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Abstract. In dell’Isola et al. (Zeitschrift für Angewandte Math und Physik 66(6):3473–3498, 2015, Proc R Soc Lond A Math
Phys Eng Sci 472(2185):1–23, 2016), the concept of pantographic sheet is proposed. The aim is to design a metamaterial
showing: (i) a large range of elastic response; (ii) an extreme toughness in extensional deformation; (iii) a convenient
ratio between toughness and weight. However, these required properties must coexist with non-detrimental mechanical
characteristics in the presence of other kinds of imposed displacements. The aim of this paper is to prove via numerical
simulations that pantographic sheets may effectively resist to coupled bending and extensional deformations. The four-
parameter model introduced shows its versatility as it is able to encompass all the considered types of (large) deformations.
The numerical integration scheme which we use is based on the same concepts exploited in Turco et al. (Zeitschrift für
Angewandte Math und Physik 67(4):1–28, 2016): They prove that the Hencky-type discretization is very efficient also in
nonlinear large deformations and large displacements regimes. In Part II of this paper, we will show that the used models
are very effective to describe experimental evidence.

Mathematics Subject Classification. Primary 74-XX; Secondary 70H03, 74-04, 74B20, 74S30, 74Q05.

Keywords. Pantographic structures, Micro-mechanical model, Second gradient continuum, Nonlinear problems.

1. Introduction

In [1] and [2], the concept of pantographic sheet is proposed. This fabric was exploited in more theoretical
papers [4–6] to prove that there exists a fabric whose macro-continuum model is not a first gradient one.
However, it revealed itself to have very interesting properties, so that from a different point of view it
can be regarded as a metamaterial enjoying very peculiar properties, including at least:
1. a surprisingly large range of elastic response;
2. an extreme toughness in extensional deformation;
3. a convenient ratio between toughness and weight.

On the other hand, these very positive properties should not coexist with very detrimental other
mechanical or physical characteristics in the presence of other kinds of imposed displacements or of any
kind of frequent external actions. Therefore, a systematic series of investigations is needed to establish
whether there are some contraindications to the use of pantographic fabrics in composites or in other
engineering applications.

The aim of this paper is to start this kind of investigations and in particular to start to assess, both
via numerical simulations and by means of experimental measurements, that pantographic sheets can
effectively resist to imposed displacements producing coupled bending and extensional deformations.

It has to be remarked that: (i) the introduced models are strongly nonlinear, so that they show strong
coupling between different deformation modes; in particular, extensional deformation may (and do) affect
bending deformation of pantographic sheets; (ii) the physical experimental evidence shows (see part II)
that such strong coupling phenomena are really relevant; (iii) the four-parameter models introduced
show a very promising versatility; indeed they are able, without changing the values of the material
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parameters previously attributed in simple extensional tests to a specific specimen, to encompass also more
general types of deformation. The numerical results were so promising that a campaign of experimental
measurements was started: In Part II, it will be seen that all available experimental evidence does not
show any detrimental feature of pantographic sheets in the types of deformation which we consider
theoretically here.

In next sections will be considered: (i) some relevant theoretical and modeling assumptions, (ii) an
effective numerical procedure allowing for the determination of the equilibrium shapes of pantographic
sheets based on Hencky-type discretization, (iii) a numerical procedure based on FEM discretizing a
second gradient continuum model for pantographic sheets and (iv) the careful comparison of the perfor-
mances and results obtained in points (iii) and (ii).

In particular, in Sect. 2 will be briefly sketched the main points of the macro-description (continuum
to be discretized via FEM) and meso-description (directly a discrete model); in Sect. 3 will be presented
and thoroughly discussed the results of the continuum and the discrete model which will allow for an
accurate comparison with the experimental tests; finally, in Sect. 4, there are some concluding remarks
and future perspectives.

2. Deformation energies in meso-(discrete) and in macro-(continuum) descriptions

In this Section, we shortly specify the discrete and the continuum models which seem to be the most
suitable to design the experimental setup. They will be applied in the Part II, in order to explain the
results of experimental evidence.

It has to be remarked here that: (i) it became rather easy, by using 3D printing technologies (see
Fig. 1) to built pantographic lattices; they were conceived (on the basis concept first proposed in [1] as
constituted by two arrays of beams (colored in green and blue in Fig. 1) interconnected by elastic pivots
realized with small-size elastic cylinders (in red in Fig. 1); (ii) discrete model and continuum models can
be introduced for modeling their behavior, and their respective applicability ranges, while not completely
overlapping, have a large intersection; we will explore in this paper how large is this intersection.

