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Multiple solutions for nonhomogeneous Choquard equation
involving Hardy—-Littlewood—Sobolev critical exponent

Zifei Shen, Fashun Gao and Minbo Yang

Abstract. We consider the following critical nonhomogeneous Choquard equation

2% .
—Au = ( m‘dy) |u|+ 7 2u+ Au+ f(z) in Q,

where Q is a smooth bounded domain of RN, 0 in interior of @, A € R, N > 7,0 < p < N, 2y, = (2N — p)/(N —2) is

the upper critical exponent in the sense of the Hardy—Littlewood—Sobolev inequality, and f(z) is a given function. Using
variational methods, we obtain the existence of multiple solutions for the above problem when 0 < A < A1, where A1 is the
first eigenvalue of —A in H{ ().
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1. Introduction and main results

In this paper we are going to consider the existence of multiple solutions for the following nonlocal
equation:

2,
Au= | [ @
|z —y|*
u € Hi (Q).
Here 2 is a smooth bounded domain of RY (N > 7), 0 in interior of 2, 0 < A\ < A\j, where \; is the first
eigenvalue of —A in Hj(€), 0 < p < N and 25, = (2N — p)/(N — 2) is the upper critical exponent in the

sense of the Hardy-Littlewood—Sobolev inequality (see [14]). f(z) € L>®(Q) and f(x) # 0.
Recently, people have paid much attention to the nonlinear Choquard—Pekar equation [18,29]

L7204 M+ f(z) in €,

dy | Ju (L.1)

—Au+V(z)u= (ﬁ * |u|p> lulP™2u in R3, (1.2)
also known as the stationary Hartree equation or the Newton—Schrédinger equation, see [22]. In subcritical
case, the existence and qualitative properties of solutions of (1.2) have been widely studied. In 1976/77,
Lieb [18] proved the existence and uniqueness, up to translations, of the ground state. Lions [20] obtained
the existence of a sequence of radially symmetric solutions in 1980. Moreover, in [9,23,24] the authors
showed the regularity, positivity and radial symmetry of the ground states and derived decay property
at infinity as well. For periodic potential V' that changes sign and 0 lies in the gap of the spectrum of
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the Schrodinger operator —A + V| the problem is strongly indefinite, and the existence of solution for
p = 2 was considered in [5] by reduction arguments. For other related results, we refer the readers to [2]
for the existence of multibump shaped solution for the equation with deepening potential well, [8,12] for
the existence of sign-changing solutions, [25] for the existence of ground states under the assumptions of
Berestycki—Lions type. The semiclassical regime of standing wave solutions of Choquard equations has also
attracted a lot of interest, the first result in this direction seems to be [11] where the authors considered
a nonlocal Schrodinger equation with magnetic field and Hartree-type nonlinearities by penalization
techniques. We may also refer the readers to [3,4,10,26,30,32] for other existence and concentration
results of the semiclassical solutions. For a complete review of recent progress of the literature of (1.2),
we refer the readers to [28] and references therein.

In critical case, the authors [1] considered the case of critical growth in the sense of Trudinger—Moser
inequality and studied the existence and concentration of the ground states. A recent paper [27] by Moroz
and Van Schaftingen, the authors considered the nonlinear Choquard equation (1.2) in RY with lower
critical exponent MT_“ In [14], Gao and Yang considered the existence and nonexistence of solutions for
the Brezis—Nirenberg type problem of the nonlinear Choquard equation, that is (1.1) with f = 0. In [15],
Gao and Yang study the existence and multiplicity results for the critical nonlocal equation.

The starting point of the variational approach to the problem (1.1) is the following well-known Hardy—
Littlewood—Sobolev inequality.

Proposition 1.1. (Hardy-Littlewood—Sobolev inequality). (See [19]) Let t,r > 1 and 0 < p < N with
1/t+u/N+1/r =2, f € LY(RY) and h € L"(RY). There exists a sharp constant C(t, N, ju,r), independent
of f,h, such that

// |x—y| d dy < C(t, N, p,7)|flel bl (1.3)

RN RN

Ift=r=2N/(2N — p), then

N N 1+4
C(t,N7M,r):C(N,u)=7T%1;E;_3§{Fr((sz))} '

In this case there is equality in (1.3) if and only if f = (const.)h and
h(z) = A + | — al?)~ N2
for some A€ C,0#~v€R and a € RV.

As in [14], we also use Sg, 1, to denote best constant defined by

Syp = inf . 1.4
HL = e D12 () (o) = (1.4)

//\u |2k u(y) [ dedy
|z — gy~

RN RN

In [14], the authors showed:

Proposition 1.2. The constant Sy 1, defined in (1.4) is achieved if and only if

N—-2

C 71) ’
v (b2+|x—a|2) ’
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where C' > 0 is a fized constant, a € RN and b € (0,00) are parameters. What’s more,

Sur=———%=">
C(N, p)2=r

where S is the best Sobolev constant.

In order to study the problem by variational methods, we introduce the energy functional associated
with equation (1.1) by

2 |u(x A 2
/|Vu| dz — 22* // |m— |“ (Ll LIS JARa dy — 3 /|u| dx—/fudx‘
Q

Q

Then the Hardy-Littlewood-Sobolev inequality implies Jy belongs to C'(Hg(2), R) with

(J3(u) /VuV(pdx // Ju() |u|x _|2y|u u)e (y)dxdy—/\/ugodx—/fgpdx
Q Q

for all ¢ € C§°(£2). And so u is a weak solution of (1.1) if and only if u is a critical point of functional
Ix.

3
Throughout this paper we denote the norm |jul| := (f |Vu|2dx) on H}(Q) and write | - |, for the
Q

L4(Q)-norm for ¢ € [1,00], always assume 2 C R is a smooth bounded domain containing 0 in its
interior. We denote positive constants by C,Cy,Cy,Cs,---.
The main results of this paper are stated in the following two theorems.

