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Abstract. We consider weak (“Leray”) solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in
an exterior domain. It is shown the velocity may be split into a constant times the first column of the fundamental solution
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1. Introduction

Let B ⊂ R
3 be an open bounded set. Suppose this set describes a rigid body moving with constant

nonzero translational and angular velocity in an incompressible viscous fluid. Further suppose the flow of
this fluid is steady. Then it is natural to assume that the direction of translation and the axis of rotation
of the rigid body are parallel. In order to describe the motion of the fluid in this situation, we choose a
coordinate system which is attached to the body and whose negative x1-axis points in the direction of
the translation of the body. Then the flow in question is governed by the system of equations

− Δu + τ ∂1u + τ (u · ∇)u − � (e1 × x) · ∇u + � e1 × u + ∇π = f, divu = 0, (1.1)

in the exterior domain Bc
:= R

3\B, supplemented by a decay condition at infinity,

u(x) → 0 for |x| → ∞, (1.2)

and suitable boundary conditions on ∂B. These latter conditions need not be specified here because they
are not relevant in the context of the work at hand. In (1.1) and (1.2), the functions u : Bc �→ R

3 and
π : Bc �→ R represent the unknown velocity and pressure field of the fluid, respectively, whereas the
function f : Bc �→ R

3 stands for a prescribed volume force acting on the fluid. The parameter τ ∈ (0,∞)
is the Reynolds number, and � ∈ R\{0} the Taylor number. These quantities will be considered as fixed,
like the domain B. For a derivation of the model given by (1.1), (1.2), we refer to [26, pp. 665–669]. Note
that u is not the velocity field of the fluid with respect to the coordinate system under consideration; it
is the velocity relative to an observer at rest (“ground speed”). With respect to any frame which—like
ours—adheres to a moving body, the velocity at infinity is nonvanishing, contrary to (1.2).

We are interested in “Leray solutions” of (1.1), (1.2), that is, weak solutions characterized by the
conditions u ∈ L6(Bc

)3 ∩ W 1,1
loc (Bc

)3, ∇u ∈ L2(Bc
)9 and π ∈ L2

loc(B
c
). The relation u ∈ L6(Bc

)3 means
that (1.2) is verified in a weak sense. Such solutions exist for data of arbitrary size if the velocity satisfies
Dirichlet boundary conditions on the boundary ∂B of B, some smoothness of ∂B is required, and suitable
regularity conditions are imposed on f and the data on ∂B [28, Theorem IX.3.1]. It is known by [7,8,29]
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that the velocity part u of a Leray solution (u, π) to (1.1), (1.2) decays for |x| → ∞ as expressed by the
estimates

|u(x)| ≤ C
( |x| s(x)

)−1
, |∇u(x)| ≤ C

( |x| s(x)
)−3/2 (1.3)

for x ∈ R
3 with |x| sufficiently large, where s(x) := 1 + |x| − x1 (x ∈ R

3) and C > 0 is a constant
independent of x. The factor s(x) may be considered as a mathematical manifestation of the wake
extending downstream behind a body moving in a viscous fluid.

In view of (1.3), it is natural to look for a function L : R
3\{0} �→ R

3 (“leading term”) such that
|∂αL(x)| decays with exactly the rate

( |x| s(x)
)−1−|α|/2 for α ∈ N

3
0 with |α| := α1 +α2 +α3 ≤ 1, whereas

u − L (“remainder”) and ∇(u − L) decay pointwise with a rate which is higher than
( |x| s(x)

)−1 and
( |x| s(x)

)−3/2, respectively. Such a function L is interesting from a physical point of view because it
gives a good idea of how the flow looks like at some distance from the rigid body. Also, a leading term
may be useful in some mathematical applications. For example, if a numerical approximation of u is to
be computed in a bounded domain around B, knowledge of a leading term may help to determine an
artificial boundary condition on the outer boundary of the computational domain in question, and to
obtain error estimates in that situation.

We know of two articles dealing with leading terms of solutions to (1.1), (1.2). The first is due to Kyed
[52], who showed that

uj(x) = γ Ej1(x) + Rj(x), ∂luj(x) = γ ∂lEj1(x) + Sjl(x) (x ∈ Bc
, 1 ≤ j, l ≤ 3), (1.4)

where E : R
3\{0} �→ R

4 × R
3 denotes a fundamental solution to the Oseen system

− Δv + τ ∂1v + ∇σ = g, div v = 0 in R
3. (1.5)

The definition of the function E is stated in Sect. 2. As becomes apparent from this definition, the
term Ej1(x) may be expressed explicitly in terms of elementary functions. The coefficient γ is also given
explicitly, its definition involving the Cauchy stress tensor. The remainder terms R and S in (1.4) are
characterized by the relations R ∈ Lq(Bc

)3 for q ∈ (4/3, ∞) and S ∈ Lq(Bc
)3 for q ∈ (1,∞). It is known

from [25, Section VII.3] that Ej1|Bc
r /∈ Lq(Bc

r) for q ∈ [1, 2], and ∂lEj1|Bc
r /∈ Lq(Bc

r) for q ∈ [1, 4/3],
where j, l ∈ {1, 2, 3} and r > 0. Therefore, the function R decays faster than Ej1, and Sjl faster than
∂lEj1, in the sense of Lq-integrability. Thus the equations in (1.4) may in fact be considered as asymptotic
expansions of u and ∇u, respectively. However, the theory in [52] is valid only under the assumptions
that u verifies the boundary conditions

u(x) = −τ e1 + � (e1 × x) for x ∈ ∂B, (1.6)

and that f vanishes. Moreover, reference [52] does not deal with pointwise decay of R and S, but in [49],
Kyed indicates that |R(x)| behaves as O(|x|−4/3+ε) if |x| → ∞, for some arbitrary but fixed ε > 0.

