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Abstract. We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary
that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of
Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some
applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and
nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible
bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new
class of mixed finite element methods for nonlinear elasticity.

Mathematics Subject Classification. 35Q74, 46N99, 74B20.

Keywords. Nonlinear elasticity, Hilbert complex, Orthogonal decompositions.

1. Introduction

Suppose L is a linear (elliptic) differential operator that associates a tensor α = L (γ) with another tensor
γ. In this case, γ is called an L -potential for α. Such potentials naturally arise in continuum mechanics.
For example, a displacement field is a potential for a (linear or nonlinear) strain and a Beltrami stress
function is a potential for a divergence-free Cauchy stress tensor. More discussions on various applications
of such potentials in continuum mechanics can be found in [38] and references therein. It is well known
that the necessary and sufficient conditions for the existence of these potentials are closely related to
certain topological properties of the underlying bodies, e.g., see [2,16,27,28,40]. All these references
directly or indirectly use the de Rham theorem [31, Theorem 18.14], which gives the necessary and
sufficient conditions for the existence of d-potentials for sufficiently smooth differential forms, where d is
the exterior derivative.

An alternative approach to potentials is offered by orthogonal decompositions in the following sense.
Let B̄ ⊂ R

3 be a smooth, compact 3-manifold with boundary. Also suppose that the boundary ∂B̄ of B̄
can be written as ∂B̄ = ∂1B̄ ∪ ∂2B̄, where ∂1B̄ and ∂2B̄ are disjoint compact surfaces without boundary.
Then, a Hodge-type decomposition for differential 1-forms introduced by Gol’dshtein et al. [26, Theorem
4.3] implies that any smooth vector field Y on B̄ can be uniquely decomposed as

Y = Y g + YH + Y c, (1.1)

where the components are orthogonal with respect to the L2-inner product 〈〈, 〉〉L2 of vector fields and
satisfy Y g,YH ⊥ ∂1B̄, and Y c,YH‖∂2B̄, with ⊥ and ‖ meaning “normal to” and “tangent to”, respectively.
Moreover, there exists a function f with f |∂1B̄ = 0 and a vector field Z ⊥ ∂2B̄ such that Y g = grad f , and
Y c = curl Z. The vector field YH is a harmonic field, i.e., both curlYH and div YH vanish. Let HX

n1,t2(B̄) be
the finite-dimensional space of vector fields in ker div∩ker curl that satisfy the same boundary conditions

Dedicated to Professor Michael Ortiz on the occasion of his 60th birthday.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-016-0735-y&domain=pdf


143 Page 2 of 30 A. Angoshtari and A. Yavari ZAMP

as YH does. By assuming ∂1B̄ = ∅, the decomposition (1.1) enables one to write the necessary and
sufficient conditions for the existence of a grad-potential for Y as

curl Y = 0, and 〈〈Y ,H〉〉L2 = 0, ∀H ∈ HX
n1,t2(B̄). (1.2)

Note that by using the de Rham theorem, the necessary and sufficient conditions for the existence of
grad-potentials are

curl Y = 0, and
∫

�

G(Y , t�)dS = 0, ∀� ⊂ B̄, (1.3)

where G is the Riemannian metric of B̄, � is an arbitrary closed curve in B̄, and t� is the unit tangent
vector field along �. For sufficiently smooth vector fields, one can show that (1.2) and (1.3) are equivalent
[35, Theorem 3.2.3].

On the other hand, if ∂1B̄ �= ∅, then the decomposition (1.1) also allows one to study grad-potentials
in the presence of Dirichlet boundary conditions. More specifically, consider the following problem:

Given a vector field Y , determine the necessary and sufficient conditions for the existence
of a function f such that Y = grad f , and f |∂1B̄ = 0. (1.4)

For solving this problem, (1.1) tells us that the necessary and sufficient conditions sought for in (1.4) are

curl Y = 0,Y ⊥ ∂1B̄, and 〈〈X,H〉〉L2 = 0, ∀H ∈ HX
n1,t2(B̄). (1.5)

Note that depending on the topology of ∂1B̄, the conditions (1.5) with the Dirichlet boundary condition
on ∂1B̄ and the conditions (1.2) without Dirichlet boundary conditions may be completely different.
For example, consider the body B̄ shown in Fig. 1, with its boundary ∂B̄ consisting of three spheres
Ci, i = 1, 2, 3. Since B̄ is simply connected, (1.2) reads: curlY = 0. If ∂1B̄ = C1, then (1.5) becomes
curlY = 0, and Y ⊥ ∂1B̄. For ∂1B̄ = C1 ∪ C2, and ∂1B̄ = ∂B̄, the space HX

n1,t2(B̄) is 1- and 2-dimensional,
respectively, and therefore, curlY = 0, and Y ⊥ ∂1B̄ are no longer sufficient conditions for the existence
of grad-potentials with these Dirichlet boundary conditions. Therefore, (1.1) allows one to study the
effects of the topology of ∂1B̄ on the solution of the problem (1.4).

Linear and nonlinear strain tensors, and stress tensors are of second order, and therefore, for extending
the above results to potentials for strains and stresses, one needs a tensorial analogue of (1.1). Orthogonal
decompositions for second-order tensors have been studied by many authors in the literature. The motiva-
tion for most of these studies was the earlier works on the decompositions of differential forms discussed in
Morrey [32] and references therein. Cantor [15] proposed a general framework for deriving Helmholtz-type
decompositions for tensor fields on compact manifolds using elliptic operators. By employing a similar

Fig. 1. A simply connected 3D body B̄ with ∂B̄ being the union of the spheres Ci, i = 1, 2, 3
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approach, Berger and Ebin [10] obtained various Helmholtz-type decompositions for symmetric second-
order tensors on compact manifolds. Ting [37] introduced a Helmholtz-type decomposition for symmetric
tensors on compact manifolds with boundary, which is associated with linear strains. Geymonat and
Krasucki [23] obtained a Hodge-type decomposition for symmetric second-order tensors on compact Lip-
schitz manifolds with boundary in the Euclidean space. Decompositions for divergence-free second-order
tensors were studied by Gurtin [27] for symmetric tensors and Carlson [16] for non-symmetric tensors. In
all the above works, boundary conditions on the components of decompositions are either ignored or are
imposed on the whole boundary ∂B̄.

Contributions of this paper

By introducing appropriate Hilbert complexes that can describe the kinematics and the kinetics of motion
in nonlinear elasticity, we establish orthogonal decompositions similar to (1.1) for second-order tensors
on compact manifolds with boundary in R

n, n = 2, 3. The main contributions of this paper can be
summarized as follows.

• We write various Hilbert complexes in the sense of Brüning and Lesch [13] for different types
of second-order tensors on 2D and 3D flat manifolds with boundary. We show that the Hilbert
complexes for two-point tensors describe both the kinematics and the kinetics of motion in nonlinear
elasticity [the Hilbert complex (3.22) for the 3D case and the complexes (3.24) and (3.25) for the
2D case]. In these Hilbert complexes, boundary conditions can be imposed on the whole or only
on a portion of the boundary. Let us also mention that in [2], by ignoring boundary conditions, we
introduced some differential complexes for nonlinear elasticity that involve only C∞ tensor fields.
This C∞ assumption is unrealistic in practice. Moreover, unlike the above Hilbert complexes, these
smooth complexes are not suitable for numerical analysis.

• By using the framework of Hilbert complexes, we derive the analogues of (1.1) for non-symmetric
second-order tensors (Theorems 11 and 15) and two-point second-order tensors (Theorems 19
and 22). In these decompositions, one can impose boundary conditions on the whole or only on
a portion of the boundary. For symmetric second-order tensors, we derive Helmholtz-type decom-
positions with proper boundary conditions on ∂1B̄ and ∂2B̄ (Theorems 30 and 35).

• As an application of the above decompositions, we study the strain compatibility equations of linear
and nonlinear elasticity in the presence of Dirichlet boundary conditions (Theorems 36 and 42).
In particular, we show that the tensorial analogue of the problem (1.4) gives one the nonlinear
compatibility problem in terms of displacement (deformation) gradients. We will show that in the
presence of Dirichlet boundary conditions on ∂1B̄ and depending on the topologies of B̄ and ∂1B̄,
compatibility equations for displacement gradients can be different form the classical compatibility
equations with no Dirichlet boundary conditions.

This paper is organized as follows. In Sect. 2 after reviewing some preliminaries, we use the machinery
of Hilbert complexes to derive a Hodge-type decomposition analogous to (1.1) for R

n-valued forms. In Sect.
3, we use the results of Sect. 2 for deriving the analogues of (1.1) for non-symmetric and two-point second-
order tensors. For symmetric second-order tensors, we use a basic fact for closed unbounded operators
for establishing Helmholtz-type decompositions with appropriate boundary conditions on ∂1B̄ and ∂2B̄.
In Sect. 4, we study some applications of the above decompositions in nonlinear elasticity including the
linear and nonlinear compatibility problems with Dirichlet boundary conditions, and the existence of
stress functions for non-contractible bodies. Finally, in Sect. 5, we briefly discuss the application of the
Hilbert complexes introduced in this work for developing a new class of mixed finite element methods for
large-deformation (finite-strain) analysis of solids.
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2. Hilbert complexes and decompositions for differential forms

We shall show that some Hilbert complexes and their associated orthogonal decompositions for non-
symmetric and two-point second-order tensors can be derived by using their counterparts for R

n-valued
differential forms. In this section, we study Hilbert complexes of R

n-valued differential forms with certain
boundary conditions on flat, compact manifolds with boundary. In Sects. 2.1 and 2.2, we review some
useful results for differential forms and the associated Hilbert complexes. Then, in Sect. 2.3, we derive
a Hodge decomposition for L2 forms by using the machinery of Hilbert complexes. Next, we will obtain
similar results for symmetric second-order tensors by following similar approaches. In the following, unless
stated otherwise, we assume the summation convention on repeated indices.

2.1. Hilbert spaces of differential forms

Hilbert spaces of differential forms can be defined as completions of smooth forms with respect to certain
inner products. To fix notation, first we tersely review some notions related to smooth differential forms.
More details can be found in [1,21,29,31,35]. We assume B̄ ⊂ R

n, n = 2, 3, is a smooth n-manifold
with boundary, that is compact, connected, and orientable, where from now on, smooth signifies of class
C∞. The interior and boundary of B̄ are denoted by B and ∂B̄, respectively, where we assume that
∂B̄ = ∂1B̄ ∪ ∂2B̄ with disjoint smooth (n − 1)-manifolds ∂1B̄ and ∂2B̄ being closed (i.e., compact without
boundary). Either ∂1B̄ or ∂2B̄ can be empty. Γr(V) is the space of Cr-sections of a vector bundle V → B̄.
Similarly, Γr,μ(V) is the Hölder space of Cr,μ-sections of V. It is customary to denote the spaces of smooth
real-valued functions, smooth vector fields, and smooth differential k-forms on B̄ by C∞(B̄), X(B̄), and
Ωk(B̄), respectively.

Let {Ei} and 〈〈, 〉〉 be the standard basis and the standard inner product of R
n, respectively, and

suppose Y1, . . . ,Yk ∈ X(B̄). The space of smooth R
n-valued k-forms is denoted by Ωk(B̄; Rn). Any

α ∈ Ωk(B̄; Rn) can be uniquely written as α = αi ⊗ Ei, where αi ∈ Ωk(B̄), i = 1, . . . , n, are given
by αi(Y1, . . . ,Yk) := 〈〈α(Y1, . . . ,Yk),Ei〉〉. The mapping α �→ (α1, . . . ,αn) induces the isomorphism
Ωk(B̄; Rn) ≈ ⊕n

i=1 Ωk(B̄). Let {XI} be the global Euclidean coordinates and let ξ,η ∈ Ωk(B̄). The
standard Riemannian metric G on B̄ induces a Riemannian metric Gk on the wedge product ΛkT ∗B̄
given by

Gk(X)(ξ,η) :=
∑

I1<···<Ik

ξI1...Ik
ηI1...Ik , X ∈ B̄,

where ξI1...Ik
are the components of ξ and ηI1...Ik = GI1J1 . . . GIkJkηJ1...Jk

. The exterior derivative d :
Ωk(B̄) → Ωk+1(B̄) is defined as

(dξ)I0...Ik
=

k∑
i=0

(−1)iξI0...Îi...Ik,Ii
,

where the hat over an index implies the omission of that index and “,Ii
” indicates ∂/∂XIi . Since d◦d = 0,

the exterior derivative induces a complex called the de Rham complex, which is denoted by
(
Ω(B̄), d

)
.