Theorem 1.3. Let Q C RN (N > 7) is a smooth bounded domain containing 0 in its interior, 0 < X < Ay,
0<pu<N, f(z) € L>®(Q) and f(x) £ 0. If, for any u € H () with ff wdxdy =1,

2271

2 ﬁﬁ
[ s < st =1 (15)
2.2/ -1
where Cn, 1= (350—) > 2 (2- 2% —2), then problem (1.1) exists at least one weak solution u in H(S2).

Moreover, u > 0 for f > 0.

Theorem 1.4. Let Q C RN (N > 7) is a smooth bounded domain containing 0 in its interior, 0 < A < Ay,
0<pu<N, f(x) € L>®(Q), f >0 and f(z) Z0. If, for any u € H} () with ffwdmdy =1,

|z—y[+

2.2% -1

/fudx< On u(|Jull® = Mul3) #2732, (1.6)

then problem (1.1) exists at least two nonnegative solutions in HE ().

In 2001, Zhang [37] proved that there are at least two solutions for the following equation
1 2 . 3
—Au+u= B s ul” Ju+g(z) in R, (1.7)

where g(z) > 0, g(z) # 0 and g(z) € H~*(R?). Later, Kiipper et al. [17] studied the existence of multiple
positive solutions for the problem (1.7) with g(z) replaced by Ag(z) and proved that there are positive
constants A* and A** such that the above equation possesses at least two positive solutions for A € (0, \*),
no positive solution for A > A\** and A = \* is a bifurcation point for the equation under study. The
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interest and motivation of the present paper goes back to the results for the local nonlinear Schrodinger
equation

—Au=[ul* 2u+ f(z), inQ (1.8)

Tarantello [31] proved the existence of multiple solutions for problem (1.8) by using the Ekeland’s varia-
tional principle and the Mountain Pass Theorem. Analogously, Kang and Deng [16] proved the existence
of multiple solutions for the singular critical inhomogeneous elliptic problems involving critical Sobolev—
Hardy exponents. Besides, we also want to mention [21,35,36] for the existence of solutions of the critical
Schrédinger-Poisson equations. In this paper, we are going to study the multiplicity results for solutions of
(1.1) in the spirit of [31] or [16]. In fact, we will use the Ekeland’s variational principle and the Mountain
Pass Theorem to prove the existence of the first solution for problem (1.1) and the existence of the second
solution for problem (1.1), in Sects. 2 and 3, respectively. Since problem (1.1) includes the nonlocal term,
our proof is different to [31] or [16]. In the proof of existence for the second solution, we will show that J
satisfies a compactness property, has suitable geometrical features and prove a local Palais—Smale (PS
for short) condition for ¢ € R under a critical level related with Sy, 1, defined in (1.4).

An outline of the paper is as follows: we establish the existence of the first solution for problem (1.1)
under condition (1.5) in Sect. 2; then we prove the existence of the second solution for problem (1.1)
under condition (1.6) in Sect. 3. In Sect. 4, we prove that assumed condition (2.9) holds by considering
a minimization problem.

2. Existence of the first solution

We devote this section to prove the existence of the first solution for problem (1.1) by the Ekeland’s
variational principle under assumption (1.5) and first begin with a standard method as well as some ideas
given in [31]. Let

2 2 * u(x |2 #lu(y | 1
L) = [lul® = Aul - (2-2; ey, e HY(Q),

N = {u € Hy(Q) : {J}(u), >:0}’
./\/'+ = {u e N : I\(u) > 0},

0= {ueN:I\(u) =0},
./\/'7 = {u e N :I)(u) <0},

co = ulg/vaA( w). (2.1)

We will prove that there exists ug € A such that ug is a minimizer for the minimizing problem (2.1)
and ug is a solution of problem (1.1).

Lemma 2.1. Assume that 0 < X\ < Ay, f(z) € L>(Q) and f(x) £ 0 satisfies condition (1.6). Then for
any u € HE(Q) with u # 0, there exists a unique t+ =t (u) > 0 such that t*(u)u € N,

1
L2F
2252

lull® - /\IUI§

lu(z y) %
(2- 2, -1 // ———dady
Ix*yl“

Q'a
Jx(tu). Moreover, if f satisfies (1.6) and [ fudx > 0, then there exists a unique

tt >

and J\(tTu) = max;>¢

max

Q
t= =1t (u) >0 such that t~ (u)u € N7, t7 < tyax and Jy(t7u) = info<i<q,.. Ja(tu).
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Proof. We set, for any u € Hg(£2)
L 2*
&(1) = t(ul* ~ Muf3) — 2% / / @)™ o,

|z — gy~

By direct computation, we know ® achieves its maximum at t,.x and

2.2% —2

2:2% —1 .

1 S HUII2 /\IUI )22 -
Pm) =\ =7) @2 & ’
\:E—yl“
that is
3.2%F —3
D) (el = A|u| )“ .

|u(x
// I:v—y\” Sy ey

where Cy,, is given in (1.5). If /fuda: < 0 then there exists a unique ¢t* = ¢T(u) > 0 such that
O(tt) = /fudx and ®'(¢tT) < 0. Thus t*(u)u € N~ and

In(ttu) > Ja(tu), YVt > tmax

If /fudx > 0 then by assumption (1.6)

IIUII2

|u(x
d dy
// I:v—yl“

Therefore, we have unique 0 < ¢t~ < typax < tT such that ¢~ (u)u € N7, T (uw)u € N,

O(th) = /fudx =Pt~
Q

P(tT) <0< ®(t7).