The second article dealing with an asymptotic expansion of Leray solutions to (1.1), (1.2) is reference
[9], which states that for x ∈ BS1

c
, 1 ≤ j ≤ 3,

uj(x) =
3∑

k=1

βk Zjk(x, 0) +

⎛

⎜
⎝

∫

∂B
u · ndox

⎞

⎟
⎠ xj (4π |x|3)−1 + Fj(x). (1.7)

Here S1 is a sufficiently large positive real number, (Zjk)1≤j,k≤3 is the velocity part of the fundamental
solution constructed by Guenther, Thomann [60] for the linearization

− Δv + τ ∂1v − � (e1 × x) · ∇v + � e1 × v + ∇σ = g, div v = 0 (1.8)

of (1.1) (see Sect. 2), β1, β2, β3 are coefficients defined in terms of u, π and f (see Theorem 3.1 below),
and F is a function from C1(BS1

c
)3 given explicitly in terms of Z, u and π (again see Theorem 3.1 below).
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As is shown in [9], this function F decays pointwise, in the sense that

|∂αF(x)| = O
(
(|x| s(x))−3/2−|α|/2 ln(2 + |x|)

)
for |x| → ∞ (α ∈ N

3
0 with |α| ≤ 1). (1.9)

It is known from [4, Theorem 2.19]—and restated below in Corollary 2.3—that

|∂αZ(x, 0)| = O
(
(|x| s(x))−1−|α|/2

)
for |x| → ∞ (α as in (1.9)). (1.10)

So, if the decay rate in (1.10) is sharp, Eq. (1.7) may be considered as an asymptotic expansion in the
usual sense: The remainder exhibits a faster pointwise decay than the leading term. However, since the
definition of the term Z(x, 0) involves an integral over (0,∞), the leading term

∑3
k=1 βk Zjk(x, 0) in (1.7)

is not as explicit as one would like it to be. This aspect and because it is not obvious whether the decay
rate in (1.10) is sharp strongly suggests that the term

∑3
k=1 βk Zjk(x, 0) should be studied more closely.

This is achieved in the work at hand, where we show that Zj1(x, 0) = Ej1(x) for x ∈ R
3\{0}, and

|∂α
x Zjk(x, 0)| = O

(
(|x| s(x))−3/2−|α|/2

)
for |x| → ∞, where 1 ≤ j ≤ 3 and k ∈ {2, 3} (Corollary 4.5,

Theorem 5.1).
These results and those in [9] taken together yield a satisfactory theory on a leading term for Leray

solutions to (1.1), (1.2). In fact, by setting

Gj(x) :=
3∑

k=2

βk Zjk(x, 0) + Fj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3), (1.11)

we may deduce from (1.7) and (1.9) that

uj(x) = β1 Ej1(x) +

⎛

⎜
⎝

∫

∂B
u · ndox

⎞

⎟
⎠ xj (4π |x|3)−1 + Gj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3) (1.12)

and

|∂αG(x)| = O
(
(|x| s(x))−3/2−|α|/2 ln(2 + |x|) )

for |x| → ∞ (1.13)

(α ∈ N
3
0 with |α| ≤ 1); see Theorem 3.2 and Corollary 3.1. The decay rate of ∂αG(x) stated in (1.13)

is optimal in the sense that derivatives of Ej1 of order |α| + 1 exhibit the same rate (see [46]), except
for the logarithmic factor ln(2 + |x|). We are able to prove these results without imposing any boundary
condition and without requiring that f vanishes. Our assumption that supp(f) is compact may be replaced
by suitable decay conditions on f , but we do not elaborate this—very technical—aspect of our theory.

If we compare how the coefficient γ from (1.4) is defined in [52], and the coefficient β1 from (1.12) in
[9] (see Theorem 3.1 below), we see that γ and β1 coincide, provided that u satisfies boundary condition
(1.6) imposed in [52]. Moreover the function G|Bc

S1
belongs to Lp(Bc

S1
)3 for p > 4/3, and ∂jG|Bc

S1
to

Lp(Bc
S1

)3 for p > 1, 1 ≤ j ≤ 3 (Lemma 9). Thus our theory covers the one in [52] as a special case.
We remark that in the case of a rigid body which only rotates but does not translate, more detailed

asymptotic expansions are available [17–19]. Any reader interested in further results on the asymptotic
behavior of viscous incompressible flow around rotating bodies is referred to [3–6,8,13–16,20–24,27,28,30–
45,47–51,54–56,60].

2. Notation, definition of fundamental solutions, auxiliary results

By | | we denote the Euclidean norm in R
3 and the length α1 + α2 + α3 of a multi-index α ∈ N

3
0. Put

e1 := (1, 0, 0). For r > 0, we set Br := {y ∈ R
3 : |y| < r}. If A ⊂ R

3, we put Ac := R
3\A. Recall the

abbreviation s(x) := 1 + |x| − x1 (x ∈ R
3) introduced in Sect. 1.