Fig. 1. Pantographic structure built by using 3D printing technology: two non-parallel fibers are colored in blue and green,
the corresponding pivot is in red (color figure online)
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2.1. Discrete and continuous kinematics

The kinematical descriptions introduced differ depending on the used model. Indeed:

• the discrete model specifies the position of all the material particles modeling the pivots; these
particles are identified with the nodes of the reference configuration and need to be displaced to the
actual configuration. If N is the number of involved particles, each of which is denoted by Pi,j , then
the set of Lagrangian coordinates can be given by their actual positions pi,j ;

• the continuous model specifies a regular field χ (at least C0 its further regularity being dictated by
the postulated deformation energy) defined in the reference configuration and mapping a generic
material particle in its actual position.

Piola’s Ansatz, see [7], consists in assuming that the correspondence between discrete and continuous
model is given, see also [2], by:

χ(Pi,j) = pi,j . (1)

2.2. Discrete and continuous energies

Total deformation energy, in hard devices induced deformations (and in the absence of relevant volume
forces), reduces to the deformation energies only. Therefore, in both discrete and continuous models they
are the only kind of energy to be specified.

The postulated expression for the Lagrangian discrete deformation energy, see [3,8] for a comprehensive
description (in terms of the Lagrangian coordinates pi,j), is given by:
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where the first two addends are related to the extensional energy of the fibers in αm-directions (m = 1, 2),
see Figs. 2 and 3, being a

(αm)
i,j the extensional stiffness parameters in αm-direction; the second two ones

to the bending energy of the fibers, again in αm-direction, having used the bending stiffness parameter
b
(αm)
i,j ; the last contribution is instead related to the shear energy of the springs with stiffness parameter

si,j .
Instead, the expression for the second gradient Piola’s deformation energy in the continuum model

(in terms of the placement field χ), see [2] for a depth insight, is given by:
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Fig. 2. Hencky-type mechanical model of pantographic structure

where the stiffness parameters of the continuum model (macro) A(αm), B(αm) and S are related to the
stiffness parameters of the discrete model (meso) a

(αm)
i,j , b

(αm)
i,j and si,j as follows:

A(αm) = a
(αm)
i,j ,

B(αm) = b
(αm)
i,j ,

S =
si,j

ε2
, (4)

and having used the notation

F = ∇χ , (5)

(∇F|dαm
⊗ dαm

)β = F β
αm,αm

, (no sum over repeated αm is intended) (6)

Some remarks:
1. In [2], Eqs. (2) and (3) were written in a more general form by using for the shear strain term the

exponent γ instead of 2; this is particularly useful to improve the fit of the experimental tests by
theoretical models.

2. The shear springs used for the discrete model, and depicted in Figs. 2 and 3, are actually four,
having the same stiffness, for each node or pivot, indicated Pi,j in the reference configuration, one
for each quadrant having origin in Pi,j .

3. The bending stiffness is expressed by means of the cos ϑ
(αm)
i,j instead of the corresponding angle

ϑ
(αm)
i,j , and these two possibilities are equivalent, in principle, but the first, avoiding the uses of

arccos(·) function, results more convenient from the computational point of view since it produces
a more compact and effective code.
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(a) (b) (c)

Fig. 3. Kinematics of extensional (a), bending (b) and shear (c) springs: reference and actual configurations

Table 1. Stiffness parameters for extensional, a
(αm)
i,j , bending, b

(αm)
i,j , and shear, si,j , springs

a
(αm)
i,j b

(αm)
i,j si,j

265.0 N/mm 238.2 Nmm 0.9739 Nmm

3. Numerical results deriving from discrete and continuum models

In order to check the numerical results deriving from the discrete and continuous model, we design some
tests to perform with the two models and successively with experiments on specifically designed fabrics
made by using the 3D printing technology in polyamide, see the companion paper [9].

By referring to Fig. 2, we assume for the geometrical parameters: � = 69.3 mm, ε = 6.13 mm, α1 = π/4
and α2 = 3π/4. Furthermore, we consider the case whose cross section of each fiber is a rectangle having
a width equal to 2.25 mm and a depth equal to 1.6 mm and each pivot is a cylinder having a diameter
equal to 0.9 mm and a height equal to 1 mm. For the polyamide, many experimental tests indicate that
an appropriate value for the Young’s modulus is 1600 MPa.

From the geometrical and mechanical parameters just described, the extensional, bending and shear
spring stiffnesses were estimated by using the guidelines described in [10]. Consequently, for the numerical
simulation reported in the sequel, we assume as stiffness parameters for each kind of used spring the values
reported in Table 1.

It has to be underlined that this choice of the constitutive parameters, suggested by the numerical
simulations concerning the extension bias test, see e.g. [3], is surely well calibrated for the continuum
model but could be improved for the discrete model as it will be further discussed by referring to a
particular numerical test at the end of this Section.