)22 -1

/fudx <Cnp = P (tmax)-
Q

and

We also have
In(t"u) < Ja(tw), Vi€ [0, tmax]
and
In(tTu) > Ja(tu), YVt > tmax
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Lemma 2.2. Assume that 0 < X\ < Ay, f(z) € L>®(Q) and f(x) # 0 satisfies condition (1.6). Then for
any u € N with u # 0, we have

2
> = Ajul} - (225 — 1 //'“ D)™ 4y 2 0. (2.2)

[z —y I*‘

Proof. Now, we argue by contradiction and we suppose that there exists some ug € N with ug # 0 such
that

;4.

* |u0 UO )|2;i
luoll® — Mol — (225 — 1 / / S gy~ (23)

Since ug € N, we get

u U :”
Juoll? = Moo 3 — / / o |x_' SO sy = [ fuad. (2.4
Q

yl

Gathering (2.3) and (2.4), we have

|2
(2-2; - //|u0 o )l dxdy:/fuodx (2.5)
|z —y|*
Q

and
(225~ D(uoll* = Nuof) = 2-2; ~ 1) [ fuod (2.6)
Q
We set
5 2 757
vozuo //\uo D) fuo(y)] dxdy
|z —y|~
and so
2-2;71
o 227,
g (@) 24 |ug (y)] 2 1 /
= 2.
// |x—y|ﬂ dzdy 72, 2 foodx (2.7)
Q
and
PE
v wo ()25 2 9.9% 1
//' . _' oW qray | (ool = Meol?) = oy [ fooda (2.8)
" Q

From (2.7) and (2.8), we obtain

2: 271 2 2 %
= (lvoll™ = Alwol3) %+ 7% = [ fuoda
(2- 2 — 1)222 Q

2,
//|U0 ~hule) dedy =1,
|z — y|#

which contradicts assumption (1.6) and the result follows. 0

and




ZAMP Multiple solutions for nonhomogeneous Page 7 of 25 61

Lemma 2.3. Assume that 0 < A < A1, f(z) € L=(R) and f(x) £ 0 satisfies condition (1.6). Then for any
u € N, In(u) # 0, there exist an € > 0 and a differentiable function t = t(v) > 0, v € HL(Q), |jv| < &
such that

t(0)=1, t)(u—v)eN

and

)% July) P+ uly)o(y)

(VuVu — Auv)dz — 2 - 27, [ule yiir 4 dzdy fvdx
M—M”
(t'(0),v) = — il
u(x
ul2 — Mulz — (2-2; — // ‘xi |H fu@)Pejuly) P 4 4y

Proof. Define the map F : R x H}(Q2) — R,
— 2i|(u — 2,
F(t,v) = t(|u — v||> = Mu —v|2) — t>2% _1//|u v) |(u = v) ()] dxdy—/f(u—v)dx
Q

W*M“

Since Lemma 2.2, we have

oF . u(x
O 1,0 = Jul? — M} — (22 1 //‘ Ll * dwdy £ 0.

Combining with the fact that F'(1,0) = 0, we can get the result of this lemma by applying the implicit
function theorem at the point (1,0). O

Lemma 2.4. Assume that 0 < A < A1, f(z) € L>®(Q) and f(x) #Z 0 satisfies condition (1.6). Then there
exist a minimizing sequence {u,} C N for (2.1) such that

(1) Ja(un) <co+ 2.

(2) Ja(v) > JA(un) — v —un|, Yo e N.

Proof. We need to prove that Jy is bounded from below in A. Firstly, for u € ' we have

i) = (5= g ) (P =Nl = (1= 55 ) [ Fus
" A

N+2— 9 oy SN +2-2pu
S re F — A\ e Ar
> g Ul = M) = S = s
N +2— 9 SN +2-2u
> S golul® = = s
(BN +2 —2pu)?
2 £ 11
8(2N (N +2—p)o
where o > 0 is some constant satisfying:
lull® = Xul3 > oflul]®.
Therefore,
. (3N +2 —2p)? 5
= inf > — _1

In order to find an upper bound for cg, let vg € H} () be the weak solution of the following problem:
7A’U0 = f in Q.
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By f(x) # 0, we have [ fuoda = |Jvg|| > 0. From Lemma 2.1, we can get a to = to(vg) such that tovg € N
Q

and I (tovg) > 0. Moreover,

t2 v o () 120
altors) = DIl = Neof) — 3t / / Y
Q
|vo (@)% Jvo ()| *
= B o7 — Al - 2// S g,
-
’UQ |’U0 H
— | Bl = Mool / / L 4y,
_ % 2 _ \wol? 1 22 |vo ()% |vo (y )Q’idd
—_E(HUOH — Awolz) + _27 |x— Y| rdy
t2
< - (HUOH2 )\|”Uo|§)+2_02*(HUO||2*)\|1)0|§)
I
11
= (22* - 2) t5(|lvoll* = Alvol3)
N+2— )
14 0.

Thus, cg < Jx(tovg) < 0. We can get a minimizing sequence {u,} C N satisfying conditions (1) and (2)
of the lemma by applying the Ekeland’s variational principle to the minimization problem (2.1). O

Lemma 2.5. Assume that 0 < A < A1, f(x) € L™(Q) and f(x) # 0 satisfies condition (1.6), {un} C N
is the minimizing sequence obtained by Lemma 2.4 and

E={uecHYQ //'“ |x_ M' dady = 1

If the following minimization problem.:

inf { ol — M) 7 / fudz b = po (2.9)

can be achieved, then we have
173 (un )l -1 — O
as n — oo.