If A ⊂ R
3 is open, p ∈ [1,∞) and k ∈ N, we write W k,p(A) for the usual Sobolev space of order k

and exponent p. If B ⊂ R
3 is again an open set, we define Lp

loc(B), W k,p
loc (B) as the set of all functions
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v : B �→ R such that v|U ∈ Lp(U) and v|U ∈ W k,p(U), respectively, for any open bounded set U ⊂ R
3

with U ⊂ B. We write S(R3) for the usual space of rapidly decreasing functions in R
3; see [53, p. 138]

for example. For the Fourier transform ĝ of a function g ∈ L1(R3), we choose the definition ĝ(ξ) :=
(2π)−3/2

∫

R3

e−i ξ x g(x) dx (ξ ∈ R
3). This fixes the definition of the Fourier transform of a tempered

distribution as well.
The numbers τ ∈ (0,∞) and � ∈ R\{0} introduced in Sect. 1 will be kept fixed throughout. We

introduce a matrix Ω ∈ R
3×3 by setting

Ω := �

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ .

Note that � e1 × x = Ω · x for x ∈ R
3. We write C for positive constants that may depend on τ or �.

Constants additionally depending on parameters σ1, . . . , σn ∈ (0,∞) for some n ∈ N are denoted by
C(σ1, . . . , σn). We state some inequalities involving s(x) or x − τ t e1.

Lemma 1. [2, Lemma 4.8] s(x − y)−1 ≤ C (1 + |y|) s(x)−1 for x, y ∈ R
3.

Lemma 2. [1, Lemma 2] For x ∈ R
3, t ∈ (0,∞), we have

|x − τ te1|2 + t ≥ C [
χ[0,1](|x|) (|x|2 + t) + χ(1,∞)(|x|) ( |x| s(x) + t

) ]
.

Lemma 3. [12, Lemma 2.3] Let β ∈ (1,∞). Then
∫

∂Br

s(x)−β dox ≤ C(β) r for r ∈ (0,∞).

Theorem 2.1. [4, Theorem 2.19] Let R1, R2 ∈ (0,∞) with R1 < R2, ν ∈ (1,∞). Then for y ∈ Bc
R2

, z ∈
BR1 ,

∞∫

0

(|y − τ t e1 − e−t Ω · z|2 + t)−ν dt ≤ C(R1, R2, ν)
( |y| s(y)

)−ν+1/2
.

Theorem 2.2. Let R ∈ (0,∞). Then for k ∈ {0, 1}, x, y ∈ BR with x �= y,
∞∫

0

( |x − τ t e1 − e−t·Ω · y|2 + t)−3/2−k/2 dt ≤ C(R) |x − y|−1−k.

Proof. See the last part of the proof of [3, Theorem 3.1]. Note that in [3, (3.7)] it should read y+t U−e−t Ω·z
instead of x. �

The next lemma is well known. It was already used in [19], for example. For the convenience of the
reader, we give a proof.

Lemma 4. Let t ∈ R. Then etΩ =

⎛

⎝
1 0 0
0 cos(t�) − sin(t�)
0 sin(t�) cos(t�)

⎞

⎠ .

Proof. Put Ω′ :=
(

0 −1
1 0

)
, T :=

(
1 1
−i −i

)
, A :=

(
i 0
0 −i

)
. Obviously et A =

(
et i 0
0 e−t i

)
.

But T · A · T−1 = Ω′, so T · et A · T−1 = et Ω′
. On computing the elements of the matrix on the left-hand

side of the preceding equation, we obtain the lemma. �

Next we introduce some fundamental solutions. Put

N(x) := (4π |x|)−1 for x ∈ R
3\{0}
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(“Newton potential”, fundamental solution of the Poisson equation in R
3),

O(x) := (4π |x|)−1 e−τ (|x|−x1)/2 for x ∈ R
3\{0}

(fundamental solution of the scalar Oseen equation −Δv + τ ∂1v = g in R
3),

O(λ)(x) := (4π |x|)−1 e−
√

λ+τ2/4 |x|+τ x1/2 for x ∈ R
3\{0}, λ ∈ (0,∞)

(fundamental solution of the scalar Oseen resolvent equation −Δv + τ ∂1v + λ v = g in R
3),

K(x, t) := (4π t)−3/2 e−|x|2/(4 t) for x ∈ R
3, t ∈ (0,∞)

(fundamental solution of the heat equation in R
3),

ψ(r) :=

r∫

0

(1 − e−t) t−1 dt (r ∈ R), Φ(x) := (4π τ)−1 ψ
(
τ (|x| − x1)/2

)
(x ∈ R

3),

Ejk(x) := (δjk Δ − ∂j∂k)Φ(x), E4k(x) := xk (4π |x|3)−1 (x ∈ R
3\{0}, 1 ≤ j, k ≤ 3)

(fundamental solution of the Oseen system (1.5), with (Ejk)1≤j,k≤3 the velocity part and (E4k)1≤k≤3 the
pressure part). We further define

F (λ)(ξ) := (2π)−3/2 (λ + |ξ|2 + i τ ξ1)−1 for ξ ∈ R
3, λ ∈ (0,∞)

(Fourier transform of O(λ); see Theorem 4.1).
We recall some basic properties of these functions, beginning with a classical result.

Lemma 5. Let f ∈ S(R3) and put N(f)(x) :=
∫

R3

N(x− y) f(y) dy for x ∈ R
3. Then N(f) ∈ C∞(R3) and

∂αN(f)(x) =
∫

R3

N(x − y) ∂αf(y) dy for x ∈ R
3, α ∈ N

3
0.

Lemma 6. [11] K ∈ C∞(
R

3 × (0,∞)
)
and

|∂l
t∂

α
x K(x, t)| ≤ C(α, l) (|x|2 + t)−3/2−|α|/2−l e−|x|2/(8 t)

for x ∈ R
3, t ∈ (0,∞), α ∈ N

3
0, l ∈ N0. In particular K( · , t) ∈ L1(R3) ∩ S(R3) for t > 0.

