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Abstract. In this paper, we study the influence of the inertial effect on frequency synchronization in an ensemble of Ku-
ramoto oscillators with finite inertia and symmetric and connected interactions. We present sufficient conditions in terms of
coupling strength, algebraic connectivity, natural frequencies, and the inertial term to guarantee the occurrence of frequency
synchronization. We also make a comparison with the existing conditions proposed for the first-order Kuramoto model and
conclude that the inertial effect, if appropriately small, has little influence on frequency synchronization as long as the initial
phase configurations are distributed in a half circle.
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1. Introduction

The phenomenon of frequency synchronization is ubiquitous and is observed when the individual frequen-
cies of oscillators converge to a common value via coupling despite the differences in natural frequencies.
A typical model of coupled oscillators is the well-known Kuramoto model which captures various syn-
chronization phenomena in natural systems [1,22,29] and has been studied in biology, sociology, physics,
and chemistry. In this paper, we focus on the frequency synchronization of the Kuramoto model with
inertia and local coupling.

We suppose that the oscillators are located on the vertices of a connected and undirected graph, and
the interactions between vertices i and j are determined by the weight aij ≥ 0. Then the dynamics of
the second-order Kuramoto model with n oscillators is governed by the following equations:

mθ̈i + θ̇i = ωi + K

n∑

j=1

aij sin(θj − θi), i = 1, 2, . . . , n, (1.1)

in which, θi denotes the phase of the ith oscillator whose natural frequency is ωi, m the inertial coefficient,
K the coupling strength, and aij ≥ 0 the weight from vertex i to j.

The second-order Kuramoto model (1.1) has close connections with power network [7,8,17], granular
superconductors [9], heat conduction [10,11], coupled rotators systems [30,31], and Josephson junction-
s [33]. See [2,16,18,19,32] for the study for the effects of inertial term on the dynamics of the system.
For the research of the standard Kuramoto model, we refer to [1,6,24,25,29].

To obtain explicit and concise criteria of synchronization for a complex network consisting of coupled
oscillators has always been an important and outstanding problem, as recognized in [17]. For the Kuramoto
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oscillators with inertia and arbitrary interaction topology, the study for frequency synchronization has
been, to our best knowledge, initiated by Dörfler and Bullo in [7] and Choi et al. in [4].

A significant progress was achieved by Dörfler and Bullo via using singular perturbation analysis [7].
Under the overdamped condition, i.e., the ratio of the inertial term and the damping coefficient is suffi-
ciently small, the second-order Kuramoto model and the corresponding first-order Kuramoto model are
equivalent, and one can derive sufficient conditions for second-order Kuramoto oscillators to synchronize
by those for the first-order system. However, as is always the case in discussion of the singular perturba-
tion theory, there is no explicit estimate for the parameter (the ratio of the inertial term and the damping
coefficient) which should be small enough.

A breakthrough was made by Choi et al. in [4] on the estimates of parameters for frequency synchro-
nization for the second-order Kuramoto model with local coupling. By the method developed in [4], one
first establishes the boundedness of solutions and then applies the convergence result in [15] derived from
the �Lojasiewicz’s gradient inequality, which requires the coupling function be analytic. The estimate for
the inertia term is explicit (see Theorem 3.4 in [4]). However, the condition for the coupling strength K
is implicitly given in the inequality (3.1) in [4].

Since we are only concerned with the phenomenon of frequency synchronization for the second-order
Kuramoto model, we use in this paper LaSalle’s invariance principle, instead of �Lojasiewicz’s inequality,
so that we can extend our approach to more general smooth (not necessarily analytic) coupling functions
other than the sine function.

Definition. System (1.1) is said to achieve frequency synchronization if there exists a positive measure
set (so that the phenomenon is observable) of initial data such that a solution θ(t) starting from this set
satisfies

lim
t→∞ |θ̇i(t) − θ̇j(t)| = 0 for i, j = 1, 2, . . . , n.

In this paper, our aim is to combine the methods in [4,7,8] to give explicit estimates for both the
coupling strength K and the inertia term m so that the second-order Kuramoto model (1.1) achieves
frequency synchronization.

One novelty of this paper is that we extend the result of Dörfler and Bullo in [8] for the first-order
Kuramoto model to the second-order system (see Theorem A), which is also an open question mentioned
in [8]. The second novelty is that we improve the estimate on the coupling strength K so that the upper
bound is explicit in contrast to the estimate in Theorem 3.4 in [4] (see Theorem B).

Let Bc denote the incidence matrix, of order n × n(n − 1)/2, of the complete graph with n vertices,
in which each pair of vertices is connected by an edge. For each x = (x1, . . . , xn) ∈ R

n, BT
c x ∈ R

n(n−1)/2

has components xi −xj corresponding to the directed edge from j to i. Here the superscript “T” denotes
transpose. In fact,

BT
c x = (x1 − x2, . . . , x1 − xn, x2 − x3, . . . , x2 − xn, . . . , . . . , xn−1 − xn)T.

We remark that our results are independent of the orientation of the graph.

Let λ2 and λmax be the second smallest and the largest eigenvalues, respectively, of the Laplacian
matrix of the graph associated with system (1.1), ω = (ω1, . . . , ωn)T the vector of natural frequencies,
and ‖ · ‖ denote the standard Euclidean norm in R

n or R
n(n−1)/2, as the case may be.