The Hodge star operator ∗ : Ωk(B̄) → Ωn−k(B̄) is a linear isomorphism defined by ξ ∧ ∗η =
Gk(ξ,η)μG, where μG is the Riemannian volume element of (B̄,G). The codifferential operator
δ : Ωk(B̄) → Ωk−1(B̄) is defined as δ := (−1)n(k+1)+1 ∗ d∗. By using the Euclidean coordinates {XI},
one can write (δβ)I1...Ik−1 = −βJI1...Ik−1,J . We have δ ◦ δ = 0, and the complex induced by δ is denoted
by

(
Ω(B̄), δ

)
. The Laplace–de Rham operator Δ : Ωk(B̄) → Ωk(B̄) is an elliptic second-order operator

defined as Δ := d◦δ+δ◦d. The above operators for standard forms can be extended to R
n-valued forms as

follows: dα := (dα1, . . . , dαn), ∗α := (∗α1, . . . , ∗αn), α ∧ (∗ω) :=
∑

i αi ∧ (∗ωi), δα := (δα1, . . . , δαn),
and Δα := (Δα1, . . . ,Δαn).
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One can uniquely decompose Y ∈ X(B̄) as Y |∂B̄ = tY + nY , where tY and nY are tangent and
normal to ∂B̄, respectively. The tangential and normal parts tξ and nξ of ξ ∈ Ωk(B̄) at ∂B̄ are defined
as tξ(Y1, . . . ,Yk) := ξ(tY1, . . . , tYk), and nξ := ξ|∂B̄ − tξ [35, p. 27]. Note that these definitions imply
that tξ and nξ are not differential forms on ∂B̄ in the sense that, in general, the vector fields Y i at
X ∈ ∂B̄ belong to TX B̄ and not necessarily to TX(∂B̄). Let i∗ξ be the pull-back of ξ by the inclusion map
i : ∂B̄ ↪→ B̄. Then i∗ξ is a form on ∂B̄ and we have i∗ξ = i∗(tξ). For ξ ∈ Ω0(B̄), we have tξ = ξ|∂B̄, and
nξ = 0. A differential form ξ is called tangent (normal) to ∂B̄ if nξ = 0 (tξ = 0). The spaces of tangent
and normal smooth forms are denoted by Ωk

t (B̄) and Ωk
n(B̄), respectively.

By using the natural isomorphism 	 : X(B̄) → Ω1(B̄) induced by G, i.e.,
(
Y �

)
I

= GIJY J , it is
straightforward to show that [35, Proposition 3.5.1]

t(Y �) = (tY )�, and n(Y �) = (nY )�. (2.1)

For α ∈ Ωk(B̄; Rn), we have tα = (tα1, . . . , tαn), and nα = (nα1, . . . , nαn). One can write [35, Proposi-
tion 1.2.6]

∗ (nα) = t(∗α), ∗ (tα) = n(∗α), (2.2)

i∗
(
t(dα)

)
= d (i∗(tα)) , i∗

( ∗ (nδα)
)

= (−1)(k+1)(n−k+1)d (i∗(∗nα)) . (2.3)

The space of R
n-valued k-forms that are tangent (normal) to ∂jB̄, j = 1, 2, is denoted by Ωk

tj
(B̄; Rn)

(Ωk
nj

(B̄; Rn)). The first relation in (2.3) suggests that if α ∈ Ωk
nj

(B̄; Rn) then (t(dα)) |∂j B̄ = 0. This
allows us to define the restriction dnj

: Ωk
nj

(B̄; Rn) → Ωk+1
nj

(B̄; Rn), dnj
α := dα. Similarly, we have the

restriction δtj
: Ωk

tj
(B̄; Rn) → Ωk−1

tj
(B̄; Rn). Therefore, the complexes

(
Ω(B̄; R3),d

)
and

(
Ω(B̄; R3), δ

)
admit the following linear subcomplexes

0 �� Ω0
nj

(B̄; Rn)
dnj

�� Ω1
nj

(B̄; Rn)
dnj

�� . . .
dnj

�� Ωn
nj

(B̄; Rn) �� 0,

0 Ω0
tj
(B̄; Rn)�� Ω1

tj
(B̄; Rn)

δtj
�� . . .

δtj
�� Ωn

tj
(B̄; Rn)

δtj
�� 0,��

(2.4)

which are denoted by
(
Ωnj

(B̄; Rn),dnj

)
and

(
Ωtj

(B̄; Rn), δtj

)
, respectively. In the terminology of Gilkey

[25, section 4.1], for ∂1B̄ = ∂B̄, one recovers the relative de Rham complex
(
Ωn(B̄; R3),dn

)
and the

absolute de Rham complex
(
Ωt(B̄; R3), δt

)
. Clearly, for ∂1B̄ = ∅, we obtain the standard complexes(

Ω(B̄; R3),d
)

and
(
Ω(B̄; R3), δ

)
, respectively.

The L2-inner products 〈〈, 〉〉L2 on Ωk(B̄) and 〈〈, 〉〉L2 on Ωk(B̄; Rn) are defined as 〈〈ξ,η〉〉L2 :=∫
B̄

Gk(ξ,η)μG, and 〈〈α,γ〉〉L2 :=
∑n

i=1〈〈αi,γi〉〉L2 . By using the L2-inner products, we observe that

α �→ (α1, . . . ,αn) and the Hodge star operator are isometries [35, p. 40].

Let
∫
B̄

α :=

(∫
B̄

αi

)
Ei, α ∈ Ωn(B̄; Rn). Stokes’ theorem for R

n-valued forms reads
∫
B̄

dγ =
∫

∂B̄
i∗γ,

γ ∈ Ωn−1(B̄; Rn), where the orientation of ∂B̄ is induced by that of B̄ [31, p. 411]. Green’s formula for
R

n-valued forms states that for any γ ∈ Ωk−1(B̄; Rn) and α ∈ Ωk(B̄; Rn), we have [35, Proposition 2.1.2]

〈〈dγ,α〉〉L2 = 〈〈γ, δα〉〉L2 +
∫

∂B̄

i∗(tγ ∧ ∗nα). (2.5)

The infinite-dimensional linear space Ωk(B̄; Rn) with its L2-inner product is not complete. Let ξI1...Ik

be the components of a k-form ξ in the Cartesian coordinates {XI}. The Hilbert space HsΩk(B̄) is the
space of all k-forms ξ with all Cartesian components ξI1...Ik

belonging to the standard Sobolev space of
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R-valued functions
(
Hs(B̄), 〈〈, 〉〉Hs

)
. The Hs-inner product of HsΩk(B̄) is given by

〈〈ξ,η〉〉Hs =
∑

1≤I1<···<Ik≤n

〈〈ξI1...Ik
, ηI1...Ik

〉〉Hs .

Alternatively, HsΩk(B̄) can be defined as the completion of
(
Ωk(B̄), 〈〈, 〉〉Hs

)
. The L2 space corresponds

to the special case of s = 0.
The partly Sobolev spaces HdΩk

nj
(B̄) and HδΩk

tj
(B̄) are defined as the completions of

(
Ωk

nj
(B̄), 〈〈, 〉〉Hd

)
and

(
Ωk

tj
(B̄), 〈〈, 〉〉Hδ

)
, respectively, where

〈〈ξ,η〉〉Hd := 〈〈ξ,η〉〉L2 + 〈〈dξ, dη〉〉L2 ,

〈〈ξ,η〉〉Hδ := 〈〈ξ,η〉〉L2 + 〈〈δξ, δη〉〉L2 .

The Sobolev spaces HsΩk(B̄) and HdΩk
nj

(B̄) of R
n-valued forms are defined as HsΩk(B̄) := ⊕n

i=1

HsΩk(B̄), and HdΩk
nj

(B̄) := ⊕n
i=1 HdΩk

nj
(B̄) with 〈〈α,γ〉〉Hs =

∑
i〈〈αi,γi〉〉Hs , and 〈〈α,γ〉〉Hd =∑

i〈〈αi,γi〉〉Hd . For ∂1B̄ = ∅, and ∂1B̄ = ∂B̄, we write HdΩk(B̄) := HdΩk
n1

(B̄), and HdΩk
n(B̄) :=

HdΩk
n1

(B̄), respectively. Similarly, we also define HδΩk
tj
(B̄), HδΩk(B̄), and HδΩk

t(B̄).
Theorems for standard Sobolev spaces such as the Sobolev and Rellich theorems extend to Sobolev

spaces of differential forms as well, e.g., see [35, Theorem 1.3.6]. The Sobolev space H1Ωk(B̄) can be
continuously embedded in both HdΩk(B̄) and HδΩk(B̄). Other useful properties of partly Sobolev spaces
can be found in [29].

The smooth operators dnj
and δtj

can be extended to the continuous mappings dnj
: HdΩk

nj
(B̄) →

HdΩk+1
nj

(B̄) and δtj
: HδΩk

tj
(B̄) → HδΩk−1

tj
(B̄), where dnj

◦ dnj
= 0, and δtj

◦ δtj
= 0 [26, Proposition

3.8]. The extensions dnj
: HdΩk

nj
(B̄) → HdΩk+1

nj
(B̄) and δtj

: HδΩk
tj
(B̄) → HδΩk−1

tj
(B̄) are defined as

dnj
α := (dnj

α1, . . . , dnj
αn), and δtj

α := (δtj
α1, . . . , δtj

αn).
Green’s formula (2.5) is still valid for γ ∈ H1Ωk−1(B̄) and α ∈ H1Ωk(B̄) [35, Proposition 2.1.2]. The

following special case of (2.5) is also valid [26, Theorem 4.2]: For any γ ∈ HdΩk−1
n1

(B̄), and α ∈ HδΩk
t2(B̄),

we have

〈〈dn1γ,α〉〉L2 = 〈〈γ, δt2α〉〉L2 . (2.6)

2.2. Hilbert complexes induced by the de Rham complex

We are now ready to study some Hilbert complexes induced by the R
n-valued de Rham complex. First,

we review some basic properties of unbounded operators. Let H1 and H2 be Hilbert spaces and let
D : H1 → H2 be an unbounded operator, i.e., D is linear and its domain D(D) ⊂ H1 is a linear subspace.
The operator D is called a closed operator if its graph G(D) := {(x,D(x)) : x ∈ D(D)} is a closed subset
of H1 × H2. Suppose D is densely defined. Then, its adjoint operator Da : H2 → H1 is defined by using
the relation 〈〈Da(y),x〉〉H1 = 〈〈y,D(x)〉〉H2 , ∀x ∈ D(D). A densely defined operator D is closed if and
only if Da is densely defined, closed, and (Da)a = D [41, section 7.2].

A Hilbert complex is defined as follows [13]: Let Dk : Hk → Hk+1, 0 ≤ k ≤ N , be closed, densely
defined operators between Hilbert spaces Hk, with HN+1 = {0}. The domain and range of Dk are denoted
by Dk := D(Dk), and Rk := Dk(Dk), respectively. Also assume that Rk ⊂ Dk+1, and Dk+1 ◦ Dk = 0.
The Hilbert complex (D ,D) is the complex induced by Dk, i.e., 0 �� D0

D0 �� D1
D1 �� . . .

DN−1
�� DN

�� 0 .
The property of closed operators mentioned in the first paragraph implies that the operators Dk admit

closed, densely defined adjoint operators Da
k , with Ra

k ⊂ Da
k−1, and Da

k−1 ◦ Da
k = 0. The dual complex of

(D ,D) is then defined to be the complex (Da,Da), i.e., 0 Da
0

�� Da
1

Da
0�� . . .

Da
1�� Da

N

Da
N−1
�� 0�� .

The kth cohomology of (D ,D) is defined as Hk := kerDk/Rk−1. A Hilbert complex is called Fredholm
if dimHk < ∞, for all k. One can show that (D ,D) is Fredholm if and only if (Da,Da) is Fredholm, and
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in this case, we have Hk ≈ Hk = Ha
k ≈ Ha

k, where Hk = ker Dk ∩ ker Da
k−1, and Ha

k = ker Da
k−1/R

a
k [13,

Corollary 2.6].
The Laplacian Lk : Hk → Hk of (D ,D) is a self-adjoint operator defined as Lk := Da

k ◦ Dk + Dk−1 ◦
Da

k−1. Clearly, we have Hk ⊂ ker Lk. Because for any x ∈ D(Lk), one can write

〈〈Lk(x),x〉〉Hk
= 〈〈Dk(x),Dk(x)〉〉Hk+1 + 〈〈Da

k−1(x),Da
k−1(x)〉〉Hk−1 ≥ 0,

we also have ker Lk ⊂ Hk, and thus kerLk = Hk.
The operator dn1 : HdΩk

n1
(B̄) → HdΩk+1

n1
(B̄) can be considered as a densely defined closed oper-

ator dn1 : L2Ωk(B̄) → L2Ωk+1(B̄) [26, Theorem 4.2]. Consequently, one obtains the Hilbert complex(
HdΩn1(B̄),dn1

)
. The relation (2.6) suggests that the unbounded operator δt2 : L2Ωk(B̄) → L2Ωk−1(B̄),

with D(δt2) = HδΩk
t2(B̄), is the adjoint operator of dn1 , cf. [26, Theorem 4.2]. Hence,

(
HδΩt2(B̄), δt2

)
is

the dual complex of
(
HdΩn1(B̄),dn1

)
.

Next, we study the Fredholm property of
(
HdΩn1(B̄),dn1

)
. Let Hk

n1
(B̄) be the kth cohomology group

of
(
HdΩn1(B̄), dn1

)
. Then, one can write

Hk
n1

(B̄) ≈ Hk
dR(B̄, ∂1B̄), (2.7)

where the finite-dimensional space Hk
dR(B̄, ∂1B̄) is the kth relative de Rham cohomology of the pair

(B̄, ∂1B̄) [26, Theorem 5.3]. Let Hk
n1

(B̄) and Hk
t2(B̄) be the kth cohomology groups of

(
HdΩn1(B̄),dn1

)

and
(
HδΩt2(B̄), δt2

)
, respectively. By using (2.7), we conclude that

(
HdΩn1(B̄),dn1

)
is Fredholm and

we have

Hk
n1

(B̄) ≈ Hk
t2(B̄) ≈ ⊕n

i=1 Hk
dR(B̄, ∂1B̄). (2.8)

Suppose Δn1,t2
k is the Laplacian of

(
HdΩn1(B̄),dn1

)
, where

D(Δn1,t2
k ) =

{
α ∈ HdΩk

n1
(B̄) ∩ HδΩk

t2(B̄) : dn1α ∈ HδΩk+1
t2 (B̄), δt2α ∈ HdΩk−1

n1
(B̄)

}
.