We consider here two set of imposed displacements which produce two kinds of coupled extensional
and bending bias test: the first one determines a relative rigid rotation and translation of one side of
the specimen with respect to the other (we will limit ourselves to the case in which the translation is
parallel to the long side of the specimen in the reference configuration) and the second one imposes a
displacement parallel to the long side of the specimen on a single fiber.
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Fig. 4. Extensional and bending test simulation using the discrete model: deformation history varying the non-dimensional
displacement parameter λ (in grey there is the reference solution, colors shows the energy level on the specimen) (color
figure online)

3.1. Extensional and bending test

The first test, starting from the reference configuration, see Fig. 2, imposes, gradually, a coupled exten-
sional and rotational displacement on the side having x1 = 3� until the maximum which, more specifically,
is worth: {

u1(3�, x2) = u
(0)
1 + (x2 − e) sin β ,

u2(3�, x2) = −(x2 − e)(1 − cos β) ,
(7)

where u
(0)
1 = 57.99 mm, e = �/12 and β = 18.48◦. The path between the initial (reference) and final

configuration is governed by the non-dimensional displacement parameter λ which varies between λ = 0
for the reference configuration and λ = 1 for the final step.

The displacement described by Eq. 7 was used to compute, numerically, the structural response by
using both the discrete and the continuum model described in the foregoing. Obviously, the results of
continuum model derive from a suitable discretization by means of finite elements, see [2] for details.

The deformations obtained by the discrete model are reported in Fig. 4 using also in this case the
non-dimensional displacement parameter λ where, besides the initial (λ = 0) and final configurations
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Fig. 5. Extensional and bending test simulation using the discrete model: global structural reaction R varying λ

Fig. 6. Extensional and bending test simulation using the second gradient continuum model: deformation for λ = 1 (colors
represent the angular strain between fibers)

(λ = 1), there are reported three intermediate steps, precisely λ = 1
3 , 1

2 , 2
3 , the reference configuration is

reported in gray in each one of the four images. The colors are used to give a clever representation of
global energy level (extensional, bending and shear) on the pantographic structure.

Figure 5 reports the global structural reaction R(λ) on the side x1 = 0 evaluated by using the discrete
model via numerical simulation, in red (R1) and blue (R2).
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Fig. 7. Extensional and bending test simulation using the second gradient continuum model: global structural reaction R
varying λ

For the same test, we report the results obtained by the second gradient continuum model, see Figs. 6
and 7. More precisely, in Fig. 6 there is the deformation corresponding to λ = 1 (colors, in this case,
represent the angular strain between fibers) and in Fig. 7 the global structural reaction R(λ) computed
on the side x1 = 0. We underline the good agreement between the results obtained by the two models for
all the values of the non-dimensional displacement parameter λ.

3.2. Fiber extraction test

In this case, the coupling between extension and bending derives from a displacement imposed on a single
fiber: starting from the reference configuration, a displacement v (on the upper right vertex), parallel to
the longer side of the specimen, is gradually imposed on a single fiber until the value vmax = 78.0 mm
is achieved. The numerical simulation of this test, using the discrete model described in the foregoing,
gives the plots reported in Fig. 8 using again the non-dimensional displacement parameter λ = v/vmax

in order to distinguish both the intermediate and the final configurations, and using the colors to give
evidence at a first glance to the energy level at each point of the pantographic structure.

As for the previous test, in Fig. 9 the global structural reaction R(λ) on the side x1 = 0, computed
via numerical simulation, is reported, precisely the component R1 in red and R2 in blue.

For the same test, the results obtained by the second gradient continuum model, and after a suitable
finite element discretization, are reported in Figs. 10 and 11. More precisely, in Fig. 10 there is the
deformation at the final stage, λ = 1 (colors, also in this case, represent the angular strain between
fibers), and in Fig. 11 the two components of the global structural reaction R(λ). Also in this case, the
results of the continuum model agree with those obtained from the discrete model (Figs. 8, 9).

3.3. Sensitivity analysis on the stiffness parameters for the discrete model

Finally, we report a basic sensitivity analysis with respect to the stiffness parameters a
(m)
i,j , b

(m)
i,j and si,j

in order to remark the relevance of the correct identification of such parameters. Even though this first
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Fig. 8. Fiber extraction test simulation using the discrete model: deformation history varying λ (in grey there is the
reference solution, colors shows the energy level) (color figure online)

tentative is surely insufficient to give reliable guidelines, it is capable to advise, also from a quantitative
point of view, of the role played by the stiffness parameters.

To this aim, a series of analysis varying these parameters was performed choosing as output to check
the history of the global structural reaction R(λ) with respect to the non-dimensional displacement
parameter λ. Here we report the results deriving from the extensional and bending test already presented
and commented. More precisely, in Fig. 12 the global structural reaction R(λ) is reported versus the
non-dimensional parameter λ varying, one by one, the extensional a

(m)
i,j , the bending b

(m)
i,j and the shear

stiffness si,j parameter. By assuming as reference values those reported in Table 1, the stiffness parameters
were modified by means of the coefficients ηa, ηb and ηs each one halves or doubles the respective values
of the stiffnesses.