Theorem 2.3. [46] Ejk ∈ C∞(R3\{0}) and

|∂αEjk(x)| ≤ C ( |x| s(x)
)−1−|α|/2 max{1, |x|−|α|/2}

for x ∈ R
3\{0}, 1 ≤ j, k ≤ 3, α ∈ N

3
0 with |α| ≤ 1.

As a consequence of Theorem 2.3, we have Ejk ∈ L1
loc(R

3), and Ejk|Bc
1 is bounded (1 ≤ j, k ≤ 3).

Analogous properties are obvious for N, O and O(λ). Moreover |Φ(x)| ≤ C (1 + |x|) (x ∈ R
3). In view of

these observations, the Fourier transforms of these functions will be considered as tempered distributions
(which, of course, will turn out to be represented by functions). Following Solonnikov [58, (40)], we
use Lemmas 5 and 6 to introduce the velocity part (Tjk)1≤j,k≤3 of a fundamental solution of the time-
dependent Stokes system, setting

Tjk(x, t) := δjk K(x, t) + ∂j∂k

⎛

⎝
∫

R3

N(x − y)K(y, t) dy

⎞

⎠ (x ∈ R
3, t > 0, 1 ≤ j, k ≤ 3).

Lemma 7. [58, Lemma 13], [57] Tjk ∈ C∞(
R

3 × (0,∞)
)
and

|∂l
t∂

α
x Tjk(x, t)| ≤ C(α, l) (|x|2 + t)−3/2−|α|/2−l

for x ∈ R
3, t ∈ (0,∞), 1 ≤ j, k ≤ 3, α ∈ N

3
0, l ∈ N0.
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Lemma 7 yields that Tjk( · , t) ∈ L2(R3), but does not imply Tjk( · , t) ∈ L1(R3) (t > 0). So the
Fourier transform of this function should be understood either as a transform of an L2-function or as a
tempered distribution. For us it will be convenient to use the second possibility. Put

Γ(x, y, t) := T (x − τ t e1 − e−t Ω · y, t) · e−t Ω for x, y ∈ R
3, t > 0. (2.1)

The matrix-valued function Γ (not to confuse with the usual Gamma function) is the velocity part of a
fundamental solution to the time-dependent variant of the linearization (1.8) of (1.1). This fundamental
solution was constructed by Guenther, Thomann [60] via a procedure involving Kummer functions, an
approach also used in [3–9]. However, Guenther, Thomann [60, (3.9)] showed that Γ is given by (2.1) as
well, thus providing an access to this function which is more convenient in many respects. For example,
from Lemma 7 and (2.1), we immediately obtain

Corollary 2.1. Let j, k ∈ {1, 2, 3}. Then Γjk ∈ C∞(
R

3 × R
3 × (0,∞)

)
and

|∂α
x Γjk(x, y, t)| ≤ C(α) (|x − τ t e1 − e−t Ω · y|2 + t)−3/2−|α|/2

for x, y ∈ R
3, t ∈ (0,∞), α ∈ N

3
0.

By Theorem 2.2 and Corollary 2.1, we have
∞∫

0

|Γjk(x, y, t)|dt < ∞ for x, y ∈ R
3 with x �= y, 1 ≤

j, k ≤ 3, so we may define

Z(x, y) :=

∞∫

0

Γ(x, y, t) dt for x, y ∈ R
3 with x �= y.

This function Z was introduced on [60, p. 96] as the velocity part of a fundamental solution to (1.8). We
collect the properties of Z that will be needed in what follows.

Lemma 8. [4, Lemma 2.15] Z ∈ C1
(
(R3 × R

3)\diag (R3 × R
3)

)3×3
, ∂xlZ(x, y) =

∞∫

0

∂xlΓ(x, y, t) dt for

x, y ∈ R
3 with x �= y, 1 ≤ l ≤ 3.

Note that due to Theorem 2.2 and Corollary 2.1, we have
∞∫

0

|∂xlΓ(x, y, t)|dt < ∞ for x, y, l as in

Lemma 8.

Corollary 2.2. Let R1, R2 ∈ (0,∞) with R1 < R2. Then

|∂α
x Z(x, y)| ≤ C(R1, R2)

( |x| s(x)
)−1−|α|/2 for x ∈ Bc

R2
, y ∈ BR1 , α ∈ N

3
0 with |α| ≤ 1.

Proof. Lemma 8, Corollary 2.1, Theorem 2.1. �

Corollary 2.3. The function Z( · , 0) belongs to C1(R3\{0})3×3.

Let S ∈ (0,∞). Then |∂α
x Z(x, 0)| ≤ C(S)

( |x| s(x)
)−1−|α|/2 for x ∈ Bc

S , α ∈ N
3
0 with |α| ≤ 1.

Moreover |Z(x, 0)| ≤ C |x|−1 for x ∈ B1\{0}.
Proof. The first two claims of the corollary follow from Lemma 8 and Corollary 2.2. The last estimate is
a consequence of Corollary 2.1 and Theorem 2.2. �

Corollary 2.3 justifies to introduce the Fourier transform of Z( · , 0) in the sense of a tempered
distribution.
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3. Statement of our main result

It will be convenient to first recall the main result from [9].