Proof. Taking n large enough, from Lemma 2.4 we get

N+2—p

1
— mt%U”’UOH2 > Co + E > JA(UH)

2w (y)

[ty (2 2
” // m dxdy—/fundx

1
= 5 (unl* = Aunf3)



ZAMP Multiple solutions for nonhomogeneous Page 9 of 25 61

N+2—pu 5 5 3N+2—2M/
= a7 o n —A n T T A & nd
IN o (unll” = Alunl2) N o, ) Juede
Q
3N +2-2pu
>_=- = “F ndz, 2.10
> IN 2 /fu x (2.10)
Q
that is
N+2—-pn
Q
So we have u,, # 0. By (2.10), we have
N+2—p o N+2—p 2 2
RN n BN n _>\ n
gl < Sl = Aol
SN +2-2pu
< TET AR d
= TUN — 2 /f“ o
Q
3N +2—-2p
< gt Il el
that is
3N +2—-2p
Up|| £ ——— —1.
fuell < iy — e
Thus,
N+2—p , 2 p—1 3N +2-2pu
t < Nu, |l < -1 2.12
Ty o el P < fuall € So (212)
by (2.11).

In order to prove
73 (un)[[ -1 — 0

as n — 0o, arguing by contradiction, assume that ||J{(u,)||g-1 > 0 as n large enough. For u = u,, and

I3 (un)

v = emmeatT with € > 0 small enough, applying Lemma 2.3, we can get ¢,(¢) := t(v) such that
A nJIH—

ve == tp(€)(un — v) € N. By Lemma 2.4 (2) we have

1
E”vs - “nH > Ia(un) — Ja(ve)

= (1 =t (&) (Jx(ve), un) + €tn(e) <J§(vs)7 Mﬁfm> + o(e). (2.13)
We can derive as ¢ — 0,
1 1
g”vs —up|l = g”(tn(‘f) — Dup — to(e)v]|
PPN (U
g O e E v o

< [t (O)] - flunll + 1,
where

1T () [

.0 = (v0)
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Thus, dividing by € > 0 in (2.13) and passing to the limit as ¢ — 0, we derive

%(1 F 1 O] - flunll) = =5, (0) (I3 (un), tn) + 15 (wn) [ =1 = [1T3 (un) | -1

From (2.12), for some constant C' > 0 we also have

)=+ < = (14 1£4,0)).

Finally, we prove that {|¢/,(0)|} is bounded uniformly in n. In view of (2.12) and Lemma 2.3, we
conclude that for some constant Cy > 0,

£, (0)] <

2° :
un un H
unll? = Aunl3 — (225 — // | iz 7| )| dzdy

yl
Therefore, we only need to verify the following inequality:
|Ix(un)| > Co > 0.
Arguing by contradiction, for a subsequence, assume that
In(uy) = 0(1) (2.14)

as n — o0o. According to (2.12) and (2.14), there exists a constant C3 > 0 such that

2
[tn (@ |un vl dedy > Cs
ISU* |

and

225 —1 o TIp2

Hun‘|2_/\|un|§ 22* : // |t (@ )| ”
_— dzd =o(1). 2.15
(Mt SR gy o) (2.15)

In addition, from (2.14) and by the fact that u, € N, we get

25

i .
/fundx— 2.2% —2 //'“" " _Z"u DI 4ady + o(1). (2.16)

By (1.6) and (2.9) we can easily deduce that pg > 0. Now let

2N
22F (N+2—1) (N+2 M)

2:2;-1 " 2%
B(up) = Cnp (ltnl]? = Mun|2) 722 — //'“” [ fun (9) dzdy /fundx

|z —y|»

and

I‘ Un ) 2 o

|un n
i // T
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then we have

_3N42-24
|u ” Y ) 2; 225 (N+2—p) 2251
// : |x—yTu dzdy CNop (anHz Alvnl3 )22* - /fvnd:r
Q
~3Nt2-2u
[ ()20 [ () 2 ZERNERE
n n
// I:C -y drdy
_aN42-2u
> poCy * T s 0.
On the other hand, from (2.15) and (2.16) we derive
2:2% —1
2:2,-1 i 21y )27 zz}lﬁ
22F —2 " .

Q

g oy [ (IallP = a3y 7= [ ()] fun >|Zdo1 = A
=(2-2;-2) ( 23, 1 ) - |x—y|ﬂ my) =o(1).

This is a contradiction, and we conclude that {|¢],(0)|} is bounded uniformly in n. The result follows. O

The proof of verification (2.9) will be given in Sect. 4. Firstly, we prove Theorem 1.3 under assumption
(2.9).
Proof of Theorem 1.5. By Lemmas 2.4 and 2.5, we obtain a minimizing sequence {u,} C N for (2.1)
such that

(1) hmn_,oo J)\(Un) = Cp,
(2) limy oo |4 (1) 111 = 0.
Let up € H(2) be the weak limit of {u,,} in Hg(Q). From (2.11), we have [ fuodz > 0. We have
)

(J5(ug),v) =0, Vv e Hg(Q)
by Lemma 2.4. It means that ug is a weak solution of (1.1) and ug € A. Therefore,

N+2—p, , 3N+2—2u/
< =~ - - d
co < Jx(uo) IN o (luoll® = Aluol3) IN 2 fuodw

< lim Jy(up) = co.

n—oo

E: 5:5:1‘:5 ¢ Un, UQSJZg) 0( ) :

From Lemma 2.1 and ||J5 (uy)|| -1 — 0, we have ug € N'F.
Moreover, if f > 0, take, to =t~ (|Jug|) with to|lug] € NT. Since tg < tmax and tymax > 1, and so

Ia(toluol) < Jx(Juol) < Jx(uo).
Then we can take ug > 0.