Before presenting our main conclusions, we introduce an arbitrary constant δ ∈ (0, 1) to trade off the
conditions upon the coupling strength K and the inertial term m, and set for the sake of convenience

α =
4δ2 + 2
1 − δ

, δ ∈ (0, 1). (1.2)

Note that the range of α is (2,+∞) and α is an increasing function of δ.
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First, we assume that

(H1) K ≥ α
∥∥BT

c ω
∥∥

λ2
.

Under the assumption (H1) in which we stress the condition on the coupling strength K, we may choose
ν ∈ [π/2, π) such that sin ν ≥ α‖BT

c ω‖/Kλ2. Let ρ = sin ν/ν. The second assumption is

(H2) m ≤ δ2ρ λ2

Kλ2
max

,

in which we emphasize that the inertial coefficient m needs to be small since K is probably large due to
the distribution of natural frequencies or the algebraic connectivity λ2 of the corresponding graph.

Theorem A. Under the assumptions (H1) and (H2), the second-order Kuramoto model (1.1) achieves
frequency synchronization.

We remark that for all-to-all coupling scheme in which λ2 = λmax = 1, the conditions (H1) and (H2)
reduce to K ≥ α‖BT

c ω‖ and m ≤ δ2ρ/K.
If we consider in the assumption (H1) the quantity ‖ω‖, the total variance of natural frequencies,

instead of ‖BT
c ω‖, then we have the following conclusion.

Theorem B. Assume

(H1′) K ≥ α
√

2‖ω‖
λ2

, and (H2′) m ≤ δ2ρ′ λ2

Kλ2
max

,

in which ρ′ = sin ν′/ν′ and ν′ ∈ [π/2, π) satisfying sin ν′ ≥ α
√

2‖ω‖/Kλ2. Then the Kuramoto oscillators
with inertia (1.1) achieve frequency synchronization.

We remark that for system (1.1), the conditions (H1′) and (H2′) are easier to satisfy than (H1) and
(H2). Indeed, since the coupling function in (1.1) is odd, then we may assume without loss of generality
that ω1 + · · · + ωn = 0 (see Sect. 2 for detailed discussions). As a consequence, we have by Lemma 2.3
that ‖BT

c ω‖ =
√

n‖ω‖ ≥ √
2‖ω‖. Nevertheless, we still present Theorem A since we believe the approach

we used to prove Theorem A has independent interest.
We compare our results with the closely related previous studies in [4,7]. As mentioned before, the

relationship between the second-order Kuramoto model and the first-order one has been investigated by
Dörfler and Bullo in [6,7]. By means of singular perturbation analysis, it has been shown that if the ratio
of inertial term and the damping coefficient is sufficiently small, then these two systems are equivalent
(see [7] for more precise description). We remark that our approach is totally different, and moreover,
the upper bound for m is explicitly given in Theorems A and B.

We remark that for the first-order Kuramoto model with non-complete coupling graph, a sufficient
condition for phase cohesiveness and frequency synchronization has been given in [8] (in our notations):
Kλ2 > ‖BT

c ω‖ (the coupling strength K is absorbed in λ2(L) in [8]). Here in this paper we extend the
study to nonidentical oscillators with high-order dynamics, which is one of the open questions mentioned
in [8].

Compared with the results presented by Choi et al. (see Theorem 3.4 in [4]), in which the condition
for the coupling strength K is implicitly given (see the inequality (3.1) in [4]), we explicitly state the
condition (H1′) for coupling strength K.

We stress that the constant δ ∈ (0, 1) is a trade-off parameter. If δ is chosen to be close to 0, then α
is close to 2, and we have a better condition for the coupling strength K and a worse condition for the
inertial term m. If δ is chosen to be close to 1, then α becomes large and the condition for m is better
and that for K is more conservative. For example, if Kλ2 > 2‖BT

c ω‖, then we choose δ sufficiently close
to 0 such that α is close to 2 and hence (H1) is satisfied. In this case, for the frequency synchronization
to occur, we need to require that the inertial coefficient m be small.
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The region of initial data for which the solutions achieve frequency synchronization does not appear
in the conditions and is discussed in Sect. 4.

2. Preliminaries

The network associated with the interactions of the Kuramoto model (1.1) is assumed to be a symmetric,
weighted, and connected graph G(V, E , A) with n vertices V = {1, . . . , n}, e edges E ⊂ V ×V, and positive
weights aij > 0 for each undirected edge {i, j} ∈ E . The adjacency matrix of the graph G(V, E , A) is
A = (aij) where aij = aji denotes the weight of edge {i, j} for i 	= j and aii = 0. The Laplacian matrix
L is defined as L = D − A, where A is the adjacency matrix and D is the diagonal matrix of vertex
outdegrees, i.e., the diagonal element of D is

∑n
j=1 aij , i = 1, 2, . . ..

If a direction is assigned to graph G(V, E , A), the incidence matrix B = (Bij) is an n × e matrix such
that Bik = 1 if the edge k ends at vertex i, Bik = −1 if edge k starts at vertex i, and 0 otherwise. Let
diag({aij}{i,j}∈E) denote the diagonal matrix of edge weights, then L = Bdiag({aij}{i,j}∈E)BT is the
Laplacian matrix.

If we define aij = 0 for {i, j} 	∈ E , then

W = diag({aij}i<j) (2.1)

is a diagonal matrix of order n(n − 1)/2 and

L = BcWBT
c ,

where Bc is the incidence matrix of the complete graph with n vertices.
Since we assume the graph is symmetric and connected, the Laplacian matrix L is symmetric and

positive semi-definite with eigenvalues denoted by

0 = λ1 < λ2 ≤ · · · ≤ λn = λmax.

