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Abstract. We study the supercooled one-phase Stefan problem for a semi-infinite material with temperature-dependent
thermal conductivity at the fixed face x = 0. We obtain sufficient conditions for data in order to have existence of a solution
of similarity type, local in time and finite-time blow-up occurs. This explicit solution is obtained through the unique solution
of an integral equation with the time as a parameter.
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1. Introduction

Supercooled Stefan problems describe the freezing of a liquid initially cooled below its freezing point. The
practical importance of solids formed from a supercooled liquid motivates the need for the theoretical
understanding of the associated phase-change process.

We study a one-phase supercooled Stefan problem in one space dimension for a nonlinear heat con-
duction equation on a semi-infinite region & > 0 with a nonlinear thermal conductivity k() given by

pe
KO = (1.1)
where a, b are positive parameters; c, p are the specific heat and the density of the medium, respectively.
This kind of thermal conductivity or diffusion coefficient was considered in [2,3,6,7,20,28,33,40].

In [5] one-phase Stefan problem with this nonlinear thermal conductivity with a boundary Robin
condition at the fixed face is considered. Sufficient conditions for data in order to have a parametric
representation of the solution of similarity type for ¢ > t; are obtained, where t; is a positive arbitrary
time. In [31] analogous problems with temperature and flux-type conditions on the fixed face z = 0 were
studied and parametric representations of the similarity-type solutions were obtained. In such context,
free boundary problems for a nonlinear diffusion equation and convective term with the same type of
conductivity given by (1.1) were also considered in [4,30,37]. In [4] under the Bécklund transformation a
Stefan problem with a Dirichlet boundary condition at the fixed face z = 0 is reduced to an associated
free boundary problem; the existence and uniqueness of local in time of the solution is proved by using
the Friedman—Rubinstein integral representation and the Banach contraction theorem. Necessary and
sufficient conditions for the existence of a parametric representation of the solution of the similarity type
were found in [30]. On the other hand, in [37] a Neumann boundary condition at the fixed face x = 0 is
studied. A reciprocal transformation to the Stefan problem is applied, and a parametric representation
of the similarity type of the solution is obtained through the unique solution of a Cauchy problem.

Several free boundary problems with constant thermal conductivity have been studied by other authors
in connection with the freezing of a supercooled liquid. In [32] a supercooled one-phase Stefan problem
with constant coefficients and a temperature boundary condition at the fixed face was considered. The
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explicit solutions are obtained, and the relation between the temperature boundary data and the possi-
bility of continuing the solution for arbitrary large time intervals was analyzed. The relationship between
the time for which there exists solution to one-phase Stefan problem and the behavior of initial variable
temperature was analyzed in [18]. In [10] a one-phase Stefan problem with initial temperature equal to
zero and a time-dependent heat flux at the fixed face was analyzed. The behavior of the free boundary
of the solution of a Stefan problem when an integral condition is assigned, is considered in [11]. On the
other hand, convexity and smoothness properties of the free boundary were given in [16,22,23,26] and
a review of this subject was given in [34]. Some remarks on the regularization of supercooled one-phase
Stefan problems can be seen in [17]. Other papers in the subject are [14,15,24,25].

The mathematical formulation of our free boundary problem consists in determining the evolution of
the moving phase separation z = s(t) and the temperature distribution 6 = 6(xz,t) > 0 satisfying the
conditions

pc% = (,% <k(9)gz> ,0<x<s(t), t>0 (1.2)

6(0,t) =—-B <0, t>0 (1.3)

k(0 (s(t),t)) % (s(t),t) = —pls(t), t>0 (1.4)
0(s(t),t) =0, t>0 (1.5)

0(x,0) =h(z) <0, 0 <z <1, (1.6)

s(0)=1 (1.7)

where [ is the latent heat of fusion of the medium, the phase-change temperature is 6y = 0, and h(x) is
the initial temperature of the material. We impose a temperature boundary condition —B < h(z) < 0 on
2 = 0 which corresponds to a supercooled liquid. The classical Stefan problem (—B > 0, h > 0) was
well studied in the literature, as for example [8,21,38].

In Sect. 2 under reciprocal transformations the Stefan problem is reduced to an associated free bound-
ary problem which admits a similarity-type solution.