Theorem 3.1. [9, Theorem 3.1] Let B ⊂ R
3 be open, p ∈ (1,∞), f ∈ Lp(R3)3 with supp(f) compact. Let

S1 ∈ (0,∞) with B ∪ supp(f) ⊂ BS1 .
Let u ∈ L6(Bc

)3 ∩ W 1,1
loc (Bc

)3, π ∈ L2
loc(B

c
) with ∇u ∈ L2(Bc

)9, divu = 0 and
∫

Bc

[
∇u · ∇ϕ +

(
τ ∂1u + τ (u · ∇)u − � (e1 × z) · ∇u + � e1 × u

) · ϕ − π div ϕ
]
dz

=
∫

Bc

f · ϕ dz for ϕ ∈ C∞
0 (Bc

)3.

(This means the pair (u, π) is a Leray solution to (1.1), (1.2).) Suppose in addition that

B is C2-bounded, u|∂B ∈ W 2−1/p, p(∂B)3, π|BS1\B ∈ Lp(BS1\B). (3.1)

Let n denote the outward unit normal to B, and define

βk :=
∫

Bc

fk(y) dy

+
∫

∂B

3∑

l=1

(−∂luk(y) + δkl π(y) + (τ e1 − � e1 × y)l uk(y) + τ (ul uk)(y)
)
nl(y) doy

for 1 ≤ k ≤ 3,

Fj(x) :=
∫

Bc

[ 3∑

k=1

(
Zjk(x, y) − Zjk(x, 0)

)
fk(y) − τ ·

3∑

k,l=1

Zjk(x, y) (ul ∂luk)(y)
]
dy

+
∫

∂B

3∑

k=1

[(
Zjk(x, y) − Zjk(x, 0)

) 3∑

l=1

( −∂luk(y) + δkl π(y)

+ (τ e1 − � e1 × y)l uk(y)
)
nl(y) +

(
E4j(x − y) − E4j(x)

)
uk(y)nk(y)

+
3∑

l=1

(
∂ylZjk(x, y) (uk nl)(y) − τZjk(x, 0) (ul uk nl)(y)

)]
doy

for x ∈ BS1

c
, 1 ≤ j ≤ 3. The preceding integrals are absolutely convergent. Moreover F ∈ C1(BS1

c
)3

and Eq. (1.7) holds. In addition, for any S ∈ (S1,∞), there is a constant C > 0 which depends on
τ, �, S1, S, f, u and π, and which is such that

|∂αF(x)| ≤ C
( |x| s(x)

)−3/2−|α|/2 ln(2 + |x|) for x ∈ BS
c
, α ∈ N

3
0 with |α| ≤ 1.

In the preceding theorem, the coefficients β1, β2, β3 and the function F are defined in terms of integrals
on ∂B and Bc

. The integral over ∂B may allow to exploit boundary conditions verified by u or π. However,
this way of introducing β1, β2, β3 and F requires the additional assumptions imposed on B, u and π in
(3.1). If boundary conditions on ∂B do not matter, we may drop (3.1) and consider (u|BS0

c
, π|BS0

c
)

instead of (u, π), where S0 may be any number from (0, S1) with B ∪ supp(f) ⊂ BS0 . In view of interior
regularity of u and π, we may then define the coefficients βk and the functions F in terms of integrals
over ∂BS0 and BS0

c
, obtaining an analogous result as the one in Theorem 3.1, but with BS0 in the role
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of B. Below we will present a variant of this idea which takes account of the results in the work at hand
(Corollary 3.1).

The principal aim of this article consists in improving Theorem 3.1 in the way specified in

Theorem 3.2. Let B, p, f, S1, u, π satisfy the assumptions of Theorem 3.1, including (3.1). Let β1, β2, β3

and F be defined as in Theorem 3.1. Define the function G as in (1.11).
Then G ∈ C1(BS1

c
)3, Eq. (1.12) holds, and for any S ∈ (S1,∞), there is a constant C > 0 which

depends on τ, �, S1, S, f, u and π, and which is such that

|∂αG(x)| ≤ C
( |x| s(x)

)−3/2−|α|/2 ln(2 + |x|) for x ∈ BS
c
, α ∈ N

3
0 with |α| ≤ 1.

We recall that the asymptotic behavior of the function E appearing in the leading term in (1.12) is
described in Theorem 2.3. As explained above, we may drop the assumptions in (3.1) if we replace (u, π)
by (u|BS0

c
, π|BS0

c
), with some suitably chosen number S0. Here are the details.

Corollary 3.1. Take B, p, f, S1, u, π as in Theorem 3.1, but without requiring (3.1). (This means that
(u, π) is only assumed to be a Leray solution of (1.1), (1.2)). Put p̃ := min{3/2, p}.

Then u ∈ W 2,p̃
loc (Bc

)3 and π ∈ W 1,p̃
loc (Bc

).
Fix some number S0 ∈ (0, S1) with B∪supp(f) ⊂ BS0 , and define β1, β2, β3 and F as in Theorem 3.1,

but with B replaced by BS0 , and n(x) by S−1
0 x, for x ∈ ∂BS0 . Moreover, define G as in (1.11).

Then all the conclusions of Theorem 3.2 are valid.

4. Some Fourier transforms

In this section we show that Zj1( · , 0) = Ej1. To this end, we prove that the Fourier transforms of these
two functions coincide. To begin with, we recall some well-known facts about the Fourier transforms of
some of the fundamental solutions introduced in Sect. 2. Other intermediate results in this section may
also be well known (Corollary 4.2 for example), but since their proofs are very short, we present them
for completeness.

Theorem 4.1. For ξ ∈ R
3\{0}, we have N̂(ξ) = (2π)−3/2 |ξ|−2. If f ∈ S(R3) and N(f)(x) :=

∫

R3

N(x −

y) f(y) dy for x ∈ R
3, then N̂(f)(ξ) = |ξ|−2 f̂(ξ) for ξ as above.