Note that the eigenvalue λ1 = 0 is simple since the graph is connected. The eigenvector associated with
λ1 is 1 = (1, . . . , 1)T ∈ R

n. The second smallest eigenvalue λ2 is called algebraic connectivity which plays
an important role in synchronization study [34]. Moreover, we have the property

〈θ, Lθ〉 ≥ λ2‖θ‖2 for all θ ∈ R
n if 〈θ,1〉 = 0.

We denote in this paper by 〈·, ·〉 the standard Euclidean inner product in R
n or R

n(n−1)/2, as the case
may be.

By switching to a rotating frame, it is easy to show that we can assume without loss of generality the
mean value of the natural frequencies of system (1.1)

ω̄ = (ω1 + · · · + ωn)/n = 0.

Indeed, let

θ̂i = θi − (θ1 + · · · + θn)/n, and ω̂i = ωi − ω̄, i = 1, . . . , n.

Due to the symmetry of the graph, i.e., aij = aji for all i, j, and the fact that the coupling function is
odd, we conclude from (1.1) that

m(θ̈1 + · · · + θ̈n)/n + (θ̇1 + · · · + θ̇n)/n = ω̄,

and hence

m
¨̂
θi + ˙̂

θi = ωi − ω̄ + K
n∑

j=1

aij sin(θj − θi) = ω̂i + K
n∑

j=1

aij sin(θ̂j − θ̂i).
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Note that for the above system, we have
n∑

i=1

ω̂i = 0,

n∑

i=1

θ̂i = 0, and
n∑

i=1

˙̂
θi = 0.

Therefore, we always assume (see also [3,4,13,14]) in this paper for system (1.1) that
n∑

i=1

ωi = 0,

n∑

i=1

θi = 0, and
n∑

i=1

θ̇i = 0. (2.2)

Our approach consists of two steps. First by introducing a new equivalent norm depending on the
inertia m, we demonstrate the existence of a positively invariant set. Then we obtain the synchronization
result by applying LaSalle’s invariance principle [23], see also [12].

In what follows, we present some estimates which will be used in the proof of main conclusions.

Lemma 2.1. Let a > 0, b > 0, and ẏ(t) ≤ −ay(t) + b for t ≥ 0. Then we have

y(t) ≤ y(0)e−at +
b

a
(1 − e−at), t ≥ 0.

Lemma 2.2. Assume a > 0 and m > 0. Then there exists a constant

k = a +
1

2m
−

√
a2 +

1
4m2

> 0, (2.3)

such that

a‖x‖2 + m‖y‖2 ≥ k
(‖x + my‖2 + ‖my‖2) , for all x, y ∈ R

n or R
n(n−1)/2.

Proof. Let ξ = x + my and η = my. Then x = ξ − η and y = η/m. Let I denote the identity matrix. It
then follows that

a‖x‖2 + m‖y‖2 = a‖ξ‖2 − 2a〈ξ, η〉 + a‖η‖2 +
1
m

‖η‖2 =
(
ξT ηT

)
J

(
ξ
η

)
,

in which

J =
(

aI −aI
−aI (a + 1/m)I

)

is a real symmetric matrix whose smaller eigenvalue is k. Therefore, we have the conclusion

a‖x‖2 + m‖y‖2 ≥ k
(‖ξ‖2 + ‖η‖2) = k

(‖x + my‖2 + ‖my‖2) .

�

Let Bc be the incidence matrix of the complete graph with n vertices.

Lemma 2.3. Assume 〈θ,1〉 = 0 for θ = (θ1, . . . , θn) ∈ R
n. Then we have

‖BT
c θ‖2 = n‖θ‖2.

Proof. Since (θ1 + · · · + θn)2 = 0, then

θ21 + · · · + θ2n = −2(θ1θ2 + · · · + θ1θn + θ2θ3 + · · · + θ2θn + · · · + θn−1θn).

As a consequence, it follows that

‖BT
c θ‖2 = (θ1 − θ2)2 + (θ1 − θ3)2 + · · · + (θ1 − θn)2

+(θ2 − θ3)2 + · · · + (θ2 − θn)2

+ · · · + (θn−1 − θn)2
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= (n − 1)(θ21 + θ22 + · · · + θ2n)

−2(θ1θ2 + · · · + θ1θn + θ2θ3 + · · · + θ2θn + · · · + θn−1θn)

= n(θ21 + θ22 + · · · + θ2n) = n‖θ‖2.

�
Remark. Similarly, if we assume θ̇1 + · · · + θ̇n = 0, then we have

‖BT
c θ̇‖2 = n‖θ̇‖2. (2.4)

Let

sin(x) = (sin x1, sin x2, . . .)T

for a vector x = (x1, x2, . . .)T.

Lemma 2.4. Let θ = (θ1, . . . , θn)T ∈ R
n and assume |θi−θj | ≤ ν for i, j = 1, . . . , n, in which ν ∈ [π/2, π).

Then
(
BT

c θ
)T

W sin
(
BT

c θ
) ≥ ρ〈θ, Lθ〉, where ρ = sin ν/ν,

and W is defined in (2.1).

Proof. Note that |θi − θj | ≤ ν < π. Then

(θi − θj) sin(θi − θj) ≥ ρ(θi − θj)2.

As a consequence, it follows that
(
BT

c θ
)T

W sin
(
BT

c θ
)

=
∑

i<j

aij sin(θi − θj)(θi − θj)

≥ ρ
∑

i<j

aij(θi − θj)2 = ρ(BT
c θ)TW (BT

c θ)

= ρ θTBcWBT
c θ = ρ〈θ, Lθ〉.

