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Strong Cosserat elastic effects in a unidirectional composite
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Abstract. Strong Cosserat elastic effects are observed in a designed composite consisting of unidirectional corrugated tubes
in a hexagonal array. The torsional characteristic length is much larger than the tube diameter. The effective coupling
number N approaches its upper bound of 1. Extremely large size effects are observed, about a factor of 128 in torsion.
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1. Introduction

All physical materials have microstructure, but for many practical purposes it is useful to represent them
as continuous media. Continuum theories with different degrees of freedom are available. An early theory
of Navier [1], known as uniconstant elasticity, was based on a theory assuming that forces act along the
lines joining pairs of atoms and are proportional to changes in distance between them. It only allowed one
elastic constant, a modulus. The theory was abandoned since it predicted a Poisson’s ratio of 1/4 for all
isotropic materials and experiments disclosed a range of Poisson’s ratios. The currently accepted classical
theory of elasticity has two independent isotropic elastic constants and allows for Poisson’s ratios in
isotropic materials to range from −1 to 1/2. Cosserat elasticity has more freedom than classical elasticity.
The Cosserat theory [2], (with inertia terms called micropolar [3]) incorporates local rotations of points
and a couple stress (a torque per unit area) as well as the translation and force stress (force per unit area)
of classical elasticity; there are six independent isotropic elastic constants. A simpler variant presented
by Koiter assumed that all the macrorotation and microrotation vectors are equal. This corresponds to
N = 1, or equivalently κ approaching infinity in Cosserat elasticity. The Koiter [4] variant is called couple
stress elasticity in which there are two characteristic lengths in addition to the classical constants: four
isotropic elastic constants. The microstructure elasticity theory of Mindlin [5], also called micromorphic
elasticity, has more freedom than classical or Cosserat elasticity; it allows points to translate, rotate,
and deform within the media. This adds a high degree of complexity; for an isotropic solid, there are 18
micromorphic elastic constants compared with 6 for Cosserat elasticity and only 2 for classical elasticity.

The physical origin of the Cosserat couple stress is the summation of bending and twisting moments
transmitted by the structural elements or ribs in materials. The local rotation in the Cosserat continuum
corresponds to the rotation of the structural elements. Forces and moments are also considered in the
classic analyses of foam by Gibson and Ashby [6] in which classical elastic moduli were determined; effects
of rotation gradients were not considered.

The constitutive equations for an anisotropic [3] Cosserat elastic solid are as follows.

σij = Cijklεkl + Pijklφk,l, (1)
mij = Qijklφk,l + Pijklεkl, (2)
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in which Cijkl is the elastic modulus tensor, εkl is strain, σij is stress (symmetric in classical elasticity
but asymmetric here), and the usual Einstein summation convention assumed in which repeated indices
are summed over. mij is the couple stress tensor, moment per unit area, asymmetric in general. Pijkl

and Qijkl are Cosserat elastic constants that provide sensitivity to local (micro) rotation gradient. The
Cosserat microrotation vector φi is kinematically distinct from the macrorotation vector ri = (eijkuk,j)/2
associated with the motion of neighboring points.

The isotropic form [3] of the constitutive equations is as follows.

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (3)

mij = αφk,kδij + βφi,j + γφj,i (4)

There are six independent isotropic Cosserat elastic constants λ, G, α, β, γ, κ. Physically, λ, a Lamé
constant from elasticity theory, is an elastic modulus component which couples a strain in one direction
with stress in a perpendicular direction with all other strains held constant. The physical meaning of
G, shear modulus, is the resistance to shear deformation. α, β, and γ provide sensitivity to rotation
gradients while κ is a modulus which quantifies the coupling between macro- and microrotation fields [7].
The following technical constants, beneficial for physical insight, are obtained from them. As in classical
elasticity, several are interrelated; specifically of the seven below, the classical relation between E, G and
ν applies.