Next, we prove the case where f satisfying

22—1

/fudx = O ([Jull? — Nuf2) 752
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As a consequence, we have f, := (1 —¢) f satisfies (1.6) for any € (0,1). Let
1 1 [u) P uly) P>
Ine(u) = §(|‘u||2 — )\|u|g) ~ 5 22 // o — gl dady — /fsudx, Yu € H&(Q)
Q0 Q

and
u. € NF = {u € HLQ) : <J§\T€(u)7u> =0, I\(u) >0}
satisfies
Ine(ue) = uglj\f/g Ixne(u) =ce
and

(J3 o(ue),v) =0, Vv e Hj(Q). (2.17)
Obviously, there exists a constant C'3 > 0 such that |Ju.|| < Cj for any € € (0,1). For all u € Nt we have
that [ fudz > 0, which implies (1 —¢) [ fudz > 0 for any ¢ € (0,1). Applying Lemma 2.1 with f = f,
we ca?l get t2 € (0, tmax) such that t;uQG N, By the fact that tpax > 1 we deduce that
Ineltzu) < JIxe(u),
and so
ce < Ine(tou) < Ixe(u) < Ja(w) +ellflla-r|lull < Jx(u) +eCl,

where (Y is a positive constant. Applying the proof of Lemma 2.4 with f = f., from the above inequality
we get
B (3N +2 —2p)? 1l < — (3N +2 —2p)?
82N — pu)(N +2—p)a """ = 82N — u)(N +2 — p)

As n — oo, taking &, — 0 such that for some ug € H}(2) we have

pu Hfa”%pl <. <cg+eCy.

Ce,, — C< 0o
and u., — ug weakly in Hg (). From (2.17) we obtain
(J5 (ug),v) =0, Vv e Hi(Q),

furthermore, Jy(ug) < ¢o and ug € N. This implies Jy(ug) = co Thus, u., — ug strongly in H}(Q). The
proof of this theorem is now complete. O

3. Existence of the second solution

In this section, we shall prove the existence of the second solution for problem (1.1) under assumption
(1.6) by the mountain pass lemma. Firstly, we give a Brézis—Lieb type lemma about the nonlocal term
I (|| =" # u)?*)|u|?dz proved in [14]:

RN

Lemma 3.1. (See [14]) Let N >3 and 0 < pu < N. If {u,} is a bounded sequence in L%(RN) such that
Un, — u almost everywhere in RY as n — oo, then the following hold,

/ (I 7 ot 2 i 25 e — / (7 % oty — 25 ot — Pl — / (I 7 5 a5 )|l da
RN RN RN

as n — oQ.

Lemma 3.2. Assume that 0 < A < Ay, f(x) € L™(Q) and f(x) £ 0 satisfies condition (1.6). Then ug,
the solution of problem (1.1) obtained in Sect. 2, is a local minimizer of J.
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Proof. From Lemma 2.1, for any u € Hj(Q) satisfies [ fudz > 0, there exists a unique ¢~ (u) € (0, tymax(u))
Q
such that ¢~ (u)u € N and
Ia(tu) > Iyt uw), Yt € (0, tmax(u)).

For any uy € N we have

2 2
= (up) =1 < o] A'“‘)'? = Alup).

.
(2- 2*— //\uo |u0 vl dzdy
|z — y|~

Choosing € > 0 small enough such that the following inequality holds for any ||v|| < e:

1< A(ug —v). (3.1)

By Lemma 2.3, for all ||v|| < & we have ¢(v)(up —v) € N. Since t(v) — 1 as ||v|| — 0, we can assume that
the following inequality

t(v) < A(ug — v).
holds for all ||v|| < e, v € H}(Q). Then t(v)(up — v) € Nt and for any t:
0<t<A(ug —v)
we have
Ia(t(uo — v)) = Jx(t(v)(uo — v)) = Jx(uo).
From (3.1), we can take t = 1 in the above inequality, and then for all v € H}(Q) with |[v]| < &, we get
Ix(ug —v) > Jx(ug).

The proof is completed. O

Lemma 3.3. Assume that 0 < A\ < A1, f(z) € L>®(Q) and f(x) # 0 satisfies condition (1.6). If {uy} is
a (PS). sequence of Jy, then {u,} is bounded. Let ug € HE(Q) be the weak limit of {u,}, then ug is a
weak solution of problem (1.1).

Proof. 1t is easy to see that there exists C7 > 0 such that
u
[Ia(un)] < Cry - |[{ i), 70| < Cr
[[un]|
By direct computation, we have

1 N+2— |t (2 |un Z 1
Ia(up) — §<J,/\(un)7un> ~ IN — 2 // |x - dady — §/fundx
Q

<Ci(1+ ||un||)~

According to the Holder inequality we get

N+2—p
AN —2p

un (z |un )|2’*‘ 1
// S gy < a1+ unl) + 311 o
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and then, we can obtain

pollunl® < [lunll* - AIunl2

U (2 U ( 2,
//l Iz _‘ )‘ dxdy+/fund$+<J$\(un)vun>
Q

y[H

2N — p

4N 2
< a1+ unl) + (g + 1) I ual +

“N+2-

So {u,} is bounded in H} ().

Since H} (L) is reflexive, up to a subsequence, still denoted by u,, there exists ug € Hg () such that
U, — up in H}(Q) and u,, — ug in L* (Q) as n — +oo. Then

% in LTn(Q)

2; N |u0

|tn,

as n — 4o00. By the Hardy—Littlewood—Sobolev inequality, the Riesz potential defines a linear continuous
2N 2N
map from L28-¢(Q) to L» (£2), we know that
# |un |2 — 2| " Jug|?  in s
x| 2 s 2o in L (Q
as n — +o0o. Combining with the fact that
ni*unéuo :*uo m P ,
. |2n—2 2% -2 in L 0
as n — +00, we have
e I T D | (T e T (i

22y in L¥2(Q)

2*)

as n — +o00. Since, for any ¢ € H}(Q),
22
0 «— (J5(un), /Vuanpd:c—/\/ungadx—// [un( zy” un(y)W(y)dxdy— /f(pdx.
Q

Passing to the limit as n — 400 we obtain

2 2
Q Q Q

\x —yl“

for any p € H}(Q), which means ug is a weak solution of problem (1.1). O

Lemma 3.4. Assume that 0 < A < Ay, f(z) € L>®(Q) and f(z) # 0 satisfies condition (1.6). If {u,} is a
(PS). sequence with
N+2—p 2

UN — oy DHL (3.2)

c<co+

Then {un} has a convergent subsequence.