Moreover
[
K( · , t)

]∧(ξ) = (2π)−3/2 e−t |ξ|2 and Ô(λ)(ξ) = F (λ)(ξ) for t ∈ (0,∞), ξ ∈ R
3 and

λ ∈ (0,∞).

Proof. For the first formula, the reader may consult [53, Proposition 2.1.1] and its proof. The second
equation follows from the first by a well-known formula for the Fourier transform of a convolution. As a
direct reference we mention [59, Lemma V.1.1]. The third equation is well known, and as concerns the
forth, we refer to [10, Theorem 2.1]. �

Corollary 4.1. Ô(z) = (2π)−3/2 (i τ z1 + |z|2)−1 and
∞∫

0

K(z − τ t e1, t) dt = O(z) for z ∈ R
3\{0}.

Proof. Let ϕ ∈ S(R3). For n ∈ N, ξ ∈ R
3, we have |F (1/n)(ξ)ϕ(ξ)| ≤ C |ξ|−2 |ϕ(ξ)|. But

∫

R3

|ξ|−2 |ϕ(ξ)| dξ

< ∞, because ϕ is rapidly decreasing. Thus we get from Lebesgue’s theorem

A := (2π)−3/2

∫

R3

(i τ ξ1 + |ξ|2)−1 ϕ(ξ) dξ = lim
n→∞

∫

R3

F (1/n)(ξ)ϕ(ξ) dξ.
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Due to the last equation in Theorem 4.1, we may conclude

A = lim
n→∞

∫

R3

O(1/n)(x) ϕ̂(x) dx. (4.1)

But |O(1/n)(x) ϕ̂(x)| ≤ C |x|−1 |ϕ̂(x)| for n ∈ N, x ∈ R
3\{0}, with

∫

R3

|x|−1 |ϕ̂(x)|dx < ∞ because ϕ hence

ϕ̂ is rapidly decreasing. Thus Eq. (4.1) and Lebesgue’s theorem yield A =
∫

R3

O(x) ϕ̂(x) dx. Since this is

true for any ϕ ∈ S(R3), the first equation in the corollary follows. The second is a consequence of the
first and the formula for

[
K( · , t)

]∧ in Theorem 4.1. �
Corollary 4.2. Let t ∈ (0,∞), j, k ∈ {1, 2, 3}. Then

[Tjk( · , t)]∧(ξ) = (2π)−3/2 (δjk − ξj ξk |ξ|−2) e−t |ξ|2 for ξ ∈ R
3\{0}.

Proof. We have K( · , t) ∈ S(R3) (Lemma 6). Therefore by Lemma 5,

Tjk(x, t) = δjk K(x, t) +
∫

R3

N(x − y) ∂j∂kK(y, t) dy (x ∈ R
3).

Since K( · , t) belongs to S(R3) hence ∂j∂kK( · , t) does, too, Corollary 4.2 follows from Theorem 4.1. �
Corollary 4.3. Let j ∈ {1, 2, 3}, t ∈ (0,∞). Then

[Γj1( · , 0, t)]∧(ξ) = (2π)−3/2 (δj1 − ξj ξ1 |ξ|−2) e−t (i τ ξ1+|ξ|2) for ξ ∈ R
3\{0}.

Proof. By Lemma 4, we have Γj1(x, 0, t) =
(
T (x − τ t e1, t) e−t Ω

)
j1

= Tj1(x − τ t e1, t), so Corollary 4.3
follows from Corollary 4.2. �
Corollary 4.4. Let j ∈ {1, 2, 3}, t ∈ (0,∞). Then

[Zj1( · , 0)]∧(ξ) = (2π)−3/2 (δj1 − ξj ξ1 |ξ|−2) (i τ ξ1 + |ξ|2)−1 for ξ ∈ R
3\{0}.

Proof. Let ϕ ∈ S(R3). With Corollary 2.1, we get

A :=
∫

R3

∞∫

0

|Γj1(x, 0, t) ϕ̂(x)|dt dx ≤ C
∫

R3

∞∫

0

(|x − τ t e1|2 + t)−3/2 |ϕ̂(x)|dt dx.

By Lemma 2 and because ϕ̂ belongs to S(R3), we get that A is bounded by

C

⎛

⎜
⎝

∫

R3

∞∫

1

t−3/2 |ϕ̂(x)|dt dx +
∫

B1

1∫

0

|x|−3/2 t−3/4|ϕ̂(x)|dt dx +
∫

Bc
1

1∫

0

|ϕ̂(x)|dt dx

⎞

⎟
⎠ ,

and hence A < ∞. Therefore, we may apply Fubini’s theorem, to obtain
∫

R3

Zj1(x, 0) ϕ̂(x) dx =

∞∫

0

∫

R3

Γj1(x, 0, t) ϕ̂(x) dxdt,

=

∞∫

0

∫

R3

(2π)−3/2 (δj1 − ξj ξ1 |ξ|−2) e−t (i τ ξ1+|ξ|2) ϕ(ξ) dξ dt,

where the last equation follows from Corollary 4.3. But
∞∫

0

∫

R3

|(δj1 − ξj ξ1|ξ|−2) e−t (i τ ξ1+|ξ|2)ϕ(ξ)|dξ dt ≤ C
∞∫

0

∫

R3

e−t |ξ|2 |ϕ(ξ)|dξ dt < ∞.
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Thus we may use Fubini’s theorem again, arriving at the equation
∫

R3

Zj1(x, 0) ϕ̂(x) dx =
∫

R3

(2π)−3/2 (δj1 − ξj ξ1 |ξ|−2) (i τ ξ1 + |ξ|2)−1 ϕ(ξ) dξ.