In Sect. 3 we give some preliminary results to prove the existence and uniqueness of a solution local in
time and finite-time blow-up of problem (1.2)—(1.7) through the unique solution of an integral equation
with the time as a parameter.

This type of exact solution to problems with parameters is useful to test by benchmarking with numer-
ical methods for different data values. Phase-change problems appear frequently in industrial processes
and other problems of technological interest [1,8,9,12,13,19,27,29]. A large bibliography on the subject
is given in [39)].

2. Application of reciprocal transformations: a similarity-type solution

We consider free boundary problem (1.2)—(1.7) where the parameters a, b, the coefficients [, ¢, the tem-
perature on the fixed face (—B) and the initial temperature h satisfy the following conditions

bl —ac >0, a—bB >0, —-B<h(z)<0, 0<z<1 (2.1)
We give several transformations [35,36] to obtain an equivalent problem to (1.2)—(1.7) which admits
a similarity-type solution. Firstly we define
1

0=—— 2.2
a+b0’ ( )
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then problem (1.2)—(1.7) becomes
00 9?0

_ = 27 2
5t ®6m2’0<m<8(t)’ t>0
1
00 bl .
%(s(t)ﬂf) ;5('5)7 t>0
1
O(s(t),t) ==, t>0
a
1
@(x,0)2a+bh(x),0<m<1
s(0) =1

Let us perform the transformation

xmwzfgmwnuxwzmaw

and

then problem (2.3)—(2.8) becomes

%‘f _ %_(a—bB)%(o,w% 0<x<S@),
1
U(0,t) = B’ t>0
%(sa), )= a(ac”l_ - [S(t) _ g—i(o,t)(a—bB) >0
WS = >0
1
Y060 = HO) = )

where

and
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(2.10)

(2.11)
(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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and the solution is sought of type

T (x,t) = (&) =%0<s>(<t)>

then the free boundary S(t) of problem (2.11)—(2.16) must satisfy

SHSE) =N, t>0

with A being an unknown coefficient to be determined.
Problem (2.11)—(2.16) yields

() + ¢ () (EA—w)=0,0<¢<1

v(0)=——5
1
@(1)25
S bl
o) = o A w)

where

and condition (2.15) becomes

where

x

x = x(z,0) = / @(Cf;?o) = /a+bh(n)dn.
0 0

If we integrate (2.22) we obtain

£
2
(p(g):C/exp<—Z2)\+wz>dz+D, 0<éxl
0

from conditions (2.23)—(2.24) we have that

C— —bB

1
a(a —bB) [exp (~5 X +wz) dz
0

1
a—bB

where the unknowns A and w will be determined from (2.25) and (2.26) which are equivalent to

bB exp (—% + w)

; [ =p(A—w)
a(a —bB) [ exp (7%)\ +wz) dz
0

—bB

w = 1

a [ exp (—%x\ + wz) dz
0

ZAMP

(2.20)

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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with
bl
=—>0. 2.33
P a(bl — ac) (2.33)
Moreover from (2.27), we have function h satisfying
§a+bh(n)dn
f a + bh(n)dn g etoniman )
® 01 =C / exp (—22)\ + wz) dz+ D. (2.34)
[ a+bh(n)dn 0
0

3. Preliminary results

Returning to (2.21) two possible cases for the free boundary S(t) we should consider, one of this is with
A < 0 and the other one is with A > 0.

Next we are going to analyze the existence of the solution to system of equations (2.31)—(2.32) for the
two cases.

First we consider

A<0 (3.1)

We can enunciate the following results:

Lemma 3.1. Under hypothesis (2.1), if there exist A < 0 and w solutions to (2.31)-(2.32) then the following
statements hold:

(a) S(t) <0 and

2\ 7
(b) 5(t) <0,
(c) w<A,
(d) the free boundary s(t) is given by
A—w —A?
_ 2 _ < _ :

s(t) 1+A(a7%) (\/A T2t A), 0<t< o (3.3)

(e)
a—2)\
R o

Proof. (a) If we consider A < 0 from (2.21) we have S(t) < 0 and

() -»