Let Hk
n1,t2(B̄) := kerΔn1,t2

k = ker dn1∩ ker δt2 . The Hodge star operator induces an isomorphism between(
HdΩn1(B̄),dn1

)
and

(
HδΩt1(B̄), δt1

)
[26, section 3.4]. This isomorphism together with (2.8) allows one

to write

Hk
n1

(B̄) ≈ Hk
n1,t2(B̄) ≈ Hn−k

n2
(B̄). (2.9)

Remark 1. Differential forms with compact support in B induce the complex (Ωc(B), d). Let Hk
dRc

(B) be
the kth cohomology group of this complex. Poincaré duality [11, p. 44] implies that Hk

dR(B) ≈ Hn−k
dRc

(B).
By using the analogue of (2.9) for standard forms with ∂1B̄ = ∅, one concludes that

(
Ωn(B̄), dn

)
and

(Ωc(B), d) have the same cohomology groups. In fact, since Ωk
c (B) is dense in HdΩk

n(B̄) [29, Corollary
3.8], one can also use the completion of (Ωc(B), d) for deriving the Hilbert complex

(
HdΩn(B̄), dn

)
. A

similar conclusion holds for the complexes (Ωc(B), δ) and
(
HδΩt(B̄), δt

)
as well.

Remark 2. The boundary-value problem
Δ(α) = γ,

tα = 0, t(δα) = 0, on ∂1B̄, nα = 0, n(dα) = 0, on ∂2B̄,
(2.10)

is elliptic [9], where Δ = δ ◦ d + d ◦ δ is the Laplace–de Rham operator. Therefore, some standard
regularity theorems apply to solutions of (2.10), e.g., see [36, Propositions 5.11.2, 5.11.16]. In particular,
since Hk

n1,t2(B̄) corresponds to γ = 0, one concludes that Hk
n1,t2(B̄) merely consists of smooth forms and

is finite dimensional. It is well known that on a compact manifold with non-empty boundary, the spaces
of harmonic forms kerΔ and harmonic fields kerd ∩ ker δ do not coincide and are infinite dimensional
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[35, Theorem 3.4.2]. The space of harmonic forms that satisfy the boundary conditions of (2.10) is finite
dimensional.

2.3. Hodge decompositions and potentials

Any Hilbert complex (D ,D) endows the underlying Hilbert spaces Hi with a Hodge decomposition as
follows [13, Lemma 2.1]: Since Di is a closed operator, ker Di is closed and (ker Di)

⊥ = Ra
i , where

(ker Di)
⊥ is the orthogonal complement of kerDi and Ra

i is the closure of Ra
i in Hi. The orthogonal

projection theorem implies that Hi = ker Di ⊕ (ker Di)
⊥. We also have ker Di = Ri−1 ⊕ Hi. Therefore,

one obtains the following orthogonal decomposition

Hi = Ri−1 ⊕ Hi ⊕ Ra
i , (2.11)

which is called the weak Hodge decomposition. If all Ri are closed, by using the closed range theorem,
one concludes that all Ra

i are also closed and (2.11) gives the (strong) Hodge decomposition

Hi = Ri−1 ⊕ Hi ⊕ Ra
i . (2.12)

If (D ,D) is Fredholm, then it admits the Hodge decomposition (2.12) [13, Corollary 2.5]. Therefore,
by using (2.8), one concludes that

(
HdΩn1(B̄),dn1

)
induces the L2-orthogonal Hodge decomposition

L2Ωk(B̄) = d
(
HdΩk−1

n1
(B̄)

)
⊕ Hk

n1,t2(B̄) ⊕ δ
(
HδΩk+1

t2 (B̄)
)

. (2.13)

This decomposition with ∂1B̄ = ∅ (∂1B̄ = ∂B̄) is called the Hodge decomposition for the absolute (rela-
tive) boundary condition, cf. [25, Lemma 4.1.3]. Equivalently, one can also write the following Helmholtz
decompositions

L2Ωk(B̄) = d
(
HdΩk−1

n1
(B̄)

)
⊕ ker δt2 = ker dn1 ⊕ δ

(
HδΩk+1

t2 (B̄)
)

, (2.14)

where

ker dn1 = d
(
HdΩk−1

n1
(B̄)

)
⊕ Hk

n1,t2(B̄),

ker δt2 = δ
(
HδΩk+1

t2 (B̄)
)

⊕ Hk
n1,t2(B̄). (2.15)

Thus, any α ∈ L2Ωk(B̄) can be uniquely decomposed as

α = dαn1 + αn1,t2
H + δαt2 , (2.16)

where αn1 ∈ HdΩk−1
n1

(B̄), αn1,t2
H ∈ Hk

n1,t2(B̄), αt2 ∈ HδΩk+1
t2 (B̄), and dαn1 , αn1,t2

H , and δαt2 are unique
and mutually orthogonal with respect to the inner product 〈〈, 〉〉L2 . The decomposition (1.1) for vector
fields corresponds to the analogue of (2.13) for standard forms.

To compare the Hodge decomposition (2.13) and the standard Hodge–Morrey decomposition [32,
p. 312], let

H1Ωk
n(B̄) := H1Ωk(B̄) ∩ HdΩk

n(B̄),

H1Ωk
t(B̄) := H1Ωk(B̄) ∩ HδΩk

t(B̄),

Hk(B̄) :=
{
α ∈ H1Ωk(B̄) : dα = 0, δα = 0

}
.

The space Hk(B̄) is the direct sum of n-copies of the infinite-dimensional space of harmonic fields on
B̄; see Remark 2. The standard Hodge–Morrey decomposition induces the following decomposition for
R

n-valued forms:



ZAMP Hilbert complexes of nonlinear elasticity Page 9 of 30 143

L2Ωk(B̄) = d
(
H1Ωk−1

n (B̄)
) ⊕ Hk(B̄) ⊕ δ

(
H1Ωk+1

t (B̄)
)
. (2.17)

In contrary to (2.13), all the spaces in the decomposition (2.17) are infinite dimensional.

Remark 3. Arguments similar to [32, Theorem 7.7.8] lead to the following results. In the decomposition
(2.16), if α is of class Cr,μ with r ≥ 0 and 0 < μ < 1, then dαn1 , αn1,t2

H , and δαt2 are of class Cr,μ and
αn1 and αt2 are of class Cr+1,μ. If α is smooth, then its components in (2.13) and (2.17) will be smooth
as well.

Remark 4. By using an abstract version of the Hodge theory together with the fact that D(dn1) ∩ D(δt2)
compactly embeds into L2Ωk(B̄), Gol’dshtein et al. [26] proved that (2.13) is valid for standard forms on
weakly Lipschitz subdomains of compact Lipschitz manifolds.

Remark 5. The form αn1 in (2.16) is not unique and can be replaced with αn1 + ζ, ∀ζ ∈ ker dn1 . It can
be uniquely chosen if one further requires that αn1 ∈ (ker dn1)

⊥, i.e., if αn1 admits a δt2 -potential, see
[35, Lemma 2.4.7]. Similarly, αt2 can be uniquely chosen if it admits a dn1-potential.

Remark 6. If α admits a dn1-potential, then by using (2.15), one can write

α ∈ HdΩk
n1

(B̄), dα = 0, 〈〈α,χ〉〉L2 = 0, ∀χ ∈ Hk
n1,t2(B̄). (2.18)

Conversely, if α satisfies (2.18), then (2.15) implies that there is a dn1-potential for α. Thus, the conditions
(2.18) are the necessary and sufficient conditions for the existence of a dn1-potential for an L2-form α.
Similarly, the analogue of (2.18) for δt2-potentials reads

α ∈ HδΩk
t2(B̄), δα = 0, 〈〈α,χ〉〉L2 = 0, ∀χ ∈ Hk

n1,t2(B̄). (2.19)

Remark 7. The de Rham theorem implies that α = (α1, . . . ,αn) ∈ Ωk(B̄; Rn) admits a d-potential if
and only if

dα = 0, and
∫

ck

α =

⎛
⎝

∫

ck

α1, . . . ,

∫

ck

αn

⎞
⎠ = 0, ∀ck ∈ Zk(B̄), (2.20)

where Zk(B̄) is the space of all k-cycles in B̄ [12, section 5.9]. Since the kth Betti number bk(B̄) :=
dim Hk

dR(B̄) is finite, it suffices to calculate (2.20) merely for bk(B̄) independent k-cycles called generators
of the kth (singular) homology group. On the other hand, if ∂1B̄ = ∅, (2.18) becomes

α ∈ HdΩk(B̄), dα = 0, 〈〈α,χ〉〉L2 = 0, ∀χ ∈ Hk
n1,t2(B̄). (2.21)

One can show that for smooth forms, (2.20) and (2.21) are equivalent [35, Theorem 3.2.3]. By replacing
Zk(B̄) with the space of relative cycles Zk(B̄, ∂1B̄), one can also include boundary conditions in (2.20);
see [19] and [24, p. 599].

Remark 8. A standard tool for calculating de Rham cohomologies is the Mayer-Vietoris sequence [11,
p. 22]. For example, the dimensions of the first and the second de Rham cohomologies of the body in
Fig. 2 are 5 and 3, respectively. As mentioned in Remark 7, the number of “independent” closed manifolds
for the integral condition (2.20) is the same as the dimension of the corresponding cohomology group.
Roughly speaking, two closed k-manifolds in B̄ are independent if they do not constitute the boundary
of a (k + 1)-manifold in B̄. Figure 2 shows some possible choices for these closed manifolds. Standard
methods for calculating relative cohomology groups can be found in standard texts on algebraic topology
such as [33].
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(a) (b)

Fig. 2. a Loops �1, . . . , �5 induce the generators of H1
dR(B), and b closed surfaces s1, s2, s3 induce the generators of H2

dR(B).
Loops �1 and �′

1 are not independent

3. Hilbert complexes and decompositions for second-order tensors

In this section, we derive orthogonal decompositions for various types of second-order tensors on flat,
compact 2- and 3-manifolds with boundary by using the proper Hilbert complexes. The Hilbert complexes
for non-symmetric and two-point tensors directly follow from the Hilbert complexes for differential forms
studied earlier. The Hilbert complex for symmetric second-order tensors follows from the linear elasticity
(Kröner) complex. From now on, we assume that {XI} is the Cartesian coordinates on B̄ ⊂ R

n, n = 2, 3,
and the Riemannian metric G on B̄ is induced by the standard metric of R

n.

3.1. Non-symmetric tensors

Let n = 3 and suppose Γ(⊗2T B̄) is the space of smooth (20)-tensors on B̄, i.e., T ∈ Γ(⊗2T B̄) has C∞-
components T IJ , I, J = 1, . . . , n. One can show that the following diagram commutes [2].

0 �� X(B̄)
grad

��

ı0

��

Γ(⊗2T B̄)curl
T
��

ı1

��

Γ(⊗2T B̄) div ��

ı2

��

X(B̄) ��

ı3

��

0

0 �� Ω0(B̄; R3) d �� Ω1(B̄; R3) d �� Ω2(B̄; R3) d �� Ω3(B̄; R3) �� 0

(3.1)

The complex in the first row of the above diagram is called the gcd complex on B̄ and its operators are
defined by

grad : X(B̄) → Γ(⊗2T B̄), (gradY )IJ = Y I
,J ,

curlT : Γ(⊗2T B̄) → Γ(⊗2T B̄), (curlTT )IJ = εJKLT IL
,K ,

div : Γ(⊗2T B̄) → X(B̄), (div T )I = T IJ
,J ,

where ,J indicates ∂/∂XJ , and εJKL is the standard permutation symbol. For α = (α1, . . . ,αn) ∈
Ωk(B̄; Rn), let [α]iI1...Ik

denote components of αi, i = 1, . . . , n. The vertical isomorphisms in (3.1) are
given by

ı0 : X(B̄) → Ω0(B̄; R3), [ı0(Y )]i = δiIY
I ,

ı1 : Γ(⊗2T B̄) → Ω1(B̄; R3), [ı1(T )]iJ = δiIT
IJ ,

ı2 : Γ(⊗2T B̄) → Ω2(B̄; R3), [ı2(T )]iJK = δiIεJKLT IL,

ı3 : X(B̄) → Ω3(B̄; R3), [ı3(Y )]i123 = δiIY
I ,



ZAMP Hilbert complexes of nonlinear elasticity Page 11 of 30 143

where δiI is the Kronecker delta.
Let 〈T ,Y 〉 := T IJY JEI be the traction vector of the tensor field T in the Y direction. We say that

T is normal to ∂jB̄ and write T ⊥ ∂jB̄ if 〈T ,Y 〉 = 0, for all vector fields Y ‖∂jB̄. Similarly, we say that
T is tangent to ∂jB̄ and write T ‖∂jB̄ if the traction vector of T on ∂jB̄ vanishes, that is, 〈T ,N j〉 = 0,
where N j is the outward unit normal of ∂jB̄. By imposing certain boundary conditions on ∂jB̄, j = 1, 2,
we define the following linear subspaces of X(B̄) and Γ(⊗2T B̄):

Xj(B̄) :=
{

Y ∈ X(B̄) : Y |∂j B̄ = 0
}

,

Γnj
(⊗2T B̄) :=

{
T ∈ Γ(⊗2T B̄) : T ⊥ ∂jB̄

}
,

Γtj
(⊗2T B̄) :=

{
T ∈ Γ(⊗2T B̄) : T ‖∂jB̄

}
.