This proves Corollary 4.4. �

Theorem 4.2. Let j, k ∈ {1, 2, 3}. Then for ξ ∈ R
3\{0},

Êjk(ξ) = (2π)−3/2 (δjk − ξj ξj |ξ|−2) (i τ ξ1 + |ξ|2)−1.

Proof. For x ∈ R
3\{0}, we find

∂1Φ(x) = (4π τ)−1 ψ′( τ (|x| − x1)/2
)
τ (x1/|x| − 1)/2 = (4π τ |x|)−1 (e−τ (|x|−x1)/2 − 1)

= τ−1
(
O(x) − N(x)

)
.

Hence with Corollary 4.1 and Theorem 4.1, for ξ ∈ R
3\{0},

i ξ1 Φ̂(ξ) = ∂̂1Φ(ξ) = τ−1 (2π)−3/2
(
(i τ ξ1 + |ξ|2)−1 − |ξ|−2

)

= −i (2π)−3/2 ξ1

(
(i τ ξ1 + |ξ|2) |ξ|2 )−1

.

As a consequence Φ̂(ξ) = −(2π)−3/2
(
(i τ ξ1 + |ξ|2) |ξ|2 )−1

, so the theorem follows by the definition of
Ejk. �

Theorem 4.2 may be deduced also from the results in [25, Chapter VII]. In fact, it is shown in [25,
Section VII.3] that the convolution O ∗ f , for f ∈ C∞

0 (R3)3, belongs to C∞(R3)3 and is the velocity
part of a solution to the Oseen system (1.5) in R

3. On the other hand, by [25, Section VII.4], the inverse
Fourier transform of the function (2π)−3/2 (i τ ξ1 + |ξ|2)−1 f̂(ξ) (δjk − ξj ξk |ξ|−2)1≤j,k≤3 also solves (1.5)
in R

3, and belongs to certain Sobolev spaces. A uniqueness result would yield that the two solutions
coincide, implying Theorem 4.2. However, we prefer to carry out a direct proof of this theorem, instead
of relying on the rather lengthy theory in [25, Chapter VII], which in fact yields much stronger results,
not needed here, than Theorem 4.2.

Combining Theorem 4.2 and Corollary 4.4, we arrive at the main result of this section.

Corollary 4.5. Zj1( · , 0) = Ej1 for 1 ≤ j ≤ 3.

5. Proof of Theorem 3.2 and Corollary 3.1

We first show that in the case k ∈ {2, 3}, the function ∂α
jkZ(·, 0) decays faster for |x| → ∞ than indicated

by Corollary 2.3.

Theorem 5.1. Let S ∈ [2 τ π/|�|, ∞). Then |∂α
x Zjk(x, 0)| ≤ C(S)

( |x| s(x)
)−3/2−|α|/2 for x ∈ Bc

S+τ π/|�|,
α ∈ N

3
0 with |α| ≤ 1, j ∈ {1, 2, 3}, k ∈ {2, 3}.

Proof. Take x, α, j, k as in the theorem. We get with Lemma 8 that

∂α
x Zjk(x, 0) =

∞∫

0

∂α
x Γjk(x, 0, t) dt =

∞∫

0

[
∂α

x T (x − τ t e1, t) · e−t Ω
]
jk

dt,

so with Lemma 4 in the case k = 2,

∂α
x Zjk(x, 0) =

∞∫

0

(
∂α

x Tj2(x − τ t e1, t) cos(� t) − ∂α
x Tj3(x − τ t e1, t) sin(� t)

)
dt, (5.1)
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with a similar formula in the case k = 3. Let φ : R �→ R be defined by either φ(t) := cos(� t) for t ∈ R, or
by φ(t) := sin(� t) for t ∈ R. Let m ∈ {1, 2, 3}. Then, since φ(t + π/|�|) = −φ(t) for t ∈ R,
∞∫

0

∂α
x Tjm(x − τ t e1, t)φ(t) dt =

∞∑

n=0

2 (n+1) π/|�|∫

2 n π/|�|

∂α
x Tjm(x − τ t e1, t)φ(t) dt

=
∞∑

n=0

(2 n+1) π/|�|∫

2 n π/|�|

(
∂α

x Tjm(x − τ t e1, t)

−∂α
x Tjm(x − τ (t + π/|�|) e1, t + π/|�|)

)
φ(t) dt

=
∞∑

n=0

(2 n+1) π/|�|∫

2 n π/|�|

1∫

0

(−τ ∂α+e1
x + ∂α

x ∂4)Tjm(x − τ (t + ϑπ/|�|) e1, t + ϑπ/|�|)

× (−π/|�|)φ(t) dϑ dt.

Therefore by Lemma 7,

A :=
∣
∣
∣

∞∫

0

∂α
x Tjm(x − τ t e1, t)φ(t) dt

∣
∣
∣

≤ C
∞∑

n=0

2∑

m=1

(2 n+1) π/|�|∫

2 n π/|�|

1∫

0

( |x − τ (t + ϑπ/|�|) e1|2 + t + ϑπ/|�| )−3/2−|α|/2−m/2 dϑ dt

≤ C
2∑

m=1

1∫

0

∞∫

0

( |x − (τ ϑ π/|�|) e1 − τ t e1|2 + t
)−3/2−|α|/2−m/2 dt dϑ.