Integrating and taking into account S(0) = A we have
—A2
(b) From (2.3)—-(2.8) it follows that ©,(s(t),t) < 0 then $(t) < 0.
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(¢) By (2.9) and (2.20) we have that (2.5) is equivalent to
©'(1) 1 bl .
rA - Tt
S 66w, o

and taking into account (2.25) we obtain
A—w
S(t) (a—%)

and because ac — bl < 0 we have that w < A < 0.
(d) On substituting (3.2) into (3.6) and integrating we have (3.3).
(e) From (2.9), (2.10)

§(t) =

s(t)

_ _ dny
s =xs0.0= [ ol
then
s() =0 St)=0at= 72—1;1\2
thus
A, (a-t)
s (2)\) =0 A .

Corollary 3.2. For the case A < 0 the free boundary is given by
1 —A?
which satisfies
lim  s(t) =0, lim  §(t) = —o0
() =(5)
so finite-time blow-up occurs.

To solve (2.31)—(2.32) it is convenient to define

g =

then equations (2.31)—(2.32) are equivalent to

bB ( 2) o+u
exp(o 9
= d
2pa(a —bB) o / exp(z7)dz
bB 9 otp
7exp((o+u) ) — / exp(z2)dz
2a o+

o

in the unknowns o and pu.

ZAMP

(3.9)

(3.10)

(3.11)
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Lemma 3.3. Under hypothesis (2.1) we have:
If
V0.5
/ exp(2?)dz >
oo
then there exists unique solution w, A < 0 to (2.31)-(2.32) with the coefficient oo = J; *(p(a — bB)v/2e)
where J; ' is the inverse function of J, = J/(0,4/0.5) the restriction of J(z) = %@2) to the interval
(0.V05).

Proof. First, we define

bB\/2e
2a

(3.12)

2
J(x) = eXpix ) (3.13)
which satisfies
J(0) = 400, J(+00) = +o0,
<0, 0<zx<v0.5
J(x)=4¢=0, =105
>0, z>+0.5
Then, from (3.10) and (3.11) we have
J(0)
= .14
s = o+ (3.14)
In fact,
w="Vi(o)—o, 0<o<oy (3.15)
where
_ J1(o)
1 1
_ 1
Vilo) =it (). (3.16)

J; ! is the inverse function of J; = J/(0,1/0.5) the restriction of J to the interval (0,v/0.5) and o =
Ji ! (p(a — bB)V2e).
Under hypotheses (2.1) and (2.33) we have that p(a — bB) > 1.
If we replace (3.15) in (3.10) we have the following equation in unknown o
bB
2pa(a — bB)

Va(o) V05
where the function P(0) = [ exp(z?)dz is an increasing function, P(0) = 0 and P(0g) = [ exp(z?)d=.

Ji(o) = P(0), 0<o<op (3.17)

(e oo
Taking into account properties of functions J and P it is enough to ask

bB+v/2e
2a
then there exists a unique o € (0, 0¢) which satisfies (3.17). So there exists a unique

P(Cfo) >

u=Vi(o)—o

such that o, p are the solutions of (3.10)—(3.11). Therefore, we have that there exist unique solutions to
system (2.31)—(2.32) given by
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w = —2u(o + p), A= —2u%.

Theorem 3.4. Under hypothesis (2.1) and (3.12) problem (2.22)-(2.26) has a unique solution given by

§
,beexp (—%x\ + wz) dz 1
P& = L + o 0<€6<1 (3.18)
a(a —bB) [exp (~5 X +wz) dz
0

where w, A < 0 is the unique solution to (2.31)—(2.32).
Now, we analyze the existence of solution to problem (2.22)—(2.26) for the case
A>0.
We define n = —w >0 .
Lemma 3.5. There is no solution A > 0, w = —n to (2.31)-(2.32).

Proof. Let a = :\/% and € = \/LT/\ be. Then conditions (2.31) and (2.32) are equivalent to

bB
apla —bBy e @) = erf () —erf(e) (3.19)
LLR(e) = erf (@) —erf () (3.20)

where R(x) = exp(—2?)/x and p is given as before.

From (3.19)-(3.20) we have a = W(e) = R !(p(a — bB)R(¢)) which is an increasing and convex
function that satisfies W(0) = 0 and W(+o00) = 4o00.