(3.2)

Let {EI} be the standard basis of R
n and let

−→
TEI

:= T IJEJ ∈ X(B̄), that is, the Cartesian components
of T can be arranged as follows:

T =

⎛
⎝T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎠ =

⎛
⎜⎝

−→
TE1−→
TE2−→
TE3

⎞
⎟⎠ .

Then, it is straightforward to check that T ⊥ ∂jB̄ (T ‖∂jB̄) if and only if
−→
TEI

⊥ ∂jB̄ (
−→
TEI

‖∂jB̄),
I = 1, . . . , n. The relation between the spaces defined in (3.2) and the spaces of tangent and normal
differential forms can be stated as follows.

Lemma 9. We have ı0
(
Xj(B̄)

)
= Ω0

nj
(B̄; R3), ı1

(
Γnj

(⊗2T B̄)
)

= Ω1
nj

(B̄; R3), and ı2
(
Γtj

(⊗2T B̄)
)

=
Ω2

nj
(B̄; R3). The restrictions of grad, curlT, and div to the above subspaces are the operators gradj :

Xj(B̄) → Γnj
(⊗2T B̄), curlTj : Γnj

(⊗2T B̄) → Γtj
(⊗2T B̄), and divj : Γtj

(⊗2T B̄) → X(B̄).

Proof. The first relation for ı0 is trivial. Since ı1(T ) =
(−→
T �
E1

,
−→
T �
E2

,
−→
T �
E3

)
, by using (2.1), we conclude

that t(ı1(T )) =
(
(t

−→
TE1)

�, (t
−→
TE2)

�, (t
−→
TE3)

�
)
, which gives the relation for ı1. Similarly, the relation for ı2

follows from ı2(T ) =
( ∗ −→

T �
E1

, ∗−→
T �
E2

, ∗−→
T �
E3

)
, together with (2.2) and (2.1). By using the relations that we

just established, (2.4), and diagram (3.1), we conclude that the restrictions gradj , curlTj , and divj are
well-defined. �

Using the above lemma, one can introduce boundary conditions in diagram (3.1) as follows.

0 �� Xj(B̄)
gradj

��

ı0

��

Γnj
(⊗2T B̄)

curlTj
��

ı1

��

Γtj
(⊗2T B̄)

divj
��

ı2

��

X(B̄) ��

ı3

��

0

0 �� Ω0
nj

(B̄; R3)
dnj

�� Ω1
nj

(B̄; R3)
dnj

�� Ω2
nj

(B̄; R3)
dnj

�� Ω3
nj

(B̄; R3) �� 0

(3.3)

Similarly, we can show that the following diagram commutes.

0 X(B̄)��

−ı0

��

Γtj
(⊗2T B̄)

divj
��

ı1

��

Γnj
(⊗2T B̄)

curlTj
��

ı2

��

Xj(B̄)
gradj
��

−ı3

��

0��

0 Ω0
tj
(B̄; R3)�� Ω1

tj
(B̄;R3)

δtj
�� Ω2

tj
(B̄; R3)

δtj
�� Ω3

tj
(B̄; R3)

δtj
�� 0��

(3.4)
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Using the global orthonormal coordinate system {XI}, the L2-inner product 〈〈, 〉〉L2 can be written
as

〈〈α,γ〉〉L2 =
∫

B̄

∑
1≤I1<···<Ik≤n

1≤i≤n

[α]iI1...Ik
· [γ]iI1...Ik

dX1 ∧ · · · ∧ dXn.

The L2-inner products on X(B̄) and Γ(⊗2T B̄) are given by

〈〈Y ,Z〉〉L2 =
∫

B̄

n∑
I=1

Y I · ZIdX1 ∧ · · · ∧ dXn,

〈〈S,T 〉〉L2 =
∫

B̄

n∑
I,J=1

SIJ · T IJdX1 ∧ · · · ∧ dXn.

It is straightforward to see that with these L2-inner products, the isomorphisms ık are also isometries,
i.e., 〈〈Y ,Z〉〉L2 = 〈〈ık(Y ), ık(Z)〉〉L2 , k = 0, 3, and 〈〈S,T 〉〉L2 = 〈〈ık(S), ık(T )〉〉L2 , k = 1, 2. Next, consider
the standard H1-inner product on X(B̄), which can be written as

〈〈Y ,Z〉〉H1 := 〈〈Y ,Z〉〉L2 + 〈〈gradY ,gradZ〉〉L2 . (3.5)

Also consider the following inner products

〈〈S,T 〉〉Hc := 〈〈S,T 〉〉L2 + 〈〈curlTS, curlTT 〉〉L2 ,

〈〈S,T 〉〉Hd := 〈〈S,T 〉〉L2 + 〈〈div S,div T 〉〉L2 , (3.6)

on Γ(⊗2T B̄). The Hilbert spaces L2X(B̄) and H1Xj(B̄) are the completions of
(
X(B̄), 〈〈, 〉〉L2

)
and(

Xj(B̄), 〈〈, 〉〉H1

)
, respectively. Analogously, the Hilbert spaces HcΓnj

(⊗2T B̄) and HdΓtj
(⊗2T B̄) are

defined to be the completions of
(
Γnj

(⊗2T B̄), 〈〈, 〉〉Hc

)
and

(
Γtj

(⊗2T B̄), 〈〈, 〉〉Hd

)
, respectively. Lemma 9

and diagram (3.3) imply that the isometries ı0, . . . , ı3 also induce isometries between these Hilbert spaces
and the corresponding partly Sobolev spaces, e.g., we have 〈〈S,T 〉〉Hc = 〈〈ı1(S), ı1(T )〉〉Hd that gives an
isometry between HcΓnj

(⊗2T B̄) and HdΩ1
nj

(B̄). The operators gradj , curlTj , and divj can be considered
as densely defined, closed operators between the associated L2-spaces, and therefore, we can write the
following Hilbert complex for non-symmetric second-order tensors:

0 �� H1Xj(B̄)
gradj

�� HcΓnj
(⊗2T B̄)

curlTj
�� HdΓtj

(⊗2T B̄)
divj

�� L2X(B̄) �� 0. (3.7)

The above discussions suggest that this Hilbert complex is isomorphic to (HdΩnj
(B̄),dnj

). Let Hk
gcdj

(B̄)
and Hk

gcdj
(B̄) be the kth cohomology groups of the smooth gcd complex in (3.3) and the Hilbert complex

(3.7), respectively. The following is a consequence of (2.8).

Corollary 10. The Hilbert complex (3.7) is Fredholm and

Hk
gcdj

(B̄) ≈ Hk
gcdj

(B̄) ≈ ⊕3
i=1 Hk

dR(B̄, ∂jB̄).

Using the diagram (3.4), one can find the dual complex of (3.7). In particular, the dual of (3.7) for
j = 1 reads

0 L2X(B̄)�� HdΓt2(⊗2T B̄)
−div2�� HcΓn2(⊗2T B̄)

curlT2�� H1X2(B̄)
−grad2�� 0.�� (3.8)
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Let H⊗
n1,t2(B̄) := ker curlT1 ∩kerdiv2. Note that this space coincides with the kernel of the tensor Laplacian

L⊗(T ) := curlT ◦ curlTT − grad ◦ div T , subject to the boundary conditions

T ∈ HcΓn1(⊗2T B̄) ∩ HdΓt2(⊗2T B̄),

curlTT ∈ HcΓn2(⊗2T B̄), div T ∈ H1X1(B̄).

Remark 2 implies that H⊗
n1,t2(B̄) only consists of smooth harmonic tensor fields. Moreover, since (3.7) is

Fredholm, we have H⊗
n1,t2(B̄) ≈ H1

gcd1
(B̄). The next theorem follows from the discussions in Sect. 2.3 and

gives the analogues of decompositions (2.13) and (2.14) for non-symmetric second-order tensors.

Theorem 11. Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary. The Hilbert complex (3.7)

induces the following L2-orthogonal decompositions: The Hodge decomposition

L2Γ(⊗2T B̄) = grad
(
H1X1(B̄)

) ⊕ H⊗
n1,t2(B̄) ⊕ curlT

(
HcΓn2(⊗2T B̄)

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(⊗2T B̄) = grad
(
H1X1(B̄)

) ⊕ kerdiv2

= ker curlT1 ⊕ curlT
(
HcΓn2(⊗2T B̄)

)
,

where

kerdiv2 = curlT
(
HcΓn2(⊗2T B̄)

) ⊕ H⊗
n1,t2(B̄),

ker curlT1 = grad
(
H1X1(B̄)

) ⊕ H⊗
n1,t2(B̄).

If in addition T ∈ L2Γ(⊗2T B̄) is of class Cr,μ (C∞), then the components of T in the above decomposi-
tions are of class Cr,μ (C∞).

Remark 12. In contrary to the decomposition (1.1), which is valid on arbitrary manifolds, diagram
(3.1) and the decompositions in Theorem 11 are valid only on flat manifolds. By using the above Hodge
decomposition for a second-order tensor T , one obtains the decomposition T = grad1Y

1+T H+curlT2T n2 .
Remark 5 implies that Y 1 and T n2 can be uniquely chosen if one further assumes that Y 1 admits a div2-
potential and T n2 admits a curlT1 -potential.

Corollary 13. Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary. The necessary and sufficient

conditions for the existence of a grad1-potential for T ∈ L2Γ(⊗2T B̄) are

T ∈ HcΓn1(⊗2T B̄), curlTT = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H⊗
n1,t2(B̄). (3.9)

Similarly, the necessary and sufficient conditions for the existence of a curlT2 -potential for T are

T ∈ HdΓt2(⊗2T B̄), div T = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H⊗
n1,t2(B̄). (3.10)

Remark 14. Suppose � is an arbitrary closed curve in B̄ with t� the unit tangent vector field along �, and
let C be an arbitrary closed surface in B̄ with NC its unit outward normal vector field. Using diagram (3.1)
and the de Rham theorem for manifolds with boundary, one can show the following [2]: T ∈ Γ(⊗2T B̄) is
the gradient of a vector field if and only if

curlTT = 0, and
∫

�

〈T , t�〉dS = 0, ∀� ⊂ B̄, (3.11)

and T admits a curlT-potential if and only if

div T = 0, and
∫

C
〈T ,NC〉dA = 0, ∀C ⊂ B̄. (3.12)

Remark 7 suggests that (3.11) and (3.12) are equivalent to (3.9) with ∂1B̄ = ∅ and (3.10) with ∂2B̄ = ∅,
respectively.
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Next, we write the analogues of the above decompositions for a 2-manifold B̄ ⊂ R
2. One can show

that the following diagrams commute [2].

0 �� X(B̄)
grad

��

j0

��

Γ(⊗2T B̄) c ��

j1

��

X(B̄) ��

j2

��

0

0 �� Ω0(B̄; R2) d �� Ω1(B̄; R2) d �� Ω2(B̄; R2) �� 0

(3.13)

0 X(B̄)��

−j0

��

Γ(⊗2T B̄)div��

j1

��

X(B̄)s��

j2

��

0��

0 Ω0(B̄; R2)�� Ω1(B̄; R2)δ�� Ω2(B̄; R2)δ�� 0��

(3.14)

The first rows of (3.13) and (3.14) are called the gc complex and the sd complex, respectively, where the
linear operators c and s are given by

c : Γ(⊗2T B̄) → X(B̄), (c(T ))I = T I2
,1 − T I1

,2,

s : X(B̄) → Γ(⊗2T B̄), (s(Y ))IJ = δ1JY I
,2 − δ2JY I

,1.
(3.15)

The vertical isomorphisms j0, j1, and j2 are defined as

j0 : X(B̄) → Ω0(B̄; R2), [j0(Y )]i = δiIY
I ,

j1 : Γ(⊗2T B̄) → Ω1(B̄; R2), [j1(T )]iJ = δiIT
IJ ,

j2 : X(B̄) → Ω2(B̄; R2), [j2(Y )]i12 = δiIY
I .

By imposing boundary conditions on (3.13) and (3.14), one obtains the following commutative diagrams.

0 �� Xj(B̄)
gradj

��

j0

��

Γnj
(⊗2T B̄)

cj
��

j1

��

X(B̄) ��

j2

��

0

0 �� Ω0
nj

(B̄; R2)
dnj

�� Ω1
nj

(B̄; R2)
dnj

�� Ω2
nj

(B̄; R2) �� 0

0 X(B̄)��

−j0
��

Γtj
(⊗2T B̄)

divj
��

j1

��

Xj(B̄)
sj

��

j2

��

0��

0 Ω0
tj
(B̄; R2)�� Ω1

tj
(B̄; R2)

δtj
�� Ω2

tj
(B̄; R2)

δtj
�� 0��

Note that 〈〈Y ,Z〉〉H1 = 〈〈Y ,Z〉〉L2 + 〈〈s(Y ), s(Z)〉〉L2 , and let

〈〈S,T 〉〉H̄c := 〈〈S,T 〉〉L2 + 〈〈c(S), c(T )〉〉L2 .