Proof. Let ug be the weak limit of {u, } obtained in Lemma 3.3 and define v,, := u,, — ug, then we know
v, — 0 in H () and v,, — 0 a.e. in . Moreover, by the Brézis—Lieb Lemma in [6] and Lemma 3.1, we
know

/\Vun|2d:1::/|an\2dx—|—/\Vu0|2da:+0n(1),
Q Q Q

/|un|2dx:/|vn|2dx+/|u0|2dx+on(1),
Q Q Q
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u” Un 2: Un Un 2 U 2, (7 22
//| ) dxdy‘//l i dxdw//' oy e +onl),

Combining with the fact that
/fundz = /fvndz + / fuodax,

Q Q Q
we have
¢ — Jx(up)
1 9 9 1 9 |y, (2 2, Un( )2;
= g lenl® = Al + 5l = Nld) — 57 / / S oy
//|u0 \uo ) dxdy — /fvndx—/fuodx—i-on( )
2. 2% |z — y|
)2 2"
2 [un (@) [+ [vn (y) [+
o) + 3l - 7 / / LI dady + 0,1, (33

since /’U — 0 and /f’l)nd:L‘ — 0, as n — +o0. Similarly, since (J} (uo), uo) = 0, we have
Q Q

on(1) = (Jy (un), up)

U ( U ( 2
— (T} o), o) + (ol — Alval3 — //‘ |x_| D dndy — [ fonda+ 0,01
Q

ylH

v v, (y)] 2
= |lon* - //' (@) |0 ) dzdy + 0,(1). (3.4)

—ylr

From (3.4), we know there exists a nonnegative constant b such that

”UnHz —b

)25 [ ()| 2
I:E - \“

as n — +o0o. From (3.3), we obtain

and

N+2—pu
> P
c> IN — 2 b-i-J)\( )

On the other hand, by Lemma 3.3, we know ug € N and so
co < JIx(uo)-
Thus,

N+2—p
> TRy
= 4N 24
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By the definition of the best constant Sy 1, in (1.4), we have

N—2

u ’Un ) 2 o

[vn (2 - dzdy < | Vo, |?dz,
Ix —yl
Q

2N —pu
which yields b > Sy b2V=r N Thus, we have either b = 0 or b > SN e . If b = 0, the proof is complete.

2N —
Otherwise b > S;IV,_Lva then we obtain from (3.5),

_ AN —p _
N+2—p W§N+2 ,ub<c o,
AN — 2y "H AN — 24

L

2N—p
which contradicts with the fact that ¢ < 4N225SN+2 * + ¢o. Thus b = 0, and

[tn = uoll — 0
as n — +o0o. This ends the proof of Lemma 3.4.

O

Lemma 3.5. Let 0 < A < A1, f(x) € L™(Q), f(x) >0 and f(x) £ 0 satisfies condition (1.6). Then, there
exists vo € HY(Q), vo >0, vg # 0 such that

N +2 2N—pu
sup Jx(ug + tvg) < co + MSN“ "

sy i . (3.6)

Proof. From Lemma 3.1 of [14], we know if N > 4 and A > 0, then, there exists vy € H(Q)\{0} with

vo > 0 and vy #Z 0 such that
/|Vu0|2dm—)\/\vo|2dx

Q

2,
//|U0 % uo ()| dedy
|z — yl~

From the definition of Jy, we can get a constant ¢ty > 0 such that

Jx(ug + tovg) = sup Jy(ug + tvg).
t>0

From f > 0, we have ug > 0. Since (a + b)? > aP + bP + aP?~'b for every a,b > 0 and p > 1, then

//|(tovo+uo)(x)2;|(tovo+uo)(y)|2 dxdy>//‘u0 \2 #|uo(y )|2:dxdy

|z —yl* |z =yl

Q Q Q Q
% tovo (y) #ug ()]~ tovo ()|

" 2" 2" 2% _
//|0vo | . ,dxdy+//|u0(y) | x - T dedy.
r—Yy r—y
Q'
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On the other hand, we have
Ix(uo + tovo)

1 A 1 () +t0’l)0 2/‘ (') +t0"UO Yy 2;
:§\|uo+tovo||2*§\u0+tovo\§*2 > //| clnal )W) dxdy
T

|z —yl»
—/f(uo + tovo)dx
Q

1 , 12 9 Ao Atg
:*HUOH Jr*HUOH + 1o VvoVuodx—§\u0|2 lvol3 — Mo [ uovodz
Q

2H
3 //|Uo+tovo 2)[%|(uo + tovo) (y)| > dady — /fuodx—to/fvodx

|z —yl|~
t )\t |UO |UO )|2:‘
<= 240 Z0 // dad
< 2HUOH + 5 llvoll* = |U0\z 5 [vol3 = 5 2 |x_y|u ady
|vo (2 2 vo( y)|2“ /
dady — d
2 2*// |x— |N ray fuo €
Q

t2 Jvo (@) |+ o () [
—J 2\ dady.
2 00) + ol ~ Mool — 5 ) é Py

Since wy is a solution of (1.1), we have

2N—p
Nt2—n

/|Vv0|2dm—)\/vgdx
N+2—p Q
AN —2p N

2,
//\Uo \Uo y)| dzdy
|z —y|~

N+2—p 28

N+2—n

AN —2p ~HL

I (ug + tove) < co +

< o+
The result follows.