Young’s modulus E =
G(3λ + 2G)

λ + G
(5)

Shear modulus G (6)

Poisson’s ratio ν =
λ

2(λ + G)
(7)

Characteristic length, torsion �t =

√
β + γ

2G
(8)

Characteristic length, bending �b =
√

γ

4G
(9)

Coupling number N =
√

κ

2G + κ
(10)

Polar ratio Ψ =
β + γ

α + β + γ
. (11)

Cosserat elasticity has the following consequences. A size effect is predicted in the torsion [8] and
bending [9] of circular cylinders of Cosserat elastic materials. Slender cylinders appear to be stiffer than
expected classically. A similar size effect is also predicted in the bending of plates. No size effect is
predicted in tension or compression. The stress concentration factor for a circular hole is smaller than
the classical value, and the small holes exhibit less stress concentration than larger ones [10]. However,
classical elastic solids do not exhibit size effects in torsion or bending; structural rigidity goes as the
fourth power of the radius. Also, in classical elasticity, stress concentration is independent of hole size.

Cosserat elastic effects have been observed experimentally. Size effects observed to occur in torsion and
bending of closed cell foams [11,12], open cell foam [13], negative Poisson’s ratio foam [14], and compact
bone [15] are consistent with Cosserat elasticity. The apparent modulus increases substantially as the
specimen diameter becomes smaller, in contrast to the prediction of classical elasticity. Large material
microstructure size does not guarantee Cosserat elasticity: a composite containing aluminum beads in an
epoxy matrix was tested for such effects and found to behave according to classical elasticity [8]. Although
Cosserat effects are not guaranteed in materials with large microstructure, the work presented here will
demonstrate that these materials can not only demonstrate the aforementioned effects, but also show
effects of large magnitude.
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Fig. 1. Composite containing unidirectional tubular inclusions with increment of force dF and increment of moment dM

The Cosserat characteristic length was determined in a two-dimensional polymer honeycomb [16]. Full-
field measurements of deformation reveal non-classical elastic effects that are consistent with Cosserat
elasticity. Warp of a bar of rectangular cross section in torsion is predicted to be reduced in a Cosserat
elastic solid [17]. The corresponding non-classical strain field was observed in a compact bone [18]. Defor-
mation spills over into the corner region where it would be zero in classical elasticity [19] as revealed by
holography. This improves strain concentration. Strain at the corner entails asymmetry of the stress as
predicted by Cosserat elasticity. The reduction of warp deformation has been observed via holography
[20]. As for plastic deformation, rotational plastic deformation mechanisms were interpreted via gradients
in a micropolar continuum theory [21].

The present research deals with experimental study of size effects and Cosserat elasticity in a designed
composite consisting of unidirectional corrugated tubes and silicone rubber matrix in hexagonal arrays.
Each tube is intended to carry a force and a moment as shown in Fig. 1.

2. Methods

2.1. Materials and experiment

Corrugated nylon tubing, manufactured by Waytek [22], with inner diameter of 3.18 mm (0.125 in), outer
diameter of 6.7 mm, and density of approximately 0.26 g/cm3 was used. Lengths of tubing were cut with
a hot wire cutter such that the length of the array of tubes was three times longer than the average
diameter of the sample. The corrugated tubing came coiled and was straightened by running a brass tube
with an outer diameter of approximately 3 mm through 20 cm lengths of the tubing and heating it in
a convection oven at 105 ◦C for 2 h. After 2 h the straightening apparatus was removed and allowed to
cool for 15 min before removing the straightened section of corrugated tubing. Four samples were created
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Fig. 2. a Largest specimen of aligned corrugated tubing and silicone rubber matrix composite. b Cross section of largest
sample