The Hilbert spaces H̄cΓnj
(⊗2T B̄) and H1Xj(B̄) are the completions of

(
Γnj

(⊗2T B̄), 〈〈, 〉〉H̄c

)
and(

Xj(B̄), 〈〈, 〉〉H1

)
, respectively. Then, one can write the following Hilbert complex

0 �� H1X1(B̄)
grad1�� H̄cΓn1(⊗2T B̄)

c1 �� L2X(B̄) �� 0. (3.16)

The dual of this Hilbert complex is

0 L2X(B̄)�� HdΓt2(⊗2T B̄)
−div2�� H1X2(B̄)

s2�� 0.�� (3.17)
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Similar to Corollary 10, one can show that (3.16) is Fredholm and Hk
gc1

(B̄) ≈ ⊕2
i=1 Hk

dR(B̄, ∂1B̄), where
Hk

gc1
(B̄) is the kth cohomology group of (3.16). Let H̄⊗

n1,t2(B̄) := ker c1 ∩ kerdiv2, which coincides with
the kernel of L̄⊗(T ) := s ◦ c(T ) − grad ◦ div T subject to the proper boundary conditions. We have
H̄⊗

n1,t2(B̄) ≈ H1
gc1

(B̄) and H̄⊗
n1,t2(B̄) merely consists of smooth harmonic tensor fields. We also obtain the

following decompositions for non-symmetric second-order tensors.

Theorem 15. Let B̄ ⊂ R
2 be a smooth, compact 2-manifold with boundary. The Hilbert complex (3.16)

induces the following L2-orthogonal decompositions: The Hodge decomposition

L2Γ(⊗2T B̄) = grad
(
H1X1(B̄)

) ⊕ H̄⊗
n1,t2(B̄) ⊕ s

(
H1X2(B̄)

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(⊗2T B̄) = grad
(
H1X1(B̄)

) ⊕ kerdiv2 = ker c1 ⊕ s
(
H1X2(B̄)

)
,

where

kerdiv2 = s
(
H1X2(B̄)

) ⊕ H̄⊗
n1,t2(B̄),

ker c1 = grad
(
H1X1(B̄)

) ⊕ H̄⊗
n1,t2(B̄).

If in addition T ∈ L2Γ(⊗2T B̄) is of class Cr,μ (C∞), then the components of T in the above decomposi-
tions are of class Cr,μ (C∞).

Corollary 16. Let B̄ ⊂ R
2 be a smooth, compact 2-manifold with boundary. The necessary and sufficient

conditions for the existence of a grad1-potential for T ∈ L2Γ(⊗2T B̄) are

T ∈ H̄cΓn1(⊗2T B̄), c(T ) = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H̄⊗
n1,t2(B̄). (3.18)

Similarly, the necessary and sufficient conditions for the existence of an s2-potential for T are

T ∈ HdΓt2(⊗2T B̄), div T = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H̄⊗
n1,t2(B̄). (3.19)

Remark 17. Remark 12 readily extends to tensors on 2-manifolds with boundary. Let N� be a unit vector
field along a closed curve � ⊂ B̄, which is normal to the tangent vector field t� of �, such that {t�,N�} has
the same orientation as {E1,E2} does. Then, the following results hold [2]: T ∈ Γ(⊗2T B̄) is the gradient
of a vector field if and only if

c(T ) = 0, and
∫

�

〈T , t�〉dS = 0, ∀� ⊂ B̄, (3.20)

and T admits an s-potential if and only if

div T = 0, and
∫

�

〈T ,N�〉dS = 0, ∀� ⊂ B̄. (3.21)

The conditions (3.20) and (3.21) are equivalent to (3.18) with ∂1B̄ = ∅ and (3.19) with ∂2B̄ = ∅,
respectively.

3.2. Two-point tensors

Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary. Also let S = R

3, with Cartesian coordinates
{xi}, and suppose ϕ : B̄ → S is a smooth mapping. We assume that TXϕ(B̄) := Tϕ(X)S, and thus, the
dimension of TXϕ(B̄) is 3 even if ϕ is not an embedding. Let Γ(Tϕ(B̄)) and Γ(Tϕ(B̄)⊗T B̄) be the spaces
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of two-point tensors over ϕ with components U i and F iI , respectively. Then, the following diagram
commutes [2].

0 �� Γ(Tϕ(B̄))Grad��

I0

��

Γ(Tϕ(B̄)⊗T B̄)CurlT��

I1

��

Γ(Tϕ(B̄)⊗T B̄) Div��

I2

��

Γ(Tϕ(B̄)) ��

I3

��

0

0 �� Ω0(B̄; R3) d �� Ω1(B̄; R3) d �� Ω2(B̄; R3) d �� Ω3(B̄; R3) �� 0

The complex in the first row is called the GCD complex on B̄ and its operators are given by

Grad : Γ(Tϕ(B̄)) → Γ(Tϕ(B̄) ⊗ T B̄), (GradU)iI = U i
,I ,

CurlT : Γ(Tϕ(B̄) ⊗ T B̄) → Γ(Tϕ(B̄) ⊗ T B̄), (CurlTF )iI = εIKLF iL
,K ,

Div : Γ(Tϕ(B̄) ⊗ T B̄) → Γ(Tϕ(B̄)), (Div F )i = F iI
,I .

The vertical isomorphisms are defined as

I0 : Γ(Tϕ(B̄)) → Ω0(B̄; R3), [I0(U)]i = U i,

I1 : Γ(Tϕ(B̄) ⊗ T B̄) → Ω1(B̄; R3), [I1(F )]iJ = F iJ ,

I2 : Γ(Tϕ(B̄) ⊗ T B̄) → Ω2(B̄; R3), [I2(F )]iJK = εJKLF iL,

I3 : Γ(Tϕ(B̄)) → Ω3(B̄; R3), [I3(U)]i123 = U i.

Let {EI} and {ei} be two copies of the standard basis of R
3. For F ∈ Γ(Tϕ(B) ⊗ TB), we define−→

Fei
= F iIEI ∈ X(B̄). We also define the following linear subspaces of Γ(Tϕ(B̄)) and Γ(Tϕ(B̄) ⊗ T B̄):

Γj(Tϕ(B̄)) :=
{

U ∈ Γ(Tϕ(B̄)) : U |∂j B̄ = 0
}

,

Γnj
(Tϕ(B̄)⊗T B̄) :=

{
F ∈ Γ(Tϕ(B̄)⊗T B̄) :

−→
Fei

⊥ ∂jB̄, i = 1, . . . , n
}

,

Γtj
(Tϕ(B̄)⊗T B̄) :=

{
F ∈ Γ(Tϕ(B̄)⊗T B̄) :

−→
Fei

‖∂jB̄, i = 1, . . . , n
}

.

Similar to Lemma 9, the operators Grad, CurlT, and Div can be restricted to the above subspaces which
allows one to impose boundary conditions on the GCD complex. The upshot is the following commutative
diagrams.

0 �� Γj(Tϕ(B̄))
Gradj

��

I0

��

Γnj
(Tϕ(B̄)⊗T B̄)

CurlTj
��

I1

��

Γtj
(Tϕ(B̄)⊗T B̄)

Divj
��

I2

��

Γ(Tϕ(B̄)) ��

I3

��

0

0 �� Ω0
nj

(B̄; R3)
dnj

�� Ω1
nj

(B̄; R3)
dnj

�� Ω2
nj

(B̄; R3)
dnj

�� Ω3
nj

(B̄; R3) �� 0

0 Γ(Tϕ(B̄))��

−I0

��

Γtj
(Tϕ(B̄)⊗T B̄)

Divj
��

I1

��

Γnj
(Tϕ(B̄)⊗T B̄)

CurlTj
��

I2

��

Γj(Tϕ(B̄))
Gradj

��

−I3

��

0��

0 Ω0
tj
(B̄; R3)�� Ω1

tj
(B̄;R3)

δtj
�� Ω2

tj
(B̄; R3)

δtj
�� Ω3

tj
(B̄; R3)

δtj
�� 0��
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For U ,V ∈ Γ(Tϕ(B̄)) and F ,P ∈ Γ(Tϕ(B̄) ⊗ T B̄), we define the following inner products:

〈〈U ,V 〉〉L2 :=
∫

B̄

n∑
i=1

U i · V idX1 ∧ · · · ∧ dXn,

〈〈F ,P 〉〉L2 :=
∫

B̄

n∑
i,I=1

F iI · P iIdX1 ∧ · · · ∧ dXn,

〈〈U ,V 〉〉H1 := 〈〈U ,V 〉〉L2 + 〈〈GradU ,GradV 〉〉L2 ,

〈〈F ,P 〉〉HC := 〈〈F ,P 〉〉L2 + 〈〈CurlTF ,CurlTP 〉〉L2 ,

〈〈F ,P 〉〉HD := 〈〈F ,P 〉〉L2 + 〈〈Div F ,Div P 〉〉L2 .

The isomorphisms I0, . . . , I3 are L2-isometries. The Hilbert spaces L2Γ(Tϕ(B̄)), H1Γj(Tϕ(B̄)),
HCΓnj

(Tϕ(B̄) ⊗ T B̄), and HDΓtj
(Tϕ(B̄) ⊗ T B̄) are the completions of

(
Γ(Tϕ(B̄)), 〈〈, 〉〉L2

)
,(

Γj(Tϕ(B̄)), 〈〈, 〉〉H1

)
,

(
Γnj

(Tϕ(B̄) ⊗ T B̄), 〈〈, 〉〉HC

)
, and

(
Γtj

(Tϕ(B̄) ⊗ T B̄), 〈〈, 〉〉HD

)
, respectively. These

Hilbert spaces allow one to write the following Hilbert complex for two-point tensors:

0 �� H1Γ1(Tϕ(B̄))
Grad1�� HCΓn1(Tϕ(B̄) ⊗ T B̄)

CurlT1 ��

HDΓt1(Tϕ(B̄) ⊗ T B̄)
Div1�� L2Γ(Tϕ(B̄)) �� 0

(3.22)

The dual of this Hilbert complex reads:

HCΓn2(Tϕ(B̄) ⊗ T B̄)
CurlT2�� H1Γ2(Tϕ(B̄))

−Grad2�� 0��

0 L2Γ(Tϕ(B̄))�� HDΓt2(Tϕ(B̄) ⊗ T B̄)
−Div2��

(3.23)

Remark 18. If ϕ is of class Cr,μ, then we do not have the smooth GCD complex anymore. However, one
can still write the Hilbert complex (3.22) by considering completions of Cr,μ-sections. This case is similar
to defining Hilbert complexes for less smooth manifolds. See Gol’dshtein et al. [26] for the definition of
partly Sobolev spaces on less smooth manifolds.

The complex (3.22) is isomorphic to (HdΩn1(B̄),dn1), and hence, it is Fredholm with Hk
GCD1

(B̄) ≈
Hk

GCD1
(B̄) ≈ ⊕3

i=1 Hk
dR(B̄, ∂1B), where Hk

GCD1
(B̄) and Hk

GCD1
(B̄) are the kth cohomologies of the smooth

GCD complex (with boundary conditions on ∂1B̄) and the Hilbert complex (3.22), respectively. Let
Hϕ

n1,t2(B̄) := kerCurlT1 ∩ kerDiv2 be the kernel of the Laplacian Lϕ associated with (3.22) and (3.23).
Then, Hϕ

n1,t2(B̄) only consists of smooth harmonic two-point tensors and Hϕ
n1,t2(B̄) ≈ H1

GCD1
(B̄). The

next theorem is the analogue of Theorem 11 for two-point second-order tensors.

Theorem 19. Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary, and suppose ϕ : B̄ → R

3 is
a smooth mapping. The Hilbert complex (3.22) induces the following L2-orthogonal decompositions: The
Hodge decomposition

L2Γ(Tϕ(B̄) ⊗ T B̄)

= Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ Hϕ
n1,t2(B̄) ⊕ CurlT

(
HCΓn2(Tϕ(B̄) ⊗ T B̄)

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(Tϕ(B̄) ⊗ T B̄) = Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ kerDiv2

= kerCurlT1 ⊕ CurlT
(
HCΓn2(Tϕ(B̄) ⊗ T B̄)

)
,
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where

kerDiv2 = CurlT
(
HCΓn2(Tϕ(B̄) ⊗ T B̄)

) ⊕ Hϕ
n1,t2(B̄),

kerCurlT1 = Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ Hϕ
n1,t2(B̄).

If in addition a two-point tensor is of class Cr,μ (C∞), then its components in the above decompositions
are of class Cr,μ (C∞) as well.

Corollary 20. Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary, and suppose ϕ : B̄ → R

3 is
a smooth mapping. The necessary and sufficient conditions for the existence of a Grad1-potential for
F ∈ L2Γ(Tϕ(B̄) ⊗ T B̄) are

F ∈ HCΓn1(Tϕ(B̄) ⊗ T B̄), CurlTF = 0, 〈〈F ,K〉〉L2 = 0, ∀K ∈ Hϕ
n1,t2(B̄).

Similarly, the necessary and sufficient conditions for the existence of a CurlT2 -potential for F are

F ∈ HDΓt2(Tϕ(B̄) ⊗ T B̄), Div F = 0, 〈〈F ,K〉〉L2 = 0, ∀K ∈ Hϕ
n1,t2(B̄).

Remark 21. The smooth diagrams for the GCD complex discussed in this section are valid only for a
flat S. Similar to Remark 12, it is straightforward to extend Remark 5 to two-point tensors. By using
the notation of Remark 14, one can write the following integral conditions that are equivalent to the
conditions in Corollary 20 (with ∂jB̄ = ∅) [2]: F ∈ Γ(Tϕ(B̄) ⊗ T B̄) admits a Grad-potential if and only
if

CurlTF = 0, and
∫

�

〈F , t�〉dS = 0, ∀� ⊂ B̄,

and F admits a CurlT-potential if and only if

Div F = 0, and
∫

C
〈F ,NC〉dA = 0, ∀C ⊂ B̄.