Then equation (3.20) becomes

bB
W(e) = F(e), e>Q! <> =¢€ (3.21)

a

where
bB
Fle)=erf™* — 3.22
@=err (o(e%)) (3.22)
and

Q(z) = Vrzexp(z?)(1 — erf(x)). (3.23)
It is easy to see that W (e) < F(e) for all € > ¢eg; then, there is no solution whatever the initial data of
the problem. O

Remark 3.6. There is no solution to problem (2.22)—(2.26) with A > 0.
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4. Existence and uniqueness of solution to the nonlinear supercooled Stefan problem

Therefore, under hypothesis (2.1) and (3.12) if we invert the transformation (2.20) we have that there
exists unique solution to (2.11)-(2.17) given by

5t 22
—bB [ exp (-5 A +wz) dz

1
Ty 1) = : + L0< x < S(t), 41
G ) a(a—bB)folexp(—%)\—i—wz)dz a—bB ®) (4.1)
—_A2
S() = V2N + A, 0t < (4.2)

where A < 0 and w are the unique solutions of equations (2.31) and (2.32).
Then, by transformation (2.9) and taking into account (2.18) we have

—A fT —d% w w
_bB[U( 2¢Oﬁ+m>_(](m)] 1
O(z,t) = ; (4.3)
~bB) U (/3 + 5 ) —U |4 a-bB
a(a 2 T = VE
for 0 <z < s(t), the free boundary s(t) is given by (3.3) and
U(zx) = /exp(zQ)dz.
0
An equivalent formulation of (4.3) is
—bB|\U(c+pn)—U(o+pu— L el
Oz, t) = " " Vara i (4.4)
Tt = ala —bB) [U(o + ) — U(o)] a—bB’ '

for 0 <z <s(t), 0<t< %, where p and o are the unique solutions of (3.10)—(3.11) and the free
boundary is

2
s(t) = %\/,@ “aPt, 0<t< fQ (4.5)
m
with
ao Gl-agp (4.6)
co

Note that we have actually proved that © = ©(x,t) is a solution, in variable x, of integral equation
(4.4).

Theorem 4.1. Let us assume hypothesis (2.1) and (3.12).

(i) If (©,s) is a solution of free boundary problem (2.3)-(2.8) then © = O(z,t) is a solution, in
variable x, of integral equation (4.4) and the free boundary is given by (4.5).

Moreover, the function Y (z,t) defined by

M{@(n,t) A2
Y(z,t) =04+ pu— , 0<x<s(t), 0<t< — 4.7
(@t) = 0= e (1 o (4.7)
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satisfies the conditions

oz @) A2 — 452 O(a, t) (4.8)
Y(0,t) =0 +p (4.9)
28 o f) = —p? bBexp(Y?(x,t)) ov(s
o Y= o ((a 8100, ) [U(o + 1) —T(0)] ’t)) (4.10)
Y (s(t),8) = o (4.11)
,u:fa + bh(z)dz
Y(£,0)=0+p-————. (4.12)

(ii) Conversely, if © is a solution of integral equation (4.4) with s given by (4.5) and function'Y defined by
(4.7) satisfies conditions (4.8)—(4.12) where o and p are the unique solutions of equations (3.10)—(3.11),
then (O, s) is a solution of free boundary problem (2.3)—(2.8).

Proof. (i) From the previous computation we have © = ©(x,t) is a solution of integral equation (4.4). It
follows easily that function Y, defined by (4.7), satisfies conditions (4.8) ,(4.9), (4.12) and

CORETI T
ot A% — 421 / ©2(n,t) A2—4u2t0 O(n,t)

B —p B 2u° dn
= —in O (@, 1) + (0, 1) + 55— e / o1
0

—p? bBexp (Y?(x,t))
(a—bB

Az —4p?t )O(z,t) [U(o + p) — U(o)]
__bBexp(o + ,u) /
[U(U + 1) \/ 4,u O(n

and from (3.11) we obtain (4.10).
Finally we get

s(t) _dn
ﬂf O(nt S<t)
Y (s(t),t) =0+ pu— =0+ U —j—F————s=0
(s(t),t) Ry esyy Sy ey

that is (4.11).
(ii) Conversely, let © be the solution of an integral equation (4.4). In order to prove that (0, s) is a
solution of free boundary problem (2.3)-(2.8) we get:

