 versus r obtained by Eqs. (4) and (6)
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Fig. 5. The graph of the stress component σrz (r, z) /τ0 versus r obtained by Eqs. (4) and (6)



ZAMP Axisymmetric planar cracks in finite hollow cylinders Page 11 of 16 75

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−1.5

−1

−0.5

0

0.5

1

1.5

r

σ zz
/τ

0

z=0.7R
i
,Infinite Cylinder

z=0.7R
i
,Finite Cylinder

z=0.3R
i
,Infinite Cylinder

z=0.3R
i
,Finite Cylinder

Fig. 6. The graph of the stress component σzz (r, z) /τ0 versus r obtained by Eqs. (4) and (6)

σrz (r, z) = − 2τ0
πR2

i

∞∫

0

ζ

[

Ae (ζ) �1�5I1

(
r�1
Ri

ζ

)

− Be (ζ) �1�5K1

(
r�1
Ri

ζ

)

+ Ce (ζ) �2�6I1

(
r�2
Ri

ζ

)

− De (ζ) �2�6K1

(
r�2
Ri

ζ

)]

sin
(

z − zj

Ri
ζ

)

dζ − 2
πR2

i

sgn (z − zj)

2∑

j=1

Lj

1∫

−1

bzj (t)

⎧
⎨

⎩

∞∫

0

ζ

[

Ac (ζ, rj (t)) �1�5I1

(
r�1
Ri

ζ

)

− Bc (ζ, rj (t)) �1�5K1

(
r�1
Ri

ζ

)

+ Cc (ζ, rj (t)) �2�6I1

(
r�2
Ri

ζ

)

− Dc (ζ, rj (t)) �2�6K1

(
r�2
Ri

ζ

)]

sin
(

(z − zj)
Ri

ζ

)

dζ

⎫
⎬

⎭
dt

− �5�6
2λ

sgn (z − zj)
2∑

j=1

Lj

1∫

−1

bzj (t)

⎧
⎨

⎩

∞∫

0

[

e− �2η|z−zj |√
f − e− �1η|z−zj |√

f

]

[RoJ1 (ηRo) − rj (t) J1 (rj (t) η)] ηJ1 (rη) dη

⎫
⎬

⎭
dt

− 2
πR2

i

2∑

j=1

Lj

1∫

−1

brj (t)

⎧
⎨

⎩

∞∫

0

ζ[Ag (ζ,Ri) �1�5I1

(
r�1
Ri

ζ

)

− Bg (ζ,Ri) �1�5K1

(
r�1
Ri

ζ

)
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+ Cg (ζ,Ri) �2�6I1

(
r�2
Ri

ζ

)

− Dg (ζ,Ri) �2�6K1

(
r�2
Ri

ζ

)

] cos ((z − zj) ξ) dζ

⎫
⎬

⎭
dt

− br

2κfR2
i

2∑

j=1

Lj

1∫

−1

brj (t)

⎧
⎪⎨

⎪⎩

∞∫

0

η2

α∫

rj(t)/Ri

ρI1 (ρη) dρ

(

�7�6�2e
− �1η|z−zj |√

f − �8�5�1e
− �2η|z−zj |√

f

)

J1 (rη) dη

⎫
⎪⎬

⎪⎭
dt (14)

where the coefficients Ae (ζ) , . . . , De (ζ) are obtained from Eq. (3) by eliminating the multiplier
τ0 from the coefficients A (ζ) , . . . , D (ζ) . Similarly, the coefficients Ac (ζ, rj (t)) , . . . , Dc (ζ, rj (t)) and
Ag (ζ, rj (t)) , . . . , Dg (ζ, rj (t)) are obtained from the relations (17) and (27) of part I, respectively, in
which the multipliers bzj and brj are eliminated. Substituting bz1 (t) , bz2 (t) , br1 (t), and br2 (t) , obtained
by solving the relevant integral equations, into the above stress component leads to that of a finite hol-
low cylinder under the previously mentioned loading. Similarly, the total stress component σzz (r, z) can
be derived (for the sake of simplicity, we did not write it here). The graphs of the stress components
σrr (r, z) /τ0, σrz (r, z) /τ0 and σzz (r, z) /τ0versus r and those obtained via Eq. (6) are shown in Figs. 7,
8, and 9. Comparison of the results verifies the cutting method.