Similar results are valid for a 2-manifold B̄ ⊂ R
2. For two-point tensors over a smooth mapping

ϕ : B̄ → R
2, one can define the GC and the SD complexes as follows [2]. Consider the linear differential

operators

C : Γ(Tϕ(B̄) ⊗ T B̄) → Γ(Tϕ(B̄)), (C(F ))i = F i2
,1 − F i1

,2,

S : Γ(Tϕ(B̄)) → Γ(Tϕ(B̄) ⊗ T B̄), (S(U))iI = δ1IU i
,2 − δ2IU i

,1,

and linear isomorphisms

J0 : Γ(Tϕ(B̄)) → Ω0(B̄; R2), [J0(U)]i = U i,

J1 : Γ(Tϕ(B̄) ⊗ T B̄) → Ω1(B̄; R2), [J1(F )]iJ = F iJ ,

J2 : Γ(Tϕ(B̄)) → Ω2(B̄; R2), [J2(U)]i12 = U i.

By replacing j0, j1, j2, grad, c, s, and div with J0, J1, J2, Grad, C, S, and Div, respectively, in
diagrams (3.13) and (3.14), one obtains the corresponding diagrams for two-point tensors. In particular,
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one has the following commutative diagrams that include boundary conditions.

0 �� Γj(Tϕ(B̄))
Gradj

��

J0

��

Γnj
(Tϕ(B̄)⊗T B̄)

Cj
��

J1

��

Γ(Tϕ(B̄)) ��

J2

��

0

0 �� Ω0
nj

(B̄; R2)
dnj

�� Ω1
nj

(B̄; R2)
dnj

�� Ω2
nj

(B̄; R2) �� 0

0 Γ(Tϕ(B̄))��

−J0

��

Γtj
(Tϕ(B̄)⊗T B̄)

Divj
��

J1

��

Γj(Tϕ(B̄))
Sj
��

J2

��

0��

0 Ω0
tj
(B̄; R2)�� Ω1

tj
(B̄;R2)

δtj
�� Ω2

tj
(B̄; R2)

δtj
�� 0��

Let the Hilbert spaces H̄CΓnj
(Tϕ(B̄) ⊗ T B̄) and H1Γj(Tϕ(B̄)) be the completions of

(
Γnj

(Tϕ(B̄) ⊗ T B̄),
〈〈, 〉〉H̄C

)
and

(
Γj(Tϕ(B̄)), 〈〈, 〉〉H1

)
, respectively, where

〈〈F ,P 〉〉H̄C := 〈〈F ,P 〉〉L2 + 〈〈C(F ),C(P )〉〉L2 ,

〈〈U ,V 〉〉H1 := 〈〈U ,V 〉〉L2 + 〈〈S(U),S(V )〉〉L2 .

Then, one obtains the following Hilbert complex

0 �� H1Γ1(Tϕ(B̄))
Grad1�� H̄CΓn1(Tϕ(B̄) ⊗ T B̄)

C1 �� L2Γ(Tϕ(B̄)) �� 0, (3.24)

with the dual complex

0 L2Γ(Tϕ(B̄))�� HDΓt2(Tϕ(B̄) ⊗ T B̄)
−Div2�� H1Γ2(Tϕ(B̄))

S2�� 0.�� (3.25)

Let Hk
GC1

(B̄) be the kth cohomology group of (3.24). The Hilbert complex (3.24) is Fredholm and
Hk

GC1
(B̄) ≈ ⊕2

i=1 Hk
dR(B̄, ∂1B̄). Also one has H̄ϕ

n1,t2(B̄) ≈ H1
GC1

(B̄), where H̄ϕ
n1,t2(B̄) := kerC1 ∩ kerDiv2.

The decompositions associated with the 2D case are as follows.

Theorem 22. Let B̄ ⊂ R
2 be a smooth, compact 2-manifold with boundary, and suppose ϕ : B̄ → R

2 is
a smooth mapping. The Hilbert complex (3.24) induces the following L2-orthogonal decompositions: The
Hodge decomposition

L2Γ(Tϕ(B̄) ⊗ T B̄) = Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ H̄ϕ
n1,t2(B̄) ⊕ S

(
H1Γ2(Tϕ(B̄))

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(Tϕ(B̄) ⊗ T B̄) = Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ kerDiv2

= kerC1 ⊕ S
(
H1Γ2(Tϕ(B̄))

)
,

where

kerDiv2 = S
(
H1Γ2(Tϕ(B̄))

) ⊕ H̄ϕ
n1,t2(B̄),

kerC1 = Grad
(
H1Γ1(Tϕ(B̄))

) ⊕ H̄ϕ
n1,t2(B̄).

If in addition a two-point tensor is of class Cr,μ (C∞), then its components in the above decompositions
are of class Cr,μ (C∞) as well.

Corollary 23. Let B̄ ⊂ R
2 be a smooth, compact 2-manifold with boundary, and suppose ϕ : B̄ → R

2 is
a smooth mapping. The necessary and sufficient conditions for the existence of a Grad1-potential for
F ∈ L2Γ(Tϕ(B̄) ⊗ T B̄) are

F ∈ H̄CΓn1(Tϕ(B̄) ⊗ T B̄), C(F ) = 0, 〈〈F ,K〉〉L2 = 0, ∀K ∈ H̄ϕ
n1,t2(B̄).
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Similarly, the necessary and sufficient conditions for the existence of an S2-potential for F are

F ∈ HDΓt2(Tϕ(B̄) ⊗ T B̄), Div F = 0, 〈〈F ,K〉〉L2 = 0, ∀K ∈ H̄ϕ
n1,t2(B̄).

Remark 24. Remark 21 applies to the 2D case as well. In particular, using the notation of Remark 17,
the integral conditions equivalent to the conditions of Corollary 23 (with ∂jB̄ = ∅) read as follows [2]:
F = GradU , if and only if

C(F ) = 0, and
∫

�

〈F , t�〉dS = 0, ∀� ⊂ B̄,

and we have F = S(U), if and only if

Div F = 0, and
∫

�

〈F ,N�〉dS = 0, ∀� ⊂ B̄.

3.3. Symmetric tensors

It is possible to use the framework of Hilbert complexes for deriving orthogonal decompositions for
symmetric second-order tensors. To this end, we use the linear elasticity complex, also called the Kröner
complex [30], which is equivalent to a more general complex introduced by Calabi [14]. More discussions
on this equivalence can be found in [2,20]. Let B̄ ⊂ R

3 be a compact 3-manifold with boundary, and let
Γ(S2T B̄) be the space of smooth symmetric (20)-tensors. The linear elasticity complex on B̄ reads

0 �� X(B̄)
grads

�� Γ(S2T B̄) curl◦curl�� Γ(S2T B̄) div �� X(B̄) �� 0, (3.26)

where

(gradsY )IJ=
1
2

(
Y I

,J + Y J
,I

)
, (curl ◦ curlT )IJ=εIKLεJMNTLN

,KM .

Consider the inner products 〈〈, 〉〉Hg
s

on X(B̄) and 〈〈, 〉〉Hcc on Γ(S2T B̄) given by

〈〈Y ,Z〉〉Hg
s

:= 〈〈Y ,Z〉〉L2 + 〈〈gradsY ,gradsZ〉〉L2 ,

〈〈S,T 〉〉Hcc := 〈〈S,T 〉〉L2 + 〈〈curl ◦ curlS, curl ◦ curlT 〉〉L2 .

The Hilbert spaces L2Γ(S2T B̄), Hg
s X(B̄), HccΓ(S2T B̄), and HdΓ(S2T B̄) are defined as the completions

of
(
Γ(S2T B̄), 〈〈, 〉〉L2

)
,

(
X(B̄), 〈〈, 〉〉Hg

s

)
,

(
Γ(S2T B̄), 〈〈, 〉〉Hcc

)
, and

(
Γ(S2T B̄), 〈〈, 〉〉Hd

)
, respectively, where

〈〈, 〉〉Hd was introduced in (3.6). Korn’s inequality (e.g., see [17]) suggests that Hg
s X(B̄) can be continuously

embedded in H1X(B̄). However, note that these spaces are not isometric. By using appropriate closed
extensions of the operators of the smooth linear elasticity complex, one obtains the following Hilbert
complex

0 �� Hg
s X(B̄)

grads

�� HccΓ(S2T B̄) curl◦curl�� HdΓ(S2T B̄) div �� L2X(B̄) �� 0. (3.27)

For determining the dual of this Hilbert complex, we use the following Green’s formulae. Let Y ∈ X(B̄),
T ∈ Γ(S2T B̄), and suppose N is the unit outward normal vector field of ∂B̄. Then, it is straightforward
to show that (e.g., see [37, Eq. (3.8)])

〈〈gradsY ,T 〉〉L2 = 〈〈Y ,−div T 〉〉L2 +
∫

∂B̄

G (Y , 〈T ,N〉) dA. (3.28)
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The Green’s formula for curl ◦ curl is more complicated, and we derive it here. For T ∈ Γ(⊗2T B̄), let←−
TEI

:= T JIEJ ∈ X(B̄), that is, the Cartesian components of T can be rearranged as

T =

⎛
⎝T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎠ =

(←−
TE1

←−
TE2

←−
TE3

)
.

Also consider the linear operator

f : Γ(⊗2T B̄) → Γ(⊗2T B̄), (f(T ))IJ = εJKLTLI
,K . (3.29)

Note that f ◦ f = curl ◦ curl. The Green’s formula for curl ◦ curl can be written as follows.

Lemma 25. For arbitrary T ,S ∈ Γ(⊗2T B̄), one has

〈〈curl ◦ curlT ,S〉〉L2 = 〈〈T , curl ◦ curlS〉〉L2 + BC1 + BC2, (3.30)

where

BC1 =
3∑

I=1

∫

∂B̄

i∗
(
t
−−−−→
curlTEI

)�

∧ i∗
(
t
←−
S EI

)�

,

BC2 =
3∑

I=1

∫

∂B̄

i∗
(
t
−→
TEI

)�

∧ i∗
(
t
←−−
f(S)EI

)�

.

Proof. Consider the isomorphism ı̄2 : Γ(⊗2T B̄) → Ω2(B̄; R3) given by ı̄2(T ) =
( ∗←−

T �
E1

, ∗←−
T �
E2

, ∗←−
T �
E3

)
. One

can show that d ◦ ı1 = ı̄2 ◦ curl, and δ ◦ ı̄2 = ı1 ◦ f . Since ı1 and ı̄2 are L2-isometries, by using Green’s
formula (2.5), one can write

〈〈curl ◦ curlT ,S〉〉L2 = 〈〈d (ı1(curlT )) , ı̄2(S)〉〉L2

= 〈〈curlT , f(S)〉〉L2 + BC1

= 〈〈d (ı1(T )) , ı̄2 (f(S))〉〉L2 + BC1

= 〈〈T , f ◦ f(S)〉〉L2 + BC1 + BC2,

where

BC1 =
∫

∂B̄

i∗ (t (ı1(curlT ))) ∧ i∗ (∗n (ı̄2(S))) ,

BC2 =
∫

∂B̄

i∗ (t (ı1(T ))) ∧ i∗ (∗n (ı̄2 ◦ f(S))) .

The relations (2.1) and (2.2) imply that BCi = BCi, i = 1, 2. This completes the proof. �

Let Xc(B) and Γc(S2TB) be the spaces of smooth vector fields and smooth symmetric (20)-tensors on
B with compact supports. By restricting the smooth linear elasticity complex to these spaces, one obtains
the following smooth complex

0 �� Xc(B)
grads

c�� Γc(S2TB)
curl◦curlc�� Γc(S2TB)

divc�� Xc(B) �� 0. (3.31)

Suppose Hg
s Xc(B), HccΓc(S2TB), and HdΓc(S2TB) are the completions of (Xc(B),

〈〈, 〉〉Hg
s
),

(
Γc(S2TB), 〈〈, 〉〉Hcc

)
, and

(
Γc(S2TB), 〈〈, 〉〉Hd

)
, respectively. Note that the completions of

(Xc(B), 〈〈, 〉〉L2) and
(
Γc(S2TB), 〈〈, 〉〉L2

)
are L2X(B̄) and L2Γ(S2T B̄), respectively. One can define closed

extensions of grads
c, curl ◦ curlc, and divc using these Hilbert spaces. In particular, (3.28) and (3.30)
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imply that the closed operators −divc, curl ◦ curlc, and −grads
c are the adjoint operators of grads,

curl ◦ curl, and div, respectively. Thus, (3.27) admits the following dual complex

0 L2X(B̄)�� HdΓc(S2TB)
−divc�� HccΓc(S2TB)

curl◦curlc�� Hg
s Xc(B)

−grads
c�� 0.��

Theorem 3.5 of [13] suggests that the cohomology groups of (3.27) and their duals are isomorphic to
their smooth subcomplexes, and since the cohomologies of the smooth linear elasticity complex on B̄ are
finite dimensional, one concludes that (3.27) and its dual are Fredholm. More specifically, let H1

E3(B̄) :=
ker curl◦curl/imgrads, and H2

E3(B̄) := kerdiv/im curl◦curl, be the cohomology groups of (3.27). Also
let H1

E3 := ker curl ◦ curl ∩ kerdivc, and H2
E3 := kerdiv ∩ ker curl ◦ curlc. By using the cohomology

groups of the linear elasticity complex derived by Calabi [14] and the Fredholm property, one obtains the
following result.