and tested beginning with a single tube, followed by an array of three tubes arranged in a triangular
formation, then seven tubes arranged in a hexagonal pattern, and finally 19 tubes again arranged in a
hexagonal formation. The largest of these specimens is shown in Fig. 2a as well as its hexagonal array
cross section, Fig. 2b. Because the broadband viscoelastic spectrometer (BVS) used for testing could not
accommodate larger specimens than the one in Fig. 2a, the number of specimens was limited to four. A
fifth datum was obtained for the asymptotic modulus in the absence of gradients. This was done by a
compression test for axial deformation and by a composite analysis for shear deformation. The lengths
of tubing were glued together with approximately 1 mm spacing between each tube using Loctite clear
silicone sealant. The entire sample was allowed to cure for 2 days per product directions prior to testing.
The resulting specimens had an average density of 0.46±0.07 g/cm3. After curing, the ends of the samples
were sanded flat using metallography sanding wheels. Circular end pieces larger than the diameter of the
sample were cut from 0.6 mm thick aluminum plate and cemented to both bases of the sample using
cyanoacrylate (Loctite 401) over the entire surface. Pressure was applied to the end pieces to ensure good
adhesion. A catalyst was applied to the surfaces to reduce the amount of cement used and to improve
the bond.

These specimens were tested for torsional and bending rigidity using a broadband viscoelastic spec-
trometer (BVS). This instrument makes use of a dual Helmholtz coil acting upon a magnet attached to
the specimen to generate torque. The coil spacing is smaller than the larger specimens so a short alumina
stalk with a magnet on the end was fixed to one of the aluminum end plates. Because the rigidity of the
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specimens was not sufficiently different from the rigidities of the alumina stalk or cement bond between
stalk and end plate, a mirror was fixed to the edge of the face opposite of the alumina stalk on the same
end plate. This placement eliminated any measured loss of motion from the magnet to the specimen.
The magnet was calibrated using the BVS and a lock-in amplifier. The magnetic calibration constants of
this particular magnet were obtained by testing a 6061 aluminum alloy rod of known elastic properties;
the calibration constants were 8.18 × 10−6 Nm/A in torsion and 1.33 × 10−5 Nm/A in bending. The free
end plate of specimens was cemented to a steel adapter which was screwed into a 25 mm thick steel
rod for holding the specimen inside the BVS. Prior to testing, viscoelastic strain was allowed to recover
overnight to enable stable measurements. The specimen was lowered into the BVS such that the magnet
was centered in the Helmholtz coils of the BVS. The lower limit on specimen size was limited to the
diameter of an individual corrugated tube.

Deformation was measured using the BVS via a semiconductor laser beam reflected from the mirror
attached to the lower aluminum end plate onto a four quadrant silicon light detector. Prior to each test
the silicon light detector was calibrated by aligning the laser beam so that its position could be measured.
The light detector was moved a known amount in either the horizontal or vertical direction, for torsion
and bending, respectively, using a calibrated stage. The resulting measurement of output voltage per
change in position, measured in μm, was used as the beam position calibration constant (V/μm).

To test the specimens, a sinusoidal signal with a frequency of 1 Hz, well below any resonant frequencies,
from a function generator (SRS Model DS345) was input to the torsion Helmholtz coil. Because the same
frequency was used for all specimens, viscoelastic effects are decoupled from the size effects to be probed.
The torque signal was obtained as the voltage across a 1Ω resistor in series with the coil to eliminate effects
of inductive reactance from the coil. The torque signal versus angular displacement signal was displayed
on a digital oscilloscope (Tektronix TDS3014B) using DC coupling. The torque and angle signals were
displayed as a Lissajous figure and used to calculate the modulus of the specimen. The maximum strain
during testing was less than 1.1 × 10−7. This is well within the range of linearity for this material. For
bending, the light detector mode was switched to vertical detection and the beam position calibration
constant was adjusted accordingly; the driving signal was input to the orthogonal bending Helmholtz
coil.

Compression tests were conducted to ascertain the behavior of the largest specimen in the absence of
macroscopic gradients of strain and rotation. This was done using a servo-hydraulic load frame driven at
a sinusoidal frequency of 1 Hz. The output stress and strain signals were displayed on a digital oscilloscope
as a Lissajous figure so that the modulus of the specimen could be calculated. Poisson’s ratio was also
determined using compression testing by measuring the transverse strain with a micrometer.