�
Lemma 2.5. Let θ = (θ1, . . . , θn) and θ̇ = (θ̇1, . . . , θ̇n) ∈ R

n. Then for each ε > 0, we have
∣∣∣∣
(
BT

c θ̇
)T

W sin
(
BT

c θ
)∣∣∣∣ ≤ 1

2ε
〈θ, Lθ〉 +

ε

2
〈θ̇, Lθ̇〉.

Proof. By Young’s inequality, we have
∣∣∣∣
(
BT

c θ̇
)T

W sin
(
BT

c θ
)∣∣∣∣ =

∣∣∣∣∣∣

∑

i<j

aij sin(θi − θj)(θ̇i − θ̇j)

∣∣∣∣∣∣

≤
∑

i<j

aij |θi − θj ||θ̇i − θ̇j |

≤ 1
2ε

∑

i<j

aij(θi − θj)2 +
ε

2

∑

i<j

aij(θ̇i − θ̇j)2

=
1
2ε

(
BT

c θ
)T

W
(
BT

c θ
)

+
ε

2

(
BT

c θ̇
)T

W (BT
c θ̇)

=
1
2ε

〈θ, Lθ〉 +
ε

2
〈θ̇, Lθ̇〉.

�
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3. Proof of main results

In this section, we present the proof of the conclusions in Theorems A and B. We shall use LaSalle’s
invariance principle to obtain the conclusion of frequency synchronization. Therefore, the main aim in
this section is to construct a compact positively invariant region with positive measure in the phase space
of system (1.1). To this end, we introduce an equivalent norm [20] which is the key step to give more
accurate estimates on the conditions for system parameters. For the construction of the equivalent norm,
see [20,26] and the proof of Lemma 2.2.

Proof of Theorem A. Let θ = (θ1, . . . , θn)T and ω = (ω1, . . . , ωn)T. Then the second-order Kuramoto
model (1.1) can be rewritten in a vector form

mθ̈ + θ̇ = ω − KBcW sin
(
BT

c θ
)
, (3.1)

in which Bc is the incidence matrix of the complete graph and W is defined in (2.1). Let

ξ = BT
c θ.

Then ξ is a vector with dimension n(n − 1)/2. Therefore, if θ(t) is a solution to (3.1), then ξ(t) = BT
c θ(t)

is a solution of
m ξ̈ + ξ̇ = BT

c ω − KBT
c BcW sin(ξ). (3.2)

Now the phase space of system (3.2) is R
n(n−1)/2 × R

n(n−1)/2. We define in this phase space an energy
function E(ξ, ξ̇) and show that (E(ξ, ξ̇))1/2 is a norm equivalent to the standard Euclidean norm (‖ξ‖2 +
‖ξ̇‖2)1/2. �

We remark that the choice of the equivalent norm, which can also be regarded as a transformation
of variables, is essential to our approach, and we refer to [20,26] for its use on the studies of other
second-order systems.

Lemma 3.1. Let ξ and ξ̇ ∈ R
n(n−1)/2 and

E(ξ, ξ̇) =
1
2
‖ξ‖2 + m〈ξ, ξ̇〉 + m2‖ξ̇‖2 =

1
2
‖ξ + mξ̇‖2 +

1
2
‖mξ̇‖2. (3.3)

Then
√

E(ξ, ξ̇) is a norm in R
n(n−1) equivalent to the norm

√
‖ξ‖2 + ‖ξ̇‖2. In particular, we have

E(ξ, ξ̇) ≥ 1
4
‖ξ‖2. (3.4)

Proof. It is easy to check that

E(ξ, ξ̇) =
1
6
‖ξ‖2 +

1
3
‖ξ‖2 + m〈ξ, ξ̇〉 +

3
4
m2‖ξ̇‖2 +

1
4
m2‖ξ̇‖2

=
1
6
‖ξ‖2 + ‖ξ/

√
3 +

√
3mξ̇/2‖2 +

1
4
m2‖ξ̇‖2

≥ min{1/6,m2/4}(‖ξ‖2 + ‖ξ̇‖2).

Hence
√

E(ξ, ξ̇) is a norm equivalent to the standard Euclidean norm. With a similar procedure, we have

E(ξ, ξ̇) =
1
4
‖ξ‖2 + ‖ξ/2 + mξ̇‖2 ≥ 1

4
‖ξ‖2.

�
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Under the assumption (H1), we choose ν ∈ [π/2, π) such that

sin ν ≥ α
∥∥BT

c ω
∥∥

Kλ2
(3.5)

and set

ρ =
sin ν

ν
.

Lemma 3.2. Let

a = Kρλ2 and μ = k
(
1 − mKλmax/

√
am

)
,

where k > 0 is a constant determined in (2.3). Then under the assumptions (H1) and (H2), we have

μ ν ≥ 2
∥∥BT

c ω
∥∥ .

Proof.
(H2) ⇐⇒ m2K2λ2

max ≤ δ2mKρλ2

⇐⇒ m2K2λ2
max ≤ δ2am

⇐⇒ 1 − mKλmax√
am

≥ 1 − δ.

Meanwhile, note that

k = a + 1/2m −
√

a2 + 1/4m2 ≥ a/(2am + 1).

Then it follows from (H2) and the facts |ρ| ≤ 1 and λ2 ≤ λmax that

2am = 2mKρλ2 ≤ 2δ2ρ2λ2
2

λ2
max

≤ 2δ2.