Proof of Theorem 1.4. By Lemma 3.2, we know there exist o, p > 0 such that
Ia(uo +u) — Jr(ug) >
for any u € H}(Q) with |Jul| = p. From the definition of Jy, we can get a constant wg such that

J)\(UJO + wo) — J,\(uo) < 0.

61

Thus, by the mountain pass theorem without (P.S) condition (cf. [33]), there exist a (PS) sequence {uy }

such that Jy(u,) — ¢ and J5(u,) — 0 in HJ(2)~! at the minimax level

= inf
= Jaf i H0(0) >0,
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where
I':= {y € C([0,1], Hy (2)) : 7(0) = 0, Ja(y(1)) < 0}.

2N—p
From Lemma 3.5 and the definition of ¢, we know ¢y < ¢ < ¢g + JZ&”‘Q 2551\’“ *. Applying Lemma

3.4, we know {un} contains a convergent subsequence. And so, we have J, has a critical value ¢ €

(co,co + 4N22;‘SN+2 “) and problem (1.1) has a nontrivial solution u; and moreover, u; # ug. By the
Proof of Theorem 1.3, we know u; > 0. O

4. A minimization problem

In this section, we denote to prove that (2.9) holds under assumptions of Theorem 1.3.

Lemma 4.1. Assume that 0 < A < A1, f(x) € L>(Q), f(x) # 0 satisfies condition (1.6) and

2%
E={ueH\Q //'“ |x_“u| dady =1

Then the following minimization problem:
2-2;—1
inf § (el = Mul}) 7% — [ fude = gy (4.1)
ue

can be achieved at some function u, € H}(S2).

Proof. We denote

2-2;71
J(u) = o ([lul]? — Mul2) 727 — / Jude
Q

227, |u(z y)| %
lull v —// \x— |u — . —dady

for all u € HJ (). Now, let {u,} be a minimizing sequence of (4.1), ug be the weak limit of {u,} and
define v, := u,, — up, then we know v,, — 0 in H}(Q) and v, — 0 a.e. in Q. We have |Juo||yz < 1 and
only need to prove ||ug||yr = 1. Arguing by contradiction, we assume that |ug|xz < 1. By (4.1), we
have

and

2.2% —1
o+ 0n(1) = Ol = Aun )75 / funda
2- 2 —1
— Gyl + ol = Auo )52 / Fuode + oa(1).
On the other hand, from Lemma 3.1, we get

2:27% 2.2% 2.2*
1= [lunllng = lluollyi + lloallyg + on(1),

which implies

2:2% | 5 2%\ o
(lonlly )5 = (1 - HUOHNL )%+ 0p(1).
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So, by the definition of Sy 1, we have

22*—1

o* _L
po+0n(1) > Crveye (I1woll? + S (1 = ol N F ) — Ao 3) / Fuoda + 0, (1),

that is

22*—1

1
O (ol + S (1 = o3 )% = Nuol3) / fuodz < po. (42)

Asisknown to all, U(z) = % is a minimizer for S, the best Sobolev constant. By Proposition
(1+|z
1.2, we know that U(z) is also a minimizer for Sy, . We assume that Bs C € C Bjys for some positive

constant k. Let ¢ € C§°(£2) such that

. 1 if x € By,
d’(x){o if zeRV\Q,
0<y(z)<1 vz e RN,
|Dyp(x)] < C = const vz € RY.

We define, for € > 0,

From [14], we know that as ¢ — 07,

/ Jue ¥ dz = C(N, )55 3 52 |+ O(Y), (4.4)

// e (@)% fue(9) P dedy < C(N, )3 S, T +o( *) (4.5)
va—yl“ mE '
RN RN
and
2 2N—u u

// Jue (= | _“jt W geay > ov ¥ 857" —o (1), (4.6)
RN RN v

where C'(N, p1) is defined in Proposition 1.1.
Set v (z) = usi(x) . Gathering Lemma 11.1 in [13] and Lemma 11.2 in [13] with the fact (4.4) to (4.6),

[luelln
we have that as ¢ — ()Jr

[vel[ne =1, (4.7)
vl = Su.p+0 (77°), (4.8)
oy =0 (=7%) (4.9)

and
O (e2 if N =3,

/I%Izdx: O(eline|) if N =4, (4.10)
O(e) if N >5.
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For any C' > 0 and u € H}(Q), it is easy to show that v. is bounded in H{(Q) for € > 0 and v. — 0
almost everywhere in Q as e — 01. By Proposition 5.4.7 in [34], we know for every sequence {&, },—1
with g, — 0T,

/|u\ e 2NN“dac—>O

and

2N N[;M‘ze.ZI%N
|u| 2V =k v, N “#dx — 0.

Q
So we have as ¢ — 07,
2N
/|u|N N R 2N g — 0 (4.11)
and
2N Noud2. 2N
|u| 2v =5 ve “dx — 0. (4.12)

By the Hardy—Littlewood—Sobolev inequality, the Riesz potential defines a linear continuous map from
2N 2N
L=5 () to L» (Q), we know that as ¢ — 0T

[ o2 =0 in L(Q),

//ﬂu|xywﬂ2¢MyH0 (4.13)

For any u € H}(Q) with ||u||xyz < 1, we have that there exists C. > 0 such that |Ju + C’EUEH?&; =1.
It follows from [7] and (4.8) that as ¢ — 0T

lu+ Ceve|l* = llull* + C2llve |l + 0a (1) = [[ull® + C2Sp,z + on(1). (4.14)

On the other hand, gathering (4.11), (4.12), (4.13), the Hardy-Littlewood—Sobolev inequality and the
fact that as e — 07,

that is,

* 2* 1 *
u+ Ceve = |u 2 2y, + C2" 2, |ve 207200 + we,

2+ Celve|® + Ce2|u

where w, = 0(6'52:;|u|2:_21wE + CSQ“_IZ* |v5|2i_206u), we have

2.2*
lu+ Cevellng = lullng +C2 ™ locll 3y + on(1).
Thus,

L
3
2n

2.2*
C2 = (1= Julyz) ™ +ou()). (4.15)