4. Numerical examples and discussion

In this section, we provide some numerical examples to show the capabilities of the developed procedure
in this article based on distributed dislocation technique to treat the problem of cracked finite hollow
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Fig. 7. The graph of the stress component σrr (r, z) /τ0 versus r obtained by Eqs. (14) and (6)
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Fig. 8. The graph of the stress component σrz (r, z) /τ0 versus r obtained by Eqs. (14) and (6)
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Fig. 9. The graph of the stress component σzz (r, z) /τ0 versus r obtained by Eqs. (14) and (6)
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Table 1. Normalized stress intensity factors for an annular crack of the hollow finite cylinder (Ro = 2Ri, h = 1.5Ri)

Magnesium
ri = 1.2Ri kIL/k0 0.0137 kIIL/k0 0.0109
rf = 1.8Ri kIR/k0 0.0487 kIIR/k0 0.0140

ri = 1.1Ri kIL/k0 0.0434 kIIL/k0 0.0378
rf = 1.9Ri kIR/k0 0.1055 kIIR/k0 0.0401
Cadmium
ri = 1.2Ri kIL/k0 0.003 kIIL/k0 0.0188
rf = 1.8Ri kIR/k0 0.0477 kIIR/k0 0.0199
ri = 1.1Ri kIL/k0 0.0241 kIIL/k0 0.0412
rf = 1.9Ri kIR/k0 0.103 kIIR/k0 0.0413

Table 2. Normalized stress intensity factors for a circumferential inner edge crack of the hollow finite cylinder
(Ro = 2Ri, h = 1.5Ri)

Magnesium
rf = 1.4Ri kI/k0 0.1017 kII/k0 0.0347
rf = 1.5Ri kI/k0 0.0947 kII/k0 0.0376
Cadmium
rf = 1.4Ri kI/k0 0.0691 kII/k0 0.0327
rf = 1.5Ri kI/k0 0.0612 kII/k0 0.0358

cylinder of a transversely isotropic material. All the material properties used for the following examples
are given in Table 1 of part I of the paper.

Example 1. In this example a cracked short finite hollow cylinder with length 2h = 3Ri and outer radius
of Ro = 2Ri is considered. The cylinder is subjected to two self-equilibrating distributed tractions as
depicted in Fig. 2 (τ1 = τ2 = τ0). The cylinder has an axisymmetric annular crack located at z = 0.5h.
Stress intensity factors are normalized by k0 = τ0

√
Ro, and the numerical results are reported in Table 1.

The results are for two different crack lengths (0.6Ri, 0.8Ri) and two materials (magnesium and cadmium).
Obviously, we see an increase in the normalized stress intensity factor with crack length growth. Also
Mode I stress intensity factor of crack tips for magnesium is bigger than that for cadmium, while Mode
II stress intensity factors behave reversely.

Example 2. The fourth example is allocated to the problem of a cracked finite hollow cylinder similar
to previous example. The cylinder is weakened by a circumferential inner edge crack. The loading is also
similar to former example, and the crack is also located at z = 0.5h. The Modes I and II normalized
stress intensity factors kI/k0 and kII/k0 are tabulated in Table 2. One observes that Modes I and II
stress intensity factors of crack tips for magnesium are bigger than those for cadmium.

Example 3. As a last example we consider a finite hollow cylinder analogous to examples 1 and 2 while
it is weakened by two axisymmetric cracks. Under the action of the similar loading of previous two
examples, the interaction of two coplanar cracks are studied. They are located at z = 0.5h. The cracks
are an axisymmetric annular crack with inner and outer radii rsa and rfa, respectively, and an inner
circumferential edge crack with tip radius rfc. The results for Modes I and II normalized stress intensity
factors kI/k0 and kII/k0 are presented in Table 3. Generally speaking, kI/k0 and kII/k0 for all tips of
cracks are almost increased with increasing crack length. There is an exception for this characteristic.
For an inner circumferential edge crack kI/k0 it initially experiences some increase and then decreases
by crack length growth. This trend can be realized for a finite cylinder made from both materials, i.e.,
magnesium and cadmium. Also interaction of two adjacent crack tips has also crucial effect on increase
in the stress intensity factors.
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Table 3. Normalized stress intensity factors for a circumferential inner edge crack and an axisymmetric annular crack
of the hollow finite cylinder (Ro = 2Ri, h = 1.5Ri)