As a consequence, we derive by (1.2) that

μ = k

(
1 − mKλmax√

am

)
≥ (1 − δ) · a

2δ2 + 1
=

(1 − δ)Kρλ2

2δ2 + 1
=

2Kρλ2

α
,

leading to the conclusion by (3.5) that

μ ν ≥ 2Kλ2 sin ν

α
≥ 2

∥∥BT
c ω

∥∥ .

�

The key step to apply LaSalle’s invariance principle is to demonstrate the existence of a compact
positively invariant set.

Due to the properties in (2.2) of solutions of (1.1), we may regard R
n/〈1〉×R

n/〈1〉 as its phase space.
Let

A =
{

(θ, θ̇) ∈ R
n/〈1〉 × R

n/〈1〉
∣∣∣ E

(
BT

c θ,BT
c θ̇

)
≤ ∥∥BT

c ω
∥∥2

/μ2
}

,

in which μ is a constant determined in Lemma 3.2.

Lemma 3.3. A is a compact positively invariant set for system (3.1) if the conditions (H1) and (H2) hold
true.



ZAMP Inertial effect on frequency synchronization. . . Page 9 of 16 33

Proof. Assume (θ(t), θ̇(t)) is a solution to (3.1), that is, (ξ(t), ξ̇(t)) is a solution of (3.2), with the initial
data (θ(0), θ̇(0)) satisfying

E
(
BT

c θ(0), BT
c θ̇(0)

)
<

∥∥BT
c ω

∥∥2
/μ2. (3.6)

Then there exists a largest T > 0 (or T = +∞) such that for t ∈ [0, T ),

E
(
BT

c θ(t), BT
c θ̇(t)

)
<

∥∥BT
c ω

∥∥2

μ2
, and E

(
BT

c θ(T ), BT
c θ̇(T )

)
=

∥∥BT
c ω

∥∥2

μ2
,

if T is finite. From Lemmas 3.1 and 3.2, we have for t ∈ [0, T ),

|θj(t) − θi(t)|2 ≤ ‖BT
c θ(t)‖2 = ‖ξ(t)‖2 ≤ 4E(ξ(t), ξ̇(t)) < 4

∥∥BT
c ω

∥∥2
/μ2 ≤ ν2,

and hence

|θj(t) − θi(t)| ≤ ν for i, j ∈ {1, 2, . . . , n} and t ∈ [0, T ).

Note that BcB
T
c = nIn − 1n×n, where In denotes the identity matrix of order n and 1n×n the matrix

of order n with each element being 1, and θ̇T 1n×n = 0 due to the assumption (2.2). Multiplying ξ̇T on
both sides of (3.2), we obtain from Lemmas 2.3 and 2.5 that

d
dt

(m

2
‖ξ̇‖2

)
+ ‖ξ̇‖2

= ξ̇TBT
c ω − Kξ̇TBT

c BcW sin(BT
c θ) = ξ̇TBT

c ω − Kθ̇TBcB
T
c BcW sin

(
BT

c θ
)

= ξ̇TBT
c ω − Kθ̇T (nIn − 1n×n)BcW sin

(
BT

c θ
)

= ξ̇TBT
c ω − nK

(
BT

c θ̇
)T

W sin
(
BT

c θ
)

≤ ξ̇TBT
c ω +

nK

2ε
〈θ, Lθ〉 +

nKε

2
〈θ̇, Lθ̇〉

≤ ξ̇TBT
c ω +

nKλmax

2ε
‖θ‖2 +

εnKλmax

2
‖θ̇‖2

= ξ̇TBT
c ω +

Kλmax

2ε
‖BT

c θ‖2 +
εKλmax

2
‖BT

c θ̇‖2.
Consequently, we have

d
dt

(m2‖ξ̇‖2) ≤ −2m‖ξ̇‖2 +
mKλmax

ε
‖ξ‖2 + εmKλmax‖ξ̇‖2 + 2m〈ξ̇, BT

c ω〉. (3.7)

Noting that

〈ξ, ξ̈〉 = ξT ξ̈ =
d
dt

(ξT ξ̇) − ‖ξ̇‖2 =
d
dt

〈ξ, ξ̇〉 − ‖ξ̇‖2,
and multiplying ξT on both sides of (3.2), we obtain by Lemmas 2.4 and 2.3 that for t ∈ [0, T ),

d
dt

(
m〈ξ, ξ̇〉 +

1
2
‖ξ‖2

)
− m‖ξ̇‖2

= 〈ξ,BT
c ω〉 − KξTBT

c BcW sin(ξ)

= 〈ξ,BT
c ω〉 − KθTBcB

T
c BcW sin

(
BT

c θ
)

= 〈ξ,BT
c ω〉 − KθT (nIn − 1n×n)BcW sin

(
BT

c θ
)

= 〈ξ,BT
c ω〉 − nK

(
BT

c θ
)T

W sin
(
BT

c θ
)

≤ 〈ξ,BT
c ω〉 − nKρ〈θ, Lθ〉 ≤ 〈ξ,BT

c ω〉 − nKρλ2‖θ‖2
= 〈ξ,BT

c ω〉 − Kρλ2‖BT
c θ‖2 = 〈ξ,BT

c ω〉 − Kρλ2‖ξ‖2,
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and hence
d
dt

(
m〈ξ, ξ̇〉 +

1
2
‖ξ‖2

)
≤ m‖ξ̇‖2 + 〈ξ,BT

c ω〉 − Kρλ2‖ξ‖2. (3.8)