2.2. Analysis and interpretation

Size effect results were interpreted using available exact analytical solutions involving Bessel functions
for torsion and bending of a Cosserat elastic solid and approximating the cross section of each specimen
as circular. Isotropic solutions are used because no anisotropic solutions are available. Elastic constants
obtained are technical constants. This is in the same vein as classical constants obtained from quasistatic
tests rather than ultrasonic tests on anisotropic solids. Size effects manifest as higher effective moduli in
slender specimens than thick ones. The classical torsional rigidity is M

θ = G
[

π
2 r4

]
. For Cosserat elasticity

in this regime, M
θ = G

[
π
2 r4

]
(1 + 6(�t/r)2). G is the true shear modulus in the absence of gradients; M

is applied moment and θ is angular displacement. This expression is exact for N = 1; for other N the
exact solution involves Bessel functions [8]:

Ω = (1 + 6(�t/r)2)
[
(1 − 4Ψχ/3)

1 − Ψχ

]
, (12)
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in which χ = I1(pr)/prI0(pr), p2 = 2κ/(α + β + γ) and I0 and I1 are modified Bessel functions of the
first kind. The constant Ψ only has an appreciable influence for very small radius specimens.

Because of the limitations of testing large samples imposed by the size of the BVS an asymptote of
torsional rigidity versus diameter could not be determined directly from this method. The asymptotic
value of G was calculated from durometer measurements upon a separate cured block of silicone and from
the Reuss relation in which tubes and silicone rubber were considered as constituents. �t and the value
N were determined by fitting the entire set of experimental data to Eq. 12 using MATLAB. In order to
fit Eq. 12 to the data, the thermodynamic lower bound of zero was applied to �t, and an upper bound of
1 was set for N . To accelerate convergence, an upper limit of 100 mm was chosen for �t.

For bending, the classical bending rigidity is M
θ = E

[
π
4 r4

]
. For bending of a Cosserat elastic circular

rod and radius r, the rigidity ratio is approximately

Ω ≈ 1 + 8(�b/r)2
(1 − (β/γ)2)

(1 + ν)
. (13)

The expression is approximate for small bending characteristic length N << 1. The exact form, involving
Bessel functions, is

Ω = 1 + 8(�b/r)2
(1 − (β/γ)2)

(1 + ν)
+

8N2

(1 + ν)

[
(β/γ + ν)2

ζ(δa) + 8N2(1 − ν)

]
(14)

with δ = N/�b and ζ(δr) = (δr)2[((δr)I0((δr)) − I1((δr)))/((δr)I0(δr) − 2I1(δr))].
Similarly for bending, the asymptotic value of E was impossible to determine via BVS experimentation

because of size limitations. Consequently, compression testing was performed to determine the value.
Longitudinal compression testing was conducted to calculate Poisson’s ratio for bending calculations.
The remaining parameters, N , β/γ, and �b, were determined by fitting the entire set of experimental
data for bending to Eq. 14 using MATLAB. To allow fitment, the thermodynamic lower bound of zero
was used for �b; similarly, the allowed range for N is from zero to one and β/γ from −1 to 1.

3. Results and discussion

Density of corrugated tubing specimens composed of more than one tube was independent of size to
within 10%. The single tube specimen was about half of the density of the larger specimens on average.
The discrepancy in density was cause by the silicone rubber matrix in samples composed of more than
one segment of tubing.

Results of torsion size effect studies are shown in Fig. 3.
For corrugated tubing specimens in torsion, G = 890 kPa, �t = 17.3 mm N = 0.996 and Ψ = 1.5

when Poisson’s ratio is 0.3. The goodness of fit was R2 = 0.99. The maximum size effect in torsion was
Ω = 128.8. The asymptotic value of G was located by using a durometer to determine the modulus
of the silicone matrix materials used in the composite. The inferred Young’s modulus of the silicone
was approximately 1 MPa so the shear modulus is 0.33 MPa. By measuring the volume fraction of the
silicone rubber matrix and using the Reuss relation, the asymptotic shear modulus for the composite was
calculated to be 0.89 MPa.