Magnesium
ria = 1.45Ri kIL/k0 0.0030 kIIL/k0 0.0002
rfa = 1.55Ri kIR/k0 0.0065 kIIR/k0 0.0005

rfc = 1.05Ri kI/k0 0.1244 kII/k0 0.0250
ria = 1.4Ri kIL/k0 0.0005 kIIL/k0 0.0024
rfa = 1.6Ri kIR/k0 0.0105 kIIR/k0 0.0029
rfc = 1.1Ri kI/k0 0.1293 kII/k0 0.0369

ria = 1.35Ri kIL/k0 0.0108 kIIL/k0 0.0072
rfa = 1.65Ri kIR/k0 0.0139 kIIR/k0 0.0069
rfc = 1.15Ri kI/k0 0.1239 kII/k0 0.0397
ria = 1.3Ri kIL/k0 0.0366 kIIL/k0 0.0178
rfa = 1.7Ri kIR/k0 0.0162 kIIR/k0 0.0134
rfc = 1.2Ri kI/k0 0.1226 kII/k0 0.0420
Cadmium
ria = 1.45Ri kIL/k0 0.0049 kIIL/k0 0.0035
rfa = 1.55Ri kIR/k0 0.0074 kIIR/k0 0.0036
rfc = 1.05Ri kI/k0 0.0938 kII/k0 0.0147
ria = 1.4Ri kIL/k0 0.0034 kIIL/k0 0.0065
rfa = 1.6Ri kIR/k0 0.0113 kIIR/k0 0.0066
rfc = 1.1Ri kI/k0 0.1003 kII/k0 0.0253
ria = 1.35Ri kIL/k0 0.0033 kIIL/k0 0.0113
rfa = 1.65Ri kIR/k0 0.0147 kIIR/k0 0.0106
rfc = 1.15Ri kI/k0 0.0950 kII/k0 0.0305
ria = 1.3Ri kIL/k0 0.0212 kIIL/k0 0.0209
rfa = 1.7Ri kIR/k0 0.0175 kIIR/k0 0.0166
rfc = 1.2Ri kI/k0 0.0904 kII/k0 0.0358

5. Concluding remarks

From the assessment of the tables it can be seen that:

1. The transversely isotropic finite cylinder with two coplanar concentric cracks under shear stress on
the lateral surface shows greater values for the stress intensity factors of bigger annular cracks than
those for smaller ones. But for deeper circumferential edge cracks the Mode I stress intensity factor
is smaller than that for shallow one. For the Mode II stress intensity factor we see an inverse trend.

2. Material isotropy of finite cylinder, crack length, crack type, and interaction of cracks are important
factors affecting stress intensity factor of each crack tip.

Appendix A

Ro∫

Ri

rZ (λnr) dr = 0�1 (�1ηi, λn) =

Ro∫

Ri

rI0 (�1ηir) J0 (λnr) dr

=
1

λ2
n + �21η

2
i

{Ro [�1ηiI1 (�1ηiRo) J0 (Roλn) + λnI0 (�1ηiRo) J1 (Roλn)]

−Ri [�1ηiI1 (�1ηiRi) J0 (Riλn) + λnI0 (�1ηiRi) J1 (Riλn)]}
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�2 (�1ηi, λn) =

Ro∫

Ri

rI0 (�1ηir) Y0 (λnr) dr

=
1

λ2
n + �21η

2
i

{Ro [�1ηiI1 (�1ηiRo) Y0 (Roλn) + λnI0 (�1ηiRo) Y1 (Roλn)]

−Ri [�1ηiI1 (�1ηiRi) Y0 (Riλn) + λnI0 (�1ηiRi) Y1 (Riλn)]}

�3 (�1ηi, λn) =

Ro∫

Ri

rK0 (�1ηir) J0 (λnr) dr

= − 1
λ2

n + �21η
2
i

{Ro [�1ηiK1 (�1ηiRo) J0 (Roλn) − λnK0 (�1ηiRo) J1 (Roλn)]

−Ri [�1ηiK1 (�1ηiRi) J0 (Riλn) − λnK0 (�1ηiRi) J1 (Riλn)]}

�4 (�1ηi, λn) =

Ro∫

Ri

rK0 (�1ηir) Y0 (λnr) dr

= − 1
λ2

n + �21η
2
i

{Ro [�1ηiK1 (�1ηiRo) Y0 (Roλn) − λnK0 (�1ηiRo) Y1 (Roλn)]

−Ri [�1ηiK1 (�1ηiRi) Y0 (Riλn) − λnK0 (�1ηiRi)Y1 (Riλn)]} (A.1)
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