We derive by (3.3), (3.7), and (3.8) that for t ∈ [0, T ),

d
dt

E(ξ(t), ξ̇(t)) ≤ −ρKλ2‖ξ‖2 − m‖ξ̇‖2 + (mKλmax/ε)‖ξ‖2

+ εmKλmax‖ξ̇‖2 + 〈ξ,BT
c ω〉 + 2m〈ξ̇, BT

c ω〉
= −(a − b/ε)‖ξ‖2 − (m − εb)‖ξ̇‖2 + 〈ξ,BT

c ω〉 + 2m〈ξ̇, BT
c ω〉,

in which a = ρKλ2 and b = mKλmax.
Taking ε =

√
m/a, we obtain by Lemma 2.2 that

(a − b/ε)‖ξ‖2 + (m − εb)‖ξ̇‖2 = (1 − b/
√

am)(a‖ξ‖2 + m‖ξ̇‖2)
≥ (1 − b/

√
am) k(‖ξ + mξ̇‖2 + ‖mξ̇‖2)

= μ(‖ξ + mξ̇‖2 + ‖mξ̇‖2)
= 2μE(ξ, ξ̇).

Meanwhile, we have the estimate by Young’s inequality

〈ξ,BT
c ω〉 + 2m〈ξ̇, BT

c ω〉 = 〈ξ + mξ̇,BT
c ω〉 + 〈mξ̇,BT

c ω〉
≤ 1

2μ

∥∥BT
c ω

∥∥2
+

μ

2
‖ξ + mξ̇‖2 +

1
2μ

∥∥BT
c ω

∥∥2
+

μ

2
‖mξ̇‖2

=
1
μ

∥∥BT
c ω

∥∥2
+ μE(ξ, ξ̇).

Therefore, we derive that

d
dt

E(ξ, ξ̇) ≤ −2μE(ξ, ξ̇) +
1
μ

∥∥BT
c ω

∥∥2
+ μE(ξ, ξ̇)

= −μE(ξ, ξ̇) +
1
μ

∥∥BT
c ω

∥∥2
,

and hence by Lemma 2.1

E(ξ(t), ξ̇(t)) ≤ E(ξ(0), ξ̇(0))e−µt +

∥∥BT
c ω

∥∥2

μ2
(1 − e−µt), t ∈ [0, T ). (3.9)

If T is finite, then E(ξ(T ), ξ̇(T )) =
∥∥BT

c ω
∥∥2

/μ2. On the other hand, from (3.9) and (3.6) we deduce
that

E(ξ(T ), ξ̇(T )) ≤ lim
t→T

[
E(ξ(0), ξ̇(0))e−µt +

1
μ2

∥∥BT
c ω

∥∥2
(1 − e−µt)

]

= E(ξ(0), ξ̇(0))e−µT +
1
μ2

∥∥BT
c ω

∥∥2
(1 − e−µT )

<
1
μ2

∥∥BT
c ω

∥∥2
,

which is a contradiction. As a result, T = +∞, implying that the interior of A is positively invariant,
and hence A is positively invariant for system (3.2).
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It remains to verify that A is bounded since it is closed. Indeed, due to Lemma 2.3, we conclude that
for (θ, θ̇) ∈ A,

‖θ‖2 + ‖θ̇‖2 =
1
n

(∥∥BT
c θ

∥∥2
+

∥∥∥BT
c θ̇

∥∥∥
2
)

≤ C

n
E

(
BT

c θ,BT
c θ̇

)
≤ C

μ2n

∥∥BT
c ω

∥∥2
,

in which we use Lemma 3.1 and C is a constant with 1/C = min{1/6,m2/4} (see the proof of Lemma 3.1).
Therefore, A is bounded.

In order to apply LaSalle’s invariance principle, we need to construct a continuously differentiable
function V : R2n → R such that V̇ (θ, θ̇) ≤ 0 for (θ, θ̇) ∈ A. Indeed, let

V (θ, θ̇) = (m/2)‖θ̇‖2 − ϕ(θ),

where

ϕ(θ) =
n∑

i=1

ωiθi +
K

2

n∑

i,j=1

aij cos(θi − θj).

It is easy to verify that

∇ϕ(θ) = ω − KBcW sin(BT
c θ) and hence mθ̈ + θ̇ = ∇ϕ(θ).

Then we have

V̇ (θ, θ̇) =
〈

∂V

∂θ
,
dθ

dt

〉
+

〈
∂V

∂θ̇
,
dθ̇

dt

〉

= −〈∇ϕ(θ), θ̇〉 + m〈θ̇, θ̈〉
= 〈−mθ̈ − θ̇, θ̇〉 + m〈θ̈, θ̇〉
= −‖θ̇‖2 ≤ 0.

Let

E = {(θ, θ̇) ∈ A | V̇ (θ, θ̇) = 0} = {(θ, θ̇) ∈ A | θ̇ = 0}
and M the largest invariant set in E. Then we conclude by LaSalle’s invariance principle that (θ(t), θ̇(t)) →
M , i.e., ‖θ̇(t)‖ → 0 as t → +∞ if (θ(0), θ̇(0)) ∈ A, implying that the solutions in A achieve frequency
synchronization.

This completes the proof of Theorem A. �

Let ν1 ∈ (0, π/2] and ν2 ∈ [π/2, π) satisfying

sin ν1 = sin ν2 =
α

∥∥BT
c ω

∥∥
Kλ2

.