Results of bending size effect studies are shown in Fig. 4.
Initial fitting of the data using the asymptotic value for E found from compression testing at 1 Hz,

14.2 MPa, and the Poisson’s ratio 0.0 ± 0.1 found from compression testing yielded poor results. This
is attributed to the single measurement of Poisson’s ratio from longitudinal compression testing and
the anisotropic structure of the specimens. The isotropic analytical solution links Poisson’s ratio to the
size effects; this is not expected in anisotropic solids. When subsequent fits were performed using an
asymptotic value for E of 14.2 MPa and allowing Poisson’s ratio to vary in addition to the other fitting
parameters and elastic constants, ν = 0.3, �b = 7.91 mm, β/γ = 0.995, and N = 0.999. The goodness
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Fig. 3. Size effects for corrugated tubing specimens in torsion. Points are experimental. Curve is theoretical for G = 890 kPa,
�t = 17.3 mm N = 0.996 and Ψ = 1.5. Classical elasticity (�t = 0) predicts constant Ω = 1 independent of diameter

Fig. 4. Size effects for corrugated tubing specimens in bending. Points are experimental. Curve is theoretical for β/γ = 0.995,

N = 0.999, E = 14.2 MPa, and �b = 7.91 mm. Classical elasticity predicts constant Ω = 1 independent of diameter

of fit was R2 = 0.96. The largest size effect in bending under these conditions was Ω = 2.33. Because
the composite specimens were anisotropic the characteristic length of bending was independent from the
characteristic length of torsion. Also due to the anisotropy of the specimens, the coupling number, N ,
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from torsion is not necessarily applicable to bending results which is why the N in this fit was allowed
to varied. However, the N calculated from torsion experiments is very similar to the N calculated from
bending experimentation.

The material has hexagonal structural symmetry, so it is elastically anisotropic. Consequently, the
properties obtained from the experiments are technical constants, not tensorial constants. This is anal-
ogous to materials testing in classical elasticity in which it is not always practical to incorporate a full
anisotropic interpretation. The elastic symmetry of such a hexagonal structure is transversely isotropic
which means properties in the transverse directions are independent of direction. That provides some
simplification in the classical case; nevertheless, no analytical solutions for Cosserat elasticity are known
for such symmetry. Therefore the isotropic solutions are used and the elastic constants are interpreted
as technical constants. Anisotropy cannot be a confounding variable because there are no size effects in
classical elasticity even in the anisotropic case [24].

As for comparison with theory, no known analysis is available for the structure of the present material.
Cosserat elastic constants have been calculated from theoretical homogenization of several lattices with
straight ribs [25–27]. These are stretch dominated so the effects of rib bending and torsion are much
smaller than the effects of rib extension. The characteristic lengths of such lattices are much smaller than
the cell size. Two-dimensional chiral honeycomb lattice structures analyzed as Cosserat continua disclosed
bend dominated behavior in which Young’s modulus is governed by rib bending. These honeycombs have
large N approaching its upper bound 1, and characteristic length � comparable to the cell size [28].
Sigmoid curvature of the lateral surfaces of bent square cross section bars was analyzed via Cosserat
elasticity [29]. Such curvature requires β/γ �= −ν and indeed it was observed in conventional as-received
open cell foam. Although no formal measurements were taken with the negative Poisson’s ratio foam (for
which β/γ ≈ −ν), visual observation of such bending of a square cross section bar suggested any sigmoid
curvature must be small.

In summary, large size effects are observed in the torsion of aligned corrugated tubing and silicone
rubber matrix composites. The effects are consistent with Cosserat elasticity. Results do not neces-
sarily exclude the presence of additional freedom such as that incorporated in micromorphic/Mindlin
microstructure [5] theory or in microstretch elasticity [23].

4. Conclusions

Large size effects are observed in the torsion and bending of aligned corrugated tubing and silicone
rubber matrix composites. These effects are inconsistent with classical elasticity, but can be modeled
with Cosserat elasticity. The torsional characteristic length is much larger than the tube diameter.
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