Observing the curves reported in Fig. 12 and getting as reference the value reported in Table 1, when
ηa, ηb and ηs move from 0.5 to 2, we remark that:

1. for the extensional parameter a
(m)
i,j , the variation ranges approximatively from −19 to 18% for R1

and −20 to 20% for R2;
2. for the bending parameter b

(m)
i,j , the variation ranges approximatively from −20 to 33% for R1 and

−40 to 50% for R2;
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Fig. 9. Fiber extraction test simulation using the discrete model: global structural reaction R varying λ

Fig. 10. Fiber extraction test: deformation for λ = 1 computed by the second gradient continuum model (colors represent
the angular strain between fibers) (color figure online)

3. for the shear parameter si,j , the variation ranges approximatively from −18 to 36% for R1 and −20
to 20% for R2.

The basic analysis immediately above synthesized advises that the identification of the stiffness parameters
requires great care in order to improve the results of the discrete model.
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Fig. 11. Fiber extraction test: global structural reaction R(λ) computed by using the second gradient continuum model

4. Conclusions and perspectives

The Part II of this paper will add to the theoretical results presented here the support of experimental
evidence. We underline that the measurements presented in Part II were (as it has to be done) performed
with the guidance and thanks to the understanding and insight obtained by means of the theoretical
results: For these reasons, we presented them in the present Part I. The perspectives opened by pre-
sented results are of relevance. Indeed there is a strong motivation in continuing the investigations of the
mechanical properties of pantographic sheets. Actually, it is needed to establish how they resist to:

(i) shear deformations (eventually coupled to extension and bending);
(ii) loads which are causing deformations out of plane and eventually buckling phenomena;
(iii) loads which are causing the onset of damage, damage evolution and eventually final failure.

Finally, it is needed to investigate the possibility to apply Castigliano’s Theorem to pantographic
sheets to obtain a global (and therefore robust) estimation of reactive forces in terms of total deformation
energy.

As a consequence of the guidelines briefly exposed in the foregoing, we list some future perspectives
of this research:

1. Pantographic structures were synthesized to give an example of second gradient metamaterial, see
e.g. [11–22], modeled as generalized continua; this peculiarity generally produces accurate results
using handy models; however in some specific deformation phenomena, the most appropriate models
could not be those deriving from continuous theory. On the other hand, as seen in [2,7], when the
qualitative description of their behavior is needed, then second gradient continuum models are surely
more convenient.

2. Possible contact between fibers, observed in many experiments, could be addressed by using the
guidelines reported in [23,24].

3. The construction of macro-springs obtained by using the capabilities of NURBS interpolation, see
e.g. [25–32] in order to design new and enriched metamaterials. Also the capabilities of the general-
ized beam theory could furnish fruitful idea, see [33,34]. It is also very interesting the extension to
the 3D case using the suggestions reported in [35].
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Fig. 12. Sensitivity analysis of global structural reaction R(λ) versus the non-dimensional displacement parameter λ varying
the stiffness parameters computed by using the discrete model
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4. The Hencky-type model applied here to pantographic structure could also be used to model granular
media interactions, see [36], or generalized continua, see [37–41] for a general review and [42–44] for
applications in biomechanics and civil engineering. Furthermore, an analysis of the effects of imper-
fections, e.g. geometrical, on their mechanical behavior seems to be important, and this is related
to the required further miniaturization of pantographic structures and the consequent unavoidable
appearance of randomly distributed defects, see, e.g., the preliminary work [45].

5. The identification of the parameters of the discrete model, i.e. the stiffnesses of the springs, as
briefly shown in Sect. 3 requires a specific investigation. In this direction, it could be useful to an
extended sensitivity analysis on these parameters by using, for example, the tools reported in the
review paper [46] and, in a detailed form, in [47–53], see also [54,55] for a specific application in
problems concerning huge and innovative structures.

6. It appears interesting the extension to dynamic regimes, or, in other words, to consider the inertial
forces, see some insight into the review paper [56] and also [57,58] for some general considerations.

7. The onset and the evolution of failure mechanisms involving, and observed in, pantographic sheets,
as will be shown clearly in [9] for one of the cases studied here, involve ruptures concerning both
fibers and pivots. A first tentative to solve this problem was presented in [59] obtaining results
somewhat accurate when the failure mechanism concerning a fiber is activated. In this direction, it
should also be considered the modeling of the out of plane deformation and the related buckling
phenomena. The interested reader will find many interesting ideas in [60–70].
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25. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids 21(5), 562–
577 (2016)
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