Since x ∈ Bc
S+τ π/|�|, we have |x − (τ ϑ π/|�|) e1| ≥ S for ϑ ∈ [0, 1], so we may apply Theorem 2.1 with

z = 0, R2 = S, R1 = S/2, y = x − (τ ϑ π/|�|) e1, ν = 3/2 + |α|/2 + l/2, to obtain

A ≤ C(S)
2∑

m=1

1∫

0

[ |x − (τ ϑ π/|�|) e1| s
(
x − (τ ϑ π/|�|) e1

) ]−1−|α|/2−m/2 dϑ. (5.2)

But for ϑ ∈ [0, 1], we have |x − (τ ϑ π/|�|) e1| ≥ |x|/2 + S/2 − τ ϑ π/|�| ≥ |x|/2, where the last inequality
holds because S ≥ 2 τ π/|�|. Moreover, we get from Lemma 1 that s

(
x − (τ ϑ π/|�|) e1

)−1 ≤ C s(x)−1 for
ϑ ∈ [0, 1]. Therefore from (5.2),

A ≤ C(S)
2∑

m=1

( |x| s(x)
)−1−|α|/2−m/2 ≤ C(S)

( |x| s(x)
)−3/2−|α|/2

.

Theorem 5.1 follows with Eq. (5.1) and its analogue for k = 3. �

Corollary 5.1. Let S ∈ (0,∞). Then |∂α
x Zjk(x, 0)| ≤ C(S)

( |x| s(x)
)−3/2−|α|/2 for x ∈ Bc

S and for α, j, k
as in Theorem 5.1.

Proof. Let x ∈ Bc
S , and take α, j, k as in Theorem 5.1. By Corollary 2.3, we have |∂α

x Zjk(x, 0)| ≤
C(S)

( |x| s(x)
)−1−|α|/2.

Suppose that S ≥ 2 τ π/|�|. Then we distinguish the cases x ∈ Bc
S+τ π/|�| and x ∈ BS+τ π/|�|\BS . If

x ∈ Bc
S+τ π/|�|, the inequality stated in the corollary follows from Theorem 5.1. In the second case, we
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observe that 1 ≤ (S +τ π/|�|) |x|−1 ≤ C(S)
( |x| s(x)

)−1/2
, so the inequality claimed in Corollary 5.1 may

be deduced from the estimate stated at the beginning of this proof.
Now suppose that S < 2 τ π/|�|, Then we use that either x ∈ Bc

3 τ π/|�| or x ∈ B3 τ π/|�|\BS . If
x ∈ Bc

3 τ π/|�|, the inequality we want to show follows from Theorem 5.1 with 2 τ π/|�| in the place of S.

In the case x ∈ B3 τ π/|�|\BS , we use the relation 1 ≤ (3 τ π/|�|) |x|−1 ≤ C(S)
( |x| s(x)

)−1/2 and again the

estimate from the beginning of the proof, once more obtaining an upper bound C(S)
( |x| s(x)

)−3/2−|α|/2

for |∂α
x Zjk(x, 0)|, as stated in Corollary 5.1. �

The proofs of Theorem 3.2 and Corollary 3.1 are now obvious.

Proof of Theorem 3.2. Combine Theorem 3.1, Corollary 4.5 and 5.1. �

Proof of Corollary 3.1. From interior regularity of solutions to the Stokes system [25, Theorem IV.4.1]
and the assumption f ∈ Lp(R3)3, we may conclude that u ∈ W 2,p̃

loc (Bc
)3 and π ∈ W 1,p̃

loc (Bc
), with p̃ from

Corollary 3.1. More details about this conclusion may be found in the proof of [4, Theorem 5.5]. It follows
that u|∂BS0 ∈ W 2−1/p̃, p̃(∂BS0)

3 and π|BR\BS0 ∈ Lp̃(BR\BS0) for any R ∈ (S0,∞). Now we may apply
Theorem 3.2 with B, f, u, π replaced by BS0 , f |BS0

c
, u|BS0

c
and π|BS0

c
, respectively. Corollary 3.1 then

follows from Theorem 3.2. �

We add a lemma which shows that the pointwise decay properties of our remainder imply Lp-
integrability as derived by Kyed [52] and restated in Sect. 1.

Lemma 9. G|Bc
S1

∈ Lp(Bc
S1

)3 for p ∈ (4/3, ∞] and ∂jG|Bc
S1

∈ Lp(Bc
S1

)3 for p ∈ (1, ∞], 1 ≤ j ≤ 3.

Proof. Take p ∈ (1,∞) and j ∈ {1, 2, 3}. We show that ∂jG|Bc
S1

∈ Lp(Bc
S1

)3. The same type of argument
yields G|Bc

S1
∈ Lp(Bc

S1
)3 if p > 4/3. Since 2 − 2/p > 0, we may fix some ε ∈ (0, 2 − 2/p). Take

ε := (2−2/p)/2 in order to specify how this parameter depends on p. The relation ε > 0 implies the term
|x|−ε ln(2 + |x|) is bounded uniformly in x ∈ Bc

S1
. Therefore, with Theorem 3.2,

∫

Bc
S1

|∂iG(x)|p dx ≤ Cp

∫

Bc
S1

(( |x| s(x)
)−2 ln(2 + |x|)

)p

dx

≤ Cp C(p)
∫

Bc
S1

( |x| s(x)
)−2 p+ε p dx,

where the constant C was introduced in Theorem 3.2. Since ε < 2 − 2/p, we have −2 p + ε p < −2, so we
get with Lemma 3

∫

Bc
S1

|∂iG(x)|p dx ≤ Cp C(p)

∞∫

S1

r−2 p+ε p

∫

∂Br

s(x)−2 p+ε p dox dr

≤ Cp C(p)

∞∫

S1

r−2 p+ε p+1 dr ≤ Cp C(p).

�
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