Theorem 26. The Hilbert complex (3.27) is Fredholm and

dimHi
E3(B̄) = dim Hi

E3(B̄) = 6 dim Hi
dR(B̄), i = 1, 2,

and hence, (3.27) induces the following L2-orthogonal decompositions: The Hodge decompositions

L2Γ(S2T B̄) = grads
(
Hg

s X(B̄)
)⊕H1

E3(B̄) ⊕ curl◦curl
(
HccΓc(S2TB)

)
,

L2Γ(S2T B̄) = grads(Hg
s Xc(B))⊕H2

E3(B̄) ⊕ curl◦curl
(
HccΓ(S2T B̄)

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(S2T B̄) = grads
(
Hg

s X(B̄)
) ⊕ kerdivc (3.32a)

= ker curl ◦ curl ⊕ curl ◦ curl
(
HccΓc(S2TB)

)
(3.32b)

= grads(Hg
s Xc(B)) ⊕ kerdiv (3.32c)

= ker curl ◦ curlc ⊕ curl ◦ curl
(
HccΓ(S2T B̄)

)
, (3.32d)

where

kerdivc = curl ◦ curl
(
HccΓc(S2TB)

) ⊕ H1
E3(B̄), (3.33a)

ker curl ◦ curl = grads
(
Hg

s X(B̄)
) ⊕ H1

E3(B̄), (3.33b)

kerdiv = curl ◦ curl
(
HccΓ(S2T B̄)

) ⊕ H2
E3(B̄), (3.33c)

ker curl ◦ curlc = grads(Hg
s Xc(B)) ⊕ H2

E3(B̄). (3.33d)

Remark 27. The Hodge decompositions in the above theorem are equivalent to the Hodge decompositions
(2.21) and (4.1) of Geymonat and Krasucki [23]. The Helmholtz decomposition (3.32a) is equivalent to
the orthogonal decomposition given by Ting [37, Theorem 3.1]. The decomposition for divergence-free
symmetric tensors introduced by Gurtin [27, Theorem 4.4] is equivalent to (3.33c). As was mentioned
earlier, the linear elasticity complex is a special case of the Calabi complex, which is valid on manifolds
with constant curvature. Therefore, by following the above procedure for the Calabi complex, one can
obtain orthogonal decompositions for symmetric tensors on manifolds with constant curvature.

Corollary 28. Let B̄ ⊂ R
3 be a smooth, compact 3-manifold with boundary. Then, T ∈ L2Γ(S2T B̄) admits

a grads-potential if and only if

curl ◦ curlT = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H1
E3(B̄). (3.34)

Similarly, T admits a curl ◦ curl-potential if and only if

div T = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H2
E3(B̄). (3.35)

Remark 29. For sufficiently smooth symmetric tensor fields, the condition (3.34) is equivalent to those
given by Georgescu [22, Theorem 5.3] and Yavari [40, Proposition 2.8]. Similarly, (3.35) is equivalent to
the conditions in Gurtin [27, Theorem 3.4] and Georgescu [22, Theorem 5.2].
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Next, we derive orthogonal decompositions for symmetric tensors by imposing proper boundary con-
ditions on ∂jB̄, j = 1, 2. To this end, we define the following linear subspaces of Γ(S2T B̄):

Γj(S2T B̄) :=
{

T ∈ Γ(S2T B̄) : 〈T ,N〉|∂j B̄ = 0
}

,

Γnj
(S2T B̄) :=

{
T ∈ Γ(S2T B̄) :

−→
T EI

,
−−−−→
curlTEI

⊥ ∂jB̄, I = 1, 2, 3
}

.

If T represents a Cauchy stress, then T ∈ Γj(S2T B̄) if and only if the traction of T on ∂jB̄ vanishes. Let
Hg

s Xj(B̄), HccΓnj
(S2T B̄), and HdΓj(S2T B̄) be the completions of

(
Xj(B̄), 〈〈, 〉〉Hg

s

)
,
(
Γnj

(S2T B̄), 〈〈, 〉〉Hcc

)
,

and
(
Γj(S2T B̄), 〈〈, 〉〉Hd

)
, respectively. One can write the following unbounded, densely defined, closed

operators:

grads
j : L2X(B̄) → L2Γ(S2T B̄), D(grads

j) = Hg
s Xj(B̄),

curl◦curlj : L2Γ(S2T B̄) → L2Γ(S2T B̄), D(curl◦curlj) = HccΓnj
(S2T B̄),

divj : L2Γ(S2T B̄) → L2X(B̄), D(divj) = HdΓj(S2T B̄).

Green’s formula (3.28) suggests that −div2 is the adjoint operator of grads
1. For obtaining the adjoint

operator of curl ◦ curl1, note that for T ∈ Γ(S2T B̄), one has
−→
TEI

=
←−
TEI

, and
−−−−→
curlTEI

=
←−−
f(T )EI

,
I = 1, 2, 3, where f is defined in (3.29). These facts together with (3.30) imply that curl ◦ curl2 is the
adjoint operator of curl ◦ curl1.

Imposing the above boundary conditions on the linear elasticity complex does not result in a complex,
i.e., grads

j(Xj(B̄)) �⊂ Γnj
(S2T B̄). Nevertheless, it is still possible to obtain Helmholtz-type orthogonal

decompositions as follows. Recall that if Da is the adjoint of a closed operator D : H1 → H2, then kerD

is closed in H1 and (ker D)⊥ = im Da, where im Da is the closure of the image of Da in H1. Also since
H1 = ker D ⊕ (ker D)⊥, one concludes that:

Theorem 30. The space L2Γ(S2T B̄) on a compact 3-manifold with boundary B̄ ⊂ R
3 admits the Helmholtz

decompositions

L2Γ(S2T B̄) = imgrads
1 ⊕ kerdiv2

= ker curl ◦ curl1 ⊕ im curl ◦ curl2,

where imgrads
1 and im curl ◦ curl2 are the closures of the images of grads

1 and curl ◦ curl2 in
L2Γ(S2T B̄).

Remark 31. The first decomposition in the above theorem induced by grads
1 and div2 is equivalent to

the decomposition derived in [34, Theorem 3.1]. One does not need the complex structure for deriving the
above theorem, which generalizes the Helmholtz decompositions of Theorem 26. Cantor [15] discussed a
general framework for writing such decompositions by using elliptic operators. Berger and Ebin [10] used
a similar approach for deriving Helmholtz-type decompositions for symmetric tensors on Riemannian
manifolds with constant curvature.

Finally, we study decompositions for symmetric tensors on a compact 2-manifold B̄ ⊂ R
2. The 2D

linear elasticity complex reads

0 �� X(B̄)
grads

�� Γ(S2T B̄)
Dc �� C∞(B̄) �� 0, (3.36)

where in the Cartesian coordinates {XI}, DcT := T 11
,22 − 2T 12

,12 + T 22
,11. One can also write the

complex

0 �� C∞(B̄)
Ds �� Γ(S2T B̄) div �� X(B̄) �� 0, (3.37)
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with (Dsf)11 = f,22, (Dsf)12 = −f,12, and (Dsf)22 = f,11. By restricting the above complexes to com-
pactly supported sections on B, one obtains the following complexes

0 �� Xc(B)
grads

c�� Γc(S2TB)
Dcc �� C∞

c (B) �� 0, (3.38)

0 �� C∞
c (B)

Dsc �� Γc(S2TB)
divc�� Xc(B) �� 0. (3.39)

It is straightforward to show that DcT = ∗d (c(T ))�, and Dsf = s
(
(δ(∗f))� )

, where � : Ω1(B̄) → X(B̄)
is the inverse of 	, and c and s were introduced in (3.15). By using these relations and following the
approach of Lemma 25, one concludes that

〈〈DcT , f〉〉L2 = 〈〈T ,Dsf〉〉L2 + B̃C1 + B̃C2, (3.40)

where

B̃C1 =
∫

∂B̄

f i∗(t c(T ))�
,

B̃C2 =
∫

∂B̄

f,2 i∗
(
t
−→
TE1

)�

−
∫

∂B̄

f,1 i∗
(
t
−→
TE2

)�

.

Let HDcΓ(S2T B̄) and HDs(B̄) be the completions of
(
Γ(S2T B̄), 〈〈, 〉〉HDc

)
and

(
C∞(B̄), 〈〈, 〉〉HDs

)
, respec-

tively, where

〈〈S,T 〉〉HDc := 〈〈S,T 〉〉L2 + 〈〈DcS,DcT 〉〉L2 ,

〈〈f, h〉〉HDs := 〈〈f, h〉〉L2 + 〈〈Dsf,Dsh〉〉L2 ,

with 〈〈f, h〉〉L2 :=
∫
B̄

fhμG. Similarly, we define the Hilbert spaces of compactly supported sections

HDcΓc(S2TB) and HDs
c (B). Suppose L2(B̄) is the space of L2 real-valued functions on B̄. Then, the

Hilbert complexes associated with the smooth complexes (3.36) and (3.37) are

0 �� Hg
s X(B̄)

grads

�� HDcΓ(S2T B̄)
Dc �� L2(B̄) �� 0,

0 �� HDs(B̄)
Ds �� HdΓ(S2T B̄) div �� L2X(B̄) �� 0.

(3.41)

Remark 32. As was discussed in [6,7], the Hilbert complexes (3.41) and (3.27) can be used for developing
stable mixed finite element formulations for 2D and 3D linear elasticity.

By using Green’s formulae (3.28) and (3.40), one concludes that the dual complexes of the above
Hilbert complexes are

0 L2X(B̄)�� HdΓc(S2TB)
−divc�� HDs

c (B)
Dsc�� 0,�� (3.42)

0 L2(B̄)�� HDcΓc(S2TB)
Dcc�� Hg

s Xc(B)
−grads

c�� 0.�� (3.43)

Let H1
E2(B̄) := ker Dc/imgrads, H1

E2′(B̄) := kerdiv/im Ds, H1
E2(B̄) := ker Dc ∩kerdivc, and H1

E2′(B̄) :=
ker Dcc ∩ kerdiv. Using the Poincaré duality H1

dR(B) ≈ H1
dRc

(B) for the 2-manifold B, we can write the
following 2D analogue of Theorem 26.

Theorem 33. The Hilbert complexes (3.41) are Fredholm and

dimH1
E2(B̄) = dimH1

E2′(B̄) = dimH1
E2(B̄) = dimH1

E2′(B̄) = 3 dim H1
dR(B̄).
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These Hilbert complexes induce the following L2-orthogonal decompositions: The Hodge decompositions

L2Γ(S2T B̄) = grads
(
Hg

s X(B̄)
) ⊕ H1

E2(B̄) ⊕ Ds

(
HDs

c (B)
)
,

L2Γ(S2T B̄) = grads (Hg
s Xc(B)) ⊕ H1

E2′(B̄) ⊕ Ds

(
HDs(B̄)

)
,

and, equivalently, the Helmholtz decompositions

L2Γ(S2T B̄) = grads
(
Hg

s X(B̄)
) ⊕ kerdivc = ker Dc ⊕ Ds

(
HDs

c (B)
)

= grads(Hg
s Xc(B)) ⊕ kerdiv = ker Dcc ⊕ Ds

(
HDs(B)

)
,

where

kerdivc = Ds

(
HDs

c (B)
)⊕H1

E2(B̄), ker Dc= grads
(
Hg

s X(B̄)
)⊕H1

E2(B̄),

kerdiv = Ds

(
HDs(B̄)

)⊕H1
E2′(B̄), ker Dcc = grads(Hg

s Xc(B))⊕H1
E2′(B̄).

Corollary 34. Let B̄ ⊂ R
2 be a smooth, compact 2-manifold with boundary. Then, T ∈ L2Γ(S2T B̄) admits

a grads-potential if and only if

DcT = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H1
E2(B̄).

Moreover, T admits a Ds-potential if and only if

div T = 0, 〈〈T ,Q〉〉L2 = 0, ∀Q ∈ H1
E2′(B̄).

Let

C∞
j (B̄) :=

{
f ∈ C∞(B̄) : f and gradf vanish on ∂jB̄

}
,

Γ̃nj
(S2T B̄) :=

{
T ∈ Γ(S2T B̄) : c(T ),

−→
T EI

⊥ ∂jB̄, I = 1, 2
}

,

and suppose that the Hilbert spaces HDs
j (B̄), and HDcΓnj

(S2T B̄) are the completions of
(
C∞

j (B̄), 〈〈, 〉〉HDs

)
and

(
Γ̃nj

(S2T B̄), 〈〈, 〉〉HDc

)
, respectively. The relation (3.40) suggests that the closed operator Ds2 is the

adjoint operator of Dc1 , where

Dc1 : L2Γ(S2T B̄) → L2(B̄), D(Dc1) = HDcΓnj
(S2T B̄),

Ds2 : L2(B̄) → L2Γ(S2T B̄), D(Ds2) = HDs
2 (B̄).

Thus, one concludes that:

Theorem 35. The space L2Γ(S2T B̄) on a compact 2-manifold with boundary B̄ ⊂ R
2 admits the following

Helmholtz decompositions

L2Γ(S2T B̄) = imgrads
1 ⊕ kerdiv2 = ker Dc1 ⊕ im Ds2 ,

where imgrads
1 and im Ds2 are the closures of the images of grads

1 and Ds2 in L2Γ(S2T B̄), respectively.