Then

sin ν ≥ α
∥∥BT

c ω
∥∥

Kλ2

for all ν ∈ [ν1, ν2]. Let

ρ1 =
sin ν1

ν1
, ρ2 =

sin ν2
ν2

, and ρ =
sin ν

ν
for ν ∈ [ν1, ν2].

Then ρ2 ≤ ρ1 and ρ ∈ [ρ2, ρ1]. Therefore, each value in [ρ2, ρ1] can be chosen as the constant ρ in condition
(H2).

If we choose the largest value ρ = ρ1, then the condition for m becomes better. However, the set of
admissible initial data A becomes smaller. Indeed, if we denote by μ1 and μ2 the constants determined
in Lemma 3.2 and corresponding to ρ1 and ρ2, respectively, then it is easy to verify that μ1 ≥ μ2 and
hence the diameter of A becomes smaller if we choose ρ = ρ1 and ν = ν1.
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Proof of Theorem B. The idea for the proof of Theorem B is similar.
Under the assumptions (H1′) and (H2′), we have by a similar discussion to Lemma 3.2

μ ν′ ≥ 2
√

2‖ω‖, (3.10)

where μ = k(1 − mKλmax/
√

am), a = Kρ′λ2, and k is determined by (2.3).
Let

E(θ, θ̇) =
1
2
‖θ‖2 + m〈θ, θ̇〉 + m2‖θ̇‖2 =

1
2
‖θ + mθ̇‖2 +

1
2
‖mθ̇‖2, θ, θ̇ ∈ R

n.

Then (E(θ, θ̇))1/2 is a norm in R
2n equivalent to the Euclidean norm (‖θ‖2 + ‖θ̇‖2)1/2. In particular, we

have
E(θ, θ̇) ≥ (1/4)‖θ‖2. (3.11)

Let

A′ = {(θ, θ̇) ∈ R
n/〈1〉 × R

n/〈1〉 |E(θ, θ̇) ≤ ‖ω‖2/μ2}.

�

Lemma 3.4. A′ is a compact positively invariant set for system (1.1) if the assumptions (H1′) and (H2′)
are satisfied.

Proof. Assume (θ(t), θ̇(t)) is a solution of (3.1) with the initial data satisfying

E(θ(0), θ̇(0)) < ‖ω‖2/μ2.

Then there exists a largest T > 0 (or T = +∞) such that

E(θ(t), θ̇(t)) <
‖ω‖2
μ2

, t ∈ [0, T ), and E(θ(T ), θ̇(T )) =
‖ω‖2
μ2

if T is finite. It then follows from (3.11) and (3.10) that

|θj(t) − θi(t)|2 ≤ 2‖θ(t)‖2 ≤ 8E(θ(t), θ̇(t)) < 8‖ω‖2/μ2 ≤ (ν′)2,

and hence
|θj(t) − θi(t)| ≤ ν′ for i, j ∈ {1, 2, . . . , n} and t ∈ [0, T ). (3.12)

Noting that θ(t) satisfies (3.1) and multiplying θ̇T on both sides of (3.1), we obtain by Lemma 2.5
that

d
dt

(m

2
‖θ̇‖2

)
+ ‖θ̇‖2 = θ̇Tω − Kθ̇TBcW sin(BT

c θ) = θ̇Tω − K
(
BT

c θ̇
)T

W sin
(
BT

c θ
)

≤ θ̇Tω +
K

2ε
〈θ, Lθ〉 +

Kε

2
〈θ̇, Lθ̇〉

≤ θ̇Tω +
Kλmax

2ε
‖θ‖2 +

εKλmax

2
‖θ̇‖2.

Consequently, we have
d
dt

(m2‖θ̇‖2) ≤ −2m‖θ̇‖2 +
mKλmax

ε
‖θ‖2 + εmKλmax‖θ̇‖2 + 2m〈ω, θ̇〉. (3.13)

Since

〈θ, θ̈〉 = θT θ̈ =
d
dt

(θT θ̇) − ‖θ̇‖2,
multiplying θT on both sides of (3.1), we obtain by Lemma 2.4 together with (3.12) that for t ∈ [0, T ),

d
dt

(
m〈θ, θ̇〉 +

1
2
‖θ‖2

)
− m‖θ̇‖2 = 〈θ, ω〉 − KθTBcW sin(BT

c θ) = 〈θ, ω〉 − K
(
BT

c θ
)T

W sin
(
BT

c θ
)

≤ 〈θ, ω〉 − Kρ′ 〈θ, Lθ〉 ≤ 〈θ, ω〉 − Kρ′ λ2‖θ‖2,
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and hence
d
dt

(
m〈θ, θ̇〉 +

1
2
‖θ‖2

)
≤ m‖θ̇‖2 − Kρ′ λ2‖θ‖2 + 〈ω, θ〉. (3.14)

We derive by (3.13) and (3.14) that

d
dt

E(θ(t), θ̇(t)) ≤ −ρ′Kλ2‖θ‖2 − m‖θ̇‖2 +
mKλmax

ε
‖θ‖2

+ εmKλmax‖θ̇‖2 + 〈ω, θ〉 + 2m〈ω, θ̇〉

= −(a − b/ε)‖θ‖2 − (m − εb)‖θ̇‖2 + 〈ω, θ〉 + 2m〈ω, θ̇〉,
in which a = ρ′ Kλ2 and b = mKλmax.