From (4.15) and (4.14) we have

1
*
2h

-+ Covl =l + Sz (1= Jull¥7) ™ +on(1).
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which implies

2.2% —1
po < Onu(llu+ Cove || — AMu + Cove|3) %72 — /f(u + Cove)dx
Q
2.2% —1
" 225 —2

2.2\ 7%
= e (Il S (1 1l E ) =) = [ sudo 0,00,

Q
Taking the limit as € — 0, for any u € H}(Q) with [Jul[xz < 1 we get

2.2% —1
2.

oy L Tor =3
2-2 2% I3
po < oy (Il + S (1= 5E)F =) ™ = [ foa.
Q

On the other hand, from (4.2) we conclude that
2.2/ -1
*\ B 22%F -2
2.2%\ 27 i
Cov (IlP + S (1= 1) = ul2) ™ = [ fuda = o
Q
Hence for any v € Hg () we have

2.2% —1

d 9 2.2* % ) 727 -2
e (o + 0] + S, (1= o + twll 37 ) = Ao + tof3 — [ fluo + tv)da

dt

which implies that ug € H}(Q) is a weak solution of the following equation

o

I x 1

—Au = u+6; / uw)l dy | [ul*2u+ —f, inQ,
A |z —yl# )

where
225\ 25 !
0= S, (1= lluoll 7)™ >0

and

2.2% —1

M 9 2.2%\ 25 1 5\ %2
02 1= —=Cnv luoll® + S (1= uoll 37 ) = Ao} )" >0,
w

Since f € L*>(Q2), we have

2% . 1 2,
A+ 0 / YW G ) uZi2u 4+ 2 7| < (1 + Ju]) + 61 / )™
|z —y|» 02 |z —y|*
Q Q
and so by Lemma 4.4 [15], we can obtain ug € L>(2).
From (4.10), we have, if N > 4,

0 (7)) = of|o-I3)
and if N > 7,

0 (") = oflv-3).

t=0

(4.16)

|
=

(4.17)

(4.18)

(4.19)
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By ug € L>(Q2) and (4.9), we have

2 25,2 . 1 N-—2
/ / oW B gy <, [ L [far < [luae =0 (52,

Qq Q Q

where Q) := {z € RN : 2 = 2 — y,Vz,y € Q} and so, we have

// |uo (@) [* [uo (y )|2*_2u0(y)v5(y)dxdy = o(|v?) (4.20)

|z —y|»

when N > 7. Analogously, we have

/fvsdx = o(|v|3) (4.21)

Q

when N > 7. Since f # 0, we get ug # 0. Noting that C. satisfies ||ug + C.vc||nyr = 1 for € > 0 small
enough, we shall get a contradiction by showing

J(up + Ceve) < po.
Let C2 := (1 — ||u0||?\,2£) #, it follows from (4.15) that C. — Cy as ¢ — 0. Denote C. = Cy(1 — ¢.),
where §. — 0 as ¢ — 0, then we have

J(UQ + CEUE)

= Cn,pu(|luo + CEUEH2 — AMuo + C’E116|§)2"“21*2 — /f(uo + Ceve)dx
Q

=Cnu Huon+C52||v8H2+2CE/Vu0vadx—)\|uo|§ —)\CE|UE\§ —QACE/uovsdx

—/f(uo + C.v.)dx
Q

= COnp | Juoll? + C2(1 = 6.)28 + 0 (aNz‘z) + QCE/Vrovsd:z: — 2. /uovsdx
Q Q

22*—1

—Auol3 — AC?|v:3) = /f (uo + Ceve)da

= Covu (o2 + CFS = Auol3) — 2C36.8 + €392 + 0 (777 ) = AC2|v. 3

—|—205/Vu0V115d1: — 2/\05/uovgdx) TR /f(uo + C.v.)dw
Q
2 ;22_; 2 .2* 2 22* 2
— Oy (ol + GBS = Muol}) 7% — [ fuode + o (u + C3S — Muol})
n

Q
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X ( (—203555 +C2625 4+ 0 (a”;) - A03|v6|§) + (205 / VauoVu.dz — 2XC- / uovgdx)>
Q Q

+A, — C’E/fvadx
Q

9 N—2
= po+ 2 (~2036.5 + Ca25 + 0 (") = AC2Iucl3) + .65 /VuOvadx
Q
/
A [ wovedzr — [ ——vdx | + As
02
Q Q

N—2

= oo+ %2 (_203555 L2625+ 0 (5 ) - Acg\%@) 4 C.60,0, / o2 ~2uguoda + A,
Q

where

A, =0 (—=2C26.5 +C25%8 + O (¢
0 0%

) — AC%v.|2) + <2C€/Vu0Vv5da: —2)\C. /uovgdx>)
Q Q

o((—2C§555 L2528 10 (EL) CAC?0[2)

+(20591// Iuo(:r)IQZIuO(y)IZZ‘QuO(y)vs(y)dmdy+206/efzvedx))
Q Q

|z —y|»
Q

= 0(02) + o(Jve 3),
since (4.18), (4.20) and (4.21). Then we have

J(ug + Ceve) = po + %2 (—203555 +C2625 40 (5¥) - )\052|v5|§)

+C€9291// Iuo(w)\zf‘\uO(y)\zf"zuO(y)ve(y)dxdy+0(56)+O(|UE|§)
Q

|z — yl~
Q

= po — 02C590: + 0(3:) — ACZ|ve 3 + of|ve3).

Hence J(ug + C.v:) < po as e small enough, this is a contradiction. So minimization problem (4.1) can
be achieved. The result follows. O
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