4. Applications in nonlinear elasticity

Second-order tensors have various applications in continuum mechanics. Let U ∈ Γ(Tϕ(B̄)) be a dis-
placement field on B̄. The two-point tensor K = GradU is the displacement gradient associated with
U , and CurlTK = 0 is the necessary condition for compatibility of K, i.e., the existence of a displace-
ment field with displacement gradient K. On the other hand, P ∈ Γ(Tϕ(B) ⊗ TB) can represent a first
Piola–Kirchhoff stress tensor and consequently, Div P = 0, expresses the equilibrium equation and also
the necessary condition for the existence of a stress function Ψ ∈ Γ(Tϕ(B)⊗TB) such that P = CurlTΨ.
Thus, the Hilbert complex (3.22) describes both the kinematics and the kinetics of a motion ϕ (also see
the discussions in [2, section 3]). Similarly, the Hilbert complex (3.27) describes both the kinematics and
the kinetics of a linearly elastic body.
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In this section, we use the orthogonal decompositions introduced in the previous sections for formu-
lating the compatibility equations (for linear and nonlinear strains) and for deriving the necessary and
sufficient conditions for the existence of stress functions on non-contractible bodies. In particular, these
decompositions allow one to study the effect of Dirichlet boundary conditions and their topological prop-
erties (i.e., topological properties of regions on which these boundary conditions are imposed) on the
compatibility equations. Moreover, the compatibility equations written using the orthogonal decomposi-
tions are also valid for non-smooth L2 strains such as those associated with deformations of multiphase
materials.

4.1. The compatibility problems with Dirichlet boundary conditions

The Hodge decomposition for R
n-valued one-forms can be used for writing the nonlinear compatibility

equations in the presence of Dirichlet boundary conditions as follows. Any Cr,μ-mapping ϕ : B̄ → R
n

with r ≥ 0 and 0 < μ < 1 on a body B̄ induces a Cr,μ-displacement field U(X) := ϕ(X) − X, ∀X ∈ B̄.
Let Υ and κ be R

3-valued zero and one-forms of classes Cr+1,μ and Cr,μ, respectively, such that κ = dΥ.
Then, Υ induces a Cr+1,μ-mapping ϕ(X) = X + Υ(X), and Cr+1,μ-displacement U := I−1

0 (Υ), with
the displacement gradient GradU = I−1

1 (κ). Clearly tΥ|∂1B̄ = 0, if and only if U |∂1B̄ = 0. Thus, by
using Remarks 6 and 3, one obtains the following theorem.

Theorem 36. Given an R
n-valued one-form κ of class Cr,μ with r ≥ 0 and 0 < μ < 1 on B̄ ⊂ R

n, n = 2, 3,
there exists a Cr+1,μ-displacement U with U |∂1B̄ = 0, such that GradU = I−1

1 (κ) (or GradU =
J−1

1 (κ), if n = 2) if and only if

tκ|∂1B̄ = 0, dκ = 0, 〈〈κ,χ〉〉L2 = 0, ∀χ ∈ H1
n1,t2(B̄), (4.1)

where dim H1
n1,t2(B̄) = n dim H1

dR(B̄, ∂1B̄).

Remark 37. By choosing ∂1B̄ = ∅, one obtains the nonlinear compatibility equations without boundary
conditions. In this case and for sufficiently smooth strains, (4.1) is equivalent to the necessary and
sufficient conditions discussed in [2,40]; also see Remark 7. However, unlike the integral conditions of
these references, the inner product condition 〈〈κ,χ〉〉L2 = 0 still makes sense for L2-strains. Thus, the
condition (4.1) is also useful for studying the compatibility of non-smooth strains such as those associated
with multiphase materials. Note that the above theorem does not guarantee the mapping ϕ associated
with κ to be an embedding, cf. [2, Remark 15].

Remark 38. In [3, Theorem 7], the above theorem is extended to non-homogeneous boundary conditions.
In [4, Theorem 4], the analogue of this theorem for multiphase bodies is derived. The main tools for
obtaining these extensions are the standard Hodge–Morrey decomposition and an appropriate extension
of the classical Friedrichs decomposition for harmonic fields; see [3, Theorem 1].

Example 39. Theorem 36 allows one to study the effect of topological properties of both B̄ and ∂1B̄ on
the nonlinear compatibility equations. For example, consider the body B̄ depicted in Fig. 1. Since B̄ is
simply connected, we have H1

n1,t2(B̄) = 0, for ∂1B̄ = ∅, and (4.1) without boundary conditions simply
reads dκ = 0. If we impose the Dirichlet boundary condition on ∂1B̄ = C1, then H1

n1,t2(B̄) = 0, and (4.1)
becomes tκ|∂1B̄ = 0, and dκ = 0. However, if ∂1B̄ = C1 ∪ C2, or ∂1B̄ = ∂B̄, then dim H1

n1,t2(B̄) will be
3 and 6, respectively. Thus, although B̄ is simply connected, dκ = 0 is no longer a sufficient condition
for the compatibility of κ subject to the given Dirichlet boundary conditions. For all the above cases, we
have H0

dR(B̄, ∂1B̄) = 0, which implies that the displacement U associated with κ is unique.

The linear compatibility equations on non-simply connected bodies are stated in Georgescu [22, The-
orem 5.3] and Yavari [40, Proposition 2.8]. Alternatively, by using Corollaries 28 and 34, one can write
the linear compatibility equations as follows.
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Theorem 40. Let B̄ ⊂ R
n, n = 2, 3, be a smooth, compact n-manifold with boundary. Let n = 3. A

symmetric second-order L2-tensor e is the linear strain induced by a displacement field U if and only if

curl ◦ curl e = 0, 〈〈e,Q〉〉L2 = 0, ∀Q ∈ H1
E3(B̄),

where dim H1
E3(B̄) = 6 dim H1

dR(B̄). For n = 2, the linear compatibility equations read

Dce = 0, 〈〈e,Q〉〉L2 = 0, ∀Q ∈ H1
E2(B̄),

where dim H1
E2(B̄) = 3 dim H1

dR(B̄).

Remark 41. Theorem 5.3 of Georgescu [22] is equivalent to the above theorem. There, he gives alternative
representations of the elements of H1

E2(B̄) and H1
E3(B̄) as the tensor product of Killing vector fields and

harmonic vector fields that satisfy the appropriate boundary conditions. Note that the inner product
conditions in the above theorem are also valid for L2-strains.

By using Theorems 30 and 35, one obtains the linear compatibility equation with Dirichlet boundary
condition U |∂1B̄ = 0, in the following sense.

Theorem 42. Let B̄ ⊂ R
n, n = 2, 3, be a smooth, compact n-manifold with boundary. Then, a symmetric

second-order L2-tensor e belongs to imgrads
1, i.e., the closure of imgrads

1 in L2Γ(S2T B̄), if and only if

〈〈e,Q〉〉L2 = 0, ∀Q ∈ kerdiv2. (4.2)

Remark 43. Roughly speaking, Theorem 42 says that a symmetric tensor e is the linear strain induced by
a displacement U with U |∂1B̄ = 0, if and only if the work of e and any virtual stress that is equilibrated
and has zero traction on ∂2B̄ vanishes. A similar result is proved by Dorn and Schild [18] on simply
connected bodies. They obtained a sufficient condition for the existence of a displacement field satisfying
arbitrary boundary conditions on ∂1B̄ = ∂B̄ that induces a given linear strain e.

Remark 44. The linear compatibility equations derived by Ting [37, Theorem 3.1] correspond to the case
∂1B̄ = ∅ in the above theorem. Note that the condition (4.2) is not useful in practice as the space kerdiv2

is infinite dimensional. The generalization of Theorem 40 with non-homogenous boundary conditions is
given in [3, Theorem 15].

4.2. Stress functions

Next, we study the existence of stress functions for the first Piola–Kirchhoff stress tensor P , i.e., the
existence of S and CurlT-potentials for P . Let ∂1B̄ = ∂B̄. For n = 3, let Hϕ

n (B̄) := Hϕ
n1,t2(B̄), and

HCΓn(Tϕ(B̄) ⊗ T B̄) := HCΓn1(Tϕ(B̄) ⊗ T B̄). Similarly, for n = 2, let H̄ϕ
n (B̄) := H̄ϕ

n1,t2(B̄), and
H̄CΓn(Tϕ(B̄) ⊗ T B̄) := H̄CΓn1(Tϕ(B̄) ⊗ T B̄). Then, by using Corollaries 20 and 23, Remark 5, and
the decompositions for kerDiv given in Theorems 19 and 22, one obtains the following results.

Theorem 45. Let B̄ ⊂ R
n, n = 2, 3, be a smooth, compact n-manifold with boundary. A first Piola–

Kirchhoff stress P ∈ L2Γ(Tϕ(B̄) ⊗ T B̄) can be written as P = CurlTΨ (P = S(W ), if n = 2), if and
only if

Div P = 0, 〈〈P ,K〉〉L2 = 0, ∀K ∈ Hϕ
n (B̄) (∀K ∈ H̄ϕ

n (B̄), if n = 2),

where dim Hϕ
n (B̄) = 3 dim H2

dR(B̄), and dim H̄ϕ
n (B̄) = 2 dim H1

dR(B̄). Moreover, potential Ψ (W ) can be
uniquely chosen if we further assume that

Ψ ∈ CurlT
(
HCΓn(Tϕ(B̄) ⊗ T B̄)

) (
W ∈ C

(
H̄CΓn(Tϕ(B̄) ⊗ T B̄)

))
.

In general, any divergence-free first Piola–Kirchhoff stress P can be uniquely decomposed as P = P̃ +P H,
where P̃ admits a CurlT-potential (S-potential if n = 2) and P H ∈ Hϕ

n (B̄) (P H ∈ H̄ϕ
n (B̄), if n = 2).
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By using operators curlT and s, one can write the analogue of the above theorem for the Cauchy
stress tensor σ as well. Since σ is usually symmetric, one can also define curl ◦ curl and Ds-potentials
for it, which are called Beltrami and Airy stress functions, respectively [27,38]. In particular, Corollaries
28 and 34, and Theorems 26 and 33 allow one to write the following theorem.

Theorem 46. Let B̄ ⊂ R
n, n = 2, 3, be a smooth, compact n-manifold with boundary. A Cauchy stress

σ ∈ L2Γ(S2T B̄) can be written as σ = curl◦curlΦ (σ = Ds(f), if n = 2), if and only if

div σ = 0, 〈〈σ,Q〉〉L2 = 0, ∀Q ∈ H2
E3(B̄) (∀Q ∈ H1

E2′(B̄), if n = 2),

where dim H2
E3(B̄) = 6 dim H2

dR(B̄), and dim H1
E2′(B̄) = 3 dim H1

dR(B̄). A Beltrami stress function Φ
(Airy stress function f) can be uniquely chosen if we also assume that Φ ∈ curl ◦ curl

(
HccΓc(S2TB)

)
(
f ∈ Dc

(
HDcΓc(S2TB)

))
. In general, any divergence-free Cauchy stress σ can be uniquely decomposed as

σ = σ̃+σH, where σ̃ admits a Beltrami stress function (Airy stress function if n = 2) and σH ∈ H2
E3(B̄)

(σH ∈ H1
E2′(B̄), if n = 2).

Remark 47. The decomposition for divergence-free Cauchy stresses in the above theorem is equivalent to
the decomposition introduced by Gurtin [27, Theorem 4.4]; see Remark 27. The necessary and sufficient
condition for the existence of stress functions given in Georgescu [22, Theorem 5.2] is equivalent to the
condition of the above theorem. He gives an alternative representation of the elements of H1

E2′(B̄) and
H2

E3(B̄) as the tensor product of Killing vector fields and harmonic vector fields.

Remark 48. Airy and Beltrami stress functions are not unique, in general. Wang and Rutqvist [39]
derived an expression for Beltrami stress functions that explains their degree of non-uniqueness. In the
above theorem, we give additional conditions that allow one to uniquely choose Airy and Beltrami stress
functions.

5. Applications in computational mechanics

In this final section, we briefly discuss an important application of the Hilbert complexes obtained in
this paper for deriving a new class of numerical schemes suitable for large-strain deformations of solids.
These numerical schemes are called compatible-strain mixed finite element methods (CSFEM) and were
first introduced in [5]. The main tool for deriving CSFEMs is the finite element exterior calculus (FEEC)
discussed in [6,8]. FEEC allows one to discretize the Hilbert complex associated with the de Rham
complex. These discrete complexes have the same cohomology groups as the de Rham complex, and their
underlying spaces are finite element spaces that can be efficiently implemented in numerical schemes. The
commutative diagrams (3.3), (3.13), and (3.14) enable one to discretize the Hilbert complexes (3.7), (3.16),
and (3.17) by using FEEC. As was mentioned earlier, these Hilbert complexes describe the kinematics and
the kinetics of large deformations of solids. Thus, one can use FEEC to obtain trial spaces for strain and
stress. CSFEMs are derived by considering a mixed formulation for nonlinear elasticity in terms of the
displacement, the displacement gradient, and the first Piola–Kirchhoff stress. This mixed formulation is
then discretized using the above finite element spaces for strain and stress. The main feature of CSFEMs
is that by construction, the trial spaces for strain satisfy the compatibility condition. In [5], by considering
several benchmark problems, it is shown that CSFEMs have optimal convergence rates and have good
convergence on domains with complex geometries. Moreover, CSFEMs can accurately approximate stress
and do not suffer from numerical instabilities such as locking and hourglass-type instabilities.
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