(a)
bBexp (Y?(,1)) oy
ala —bB) [U(o 4+ pn) — U(o)] 0x

B bBexp (Y2(x,t)) ay\*> 8y
Oualt:l) = =08 [Ulo + ) - U(0) (mm (ax> ’ ax)

O, (z,t) =

and
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By using (4.8) we obtain

aiy(x t) = a L 99
9x2 VT VA2 — 42t ©2(z,t) Ox
and
) - bBexp (Y(x,t)) 2Y (,t)pu? 1O,
Opa(2,1)0%(2,1) = ala —bB) [U(o + ) — U(0)] <A2 —4p2t m)
N bBu? exp (Y?(x,t)) .
a(a — bB)(A? — 4:2t) [U (0 + p) — U(0)]”
. <2Y(x, t)[U(0 + )~ U(o)] - i’fa efpb(; éf;i;)
(b)

—bBexp (Y?(z,t)) pu? .
aa—bB) (A% = 4p2t) [U (o + p) = U(0)]?

bB exp (Yz(m7t)]
' <a(a —bB)O(x, 1) —2Y(z,t) [U(o + p) — U(a)])

@t(l', t) =

then (2.3) holds.
(c) It is easy to see

1
0(0.1) = —.

(d) By (4.11) we have

_ bBU(0+p) - U (s(t),t)] 1 !
O(s(t),t) = ala —bB) [U(o + p) — U(o)] + a—bB a

(e) We have

—bBexp (0?) %(s t),t)

(a=bB)[U(o +p) = U(a)]’

G)w(s(t),t) = a

from (4.8) and the above item we have

oY —pa
- t —
000 =
then by (4.5) and since o, u satisfy (3.10) we obtain
-2
O.(s(1).1) = C—_Y )

(bl — ac)\/A? —4p?t ¢
that is (2.5).

(f) Taking into account (4.8) and (4.12) we get
)%

_hk_1
ar »0 =73 0(z,0)’
and
oY . a+bh(x)
%(% 0) A

then we deduce (2.7).
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Theorem 4.2. Let us assume hypothesis (2.1) and (3.12).
1) Integral equation (4. as a unique solution for 0 <t <ty < —22 where tg is an arbitrary positive
Integral equation (4.4) h lut 0<t<to< g,
time.
(ii) Free boundary problem (1.2)-(1.7) has a unique similarity-type solution (0, s) for 0 <t <ty < %

and a finite-time blow-up occurs at t = # which is given by

9(:10716):% [@(i,t) —a] , 0<z<s(), (4.13)

s(t) given by (4.5), where © is the unique solution of integral equation (4.4) and the coefficients p and
o are the unique solutions of equations (3.10) and (3.11) with A given by (4.6) .

Proof. (i) If we define Y (x, t) by (4.7) then (4.4) is equivalent to the following Cauchy differential problem

oY —K _ 1
oz (T, t) = VA —appi | CADIU(Y (D) 0 <z <s(t), (4.14)
Y(0, t) =0+ u,
with a parameter 0 <t < tg < 4 £ the coefficients C1, D, are given by
O = I bBU (0 + )
""" 4B ala—bB)[U(c + p) — U(o)]
and
D= bBU (o + )
' ala—bB) [U(o +pu) - U(o)]
We have
oG _ 1 Dy exp(Y?)
Y \JA2 =42t [Cy + DUY))
If we define the function p(z) = % it is easy to see that there exists K > 0 such that
’ DU,&K
VA? — 4yt
which is bounded for all 0 < ¢ <ty < 4 250 <z < s(t), for an arbitrary positive time tg.
(ii) It follows taking into account Theorem 4.1, Corollary 3.2 and elementary computations. O

5. Conclusions

A supercooled one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal
conductivity at the fixed face x = 0 was studied. In order to have existence of solution of similarity type,
local in time, we obtained sufficient conditions for the data. Moreover we showed that finite-time blow-up
occurs. This explicit solution was obtained through the unique solution of an integral equation with the
time as a parameter.
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