Taking ε =
√

m/a, we obtain by Lemma 2.2 that

(a − b/ε)‖θ‖2 + (m − εb)‖θ̇‖2 = (1 − b/
√

am)(a‖θ‖2 + m‖θ̇‖2)
≥ (1 − b/

√
am) k (‖θ + mθ̇‖2 + ‖mθ̇‖2)

= μ(‖θ + mθ̇‖2 + ‖mθ̇‖2)
= 2μE(θ, θ̇).

Meanwhile, we deduce by Young’s inequality that

〈ω, θ〉 + 2m〈ω, θ̇〉 = 〈ω, θ + mθ̇〉 + 〈ω,mθ̇〉
≤ 1

2μ
‖ω‖2 +

μ

2
‖θ + mθ̇‖2 +

1
2μ

‖ω‖2 +
μ

2
‖mθ̇‖2

=
1
μ

‖ω‖2 + μE(θ, θ̇).

Therefore, we derive that

d
dt

E(θ, θ̇) ≤ −2μE(θ, θ̇) +
1
μ

‖ω‖2 + μE(θ, θ̇)

= −μE(θ, θ̇) +
1
μ

‖ω‖2,

and hence by Lemma 2.1

E(θ(t), θ̇(t)) ≤ E(θ(0), θ̇(0))e−µt +
‖ω‖2
μ2

(1 − e−µt), t ∈ [0, T ). (3.15)

If T is finite, then E(θ(T ), θ̇(T )) = ‖ω‖2/μ2. On the other hand, from (3.15) we deduce that

E(θ(T ), θ̇(T )) ≤ lim
t→T

(
E(θ(0), θ̇(0))e−µt +

‖ω‖2
μ2

(1 − e−µt)
)

= E(θ(0), θ̇(0))e−µT +
‖ω‖2
μ2

(1 − e−µT )

<
‖ω‖2
μ2

,

which is a contradiction. As a result, T = +∞, implying that the interior of A′ is positively invariant,
and hence A′ is positively invariant for system (1.1).
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It is easy to check that A′ is bounded and hence is compact. The Lyapunov function V is defined as
in the proof of Theorem A. Then LaSalle’s invariance principle implies that the solutions in A′ achieve
frequency synchronization. This completes the proof of Theorem B. �

4. Discussion and conclusion

We should remark that the inertial coefficient m cannot be arbitrarily chosen since it is closely related to
the choice of the coupling strength K which should fulfill condition (H1) or (H1′).

Apart from synchronization phenomenon, the existence of rotating modes for system (1.1) was inves-
tigated in [28] by applying the topological degree theory.

We remark that it is also possible to use monotone dynamical systems approach (see [27]) to study
frequency synchronization phenomenon for system (1.1): first establish the existence of a positively in-
variant set so that the system is monotone in this set and then apply the techniques in [27] to obtain the
conclusions.

In the proof of our main results in Sect. 3, we demonstrate the existence of a compact set A (or A′)
such that system (1.1) is positively invariant in A. The existence of such a set is closely related to the
concept of phase cohesiveness [6]: for each solution θ(t) of (1.1) with initial data (θ(0), θ̇(0)) ∈ A, there
exists an arc of length ν containing all angles θi(t) at each time t ≥ 0.

The region of admissible initial data for frequency synchronization depends heavily on the coupling
strength K and the inertial term m and is determined in the proof of the main conclusions. If the initial
phase configurations are allowed to be distributed in a half circle, i.e., maxi,j |θi(0) − θj(0)| < π, then
we can choose ν ∈ [π/2, π) such that (θ(0), θ̇(0)) ∈ A implying maxi,j |θi(0) − θj(0)| ≤ ν, as long as
the coupling strength K is large enough. As a consequence, (θ(t), θ̇(t)) ∈ A implying maxi,j |θi(t) −
θj(t)| ≤ ν for all t ≥ 0 provided (H1) and (H2) hold true, and hence the solution θ(t) achieves frequency
synchronization.

Note that if we take ν = π/2, then ρ = 2/π and the upper bound for m is more definite, but the set
for allowable initial data becomes smaller.

Finally, we compare our results for the second-order Kuramoto model with those for the first-order
system. The closely related result to our conclusion Theorem A was established by Dörfler and Bul-
lo in [8] (see also [5,21]), in which it was shown that under the condition Kλ2 > ‖BT

c ω‖, the first-
order Kuramoto oscillators achieve frequency synchronization. Our estimate for the second-order sys-
tem is Kλ2 ≥ α‖BT

c ω‖ in which α is arbitrarily chosen in (2,∞). In addition to this, if the inertia
coefficient m is appropriately small, i.e., satisfies (H2), then frequency synchronization occurs. Note
that the region for initial data for the first-order system and the second-order system is almost the
same.

The related result for the first-order Kuramoto model corresponding to Theorem B was obtained
by Ha, Li, and Xue in [14]. Since they did not use the information of eigenvalues of the Laplacian
matrix, we restate the condition for K which can be derived by their method: Kλ2 ≥ √

2‖ω‖. Our
estimate is Kλ2 ≥ α

√
2‖ω‖ for the second-order system. Then frequency synchronization occurs for

the second-order system provided the inertia coefficient m is appropriately small, i.e., satisfies (H2′).
Similarly, the region for initial data for the first-order system and the second-order system is almost the
same.

Based on the above discussions, we draw a conclusion that the inertial effect in the second-order
Kuramoto model (1.1), if appropriately small (with the upper bound given by (H2) or (H2′)), has little
influence on the occurrence of frequency synchronization as long as the initial phase configurations are
distributed in a half circle.
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