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Abstract. For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen
fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure
tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution
of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the
collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the
constitutive function describing the mechanical property at study over the set of all possible directions in space. Except
for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the
deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand
depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous
to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions,
each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each
deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work
proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require
the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the
fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre
constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument,
an approximation in which the directional average of the constitutive function is replaced by the constitutive function
evaluated at the directional average of the argument. Each of the proposed methods approximates the averaged constitutive
function in such a way that it is multiplicatively decomposed into the product of a function of the deformation only and
a function of the structure tensors only. In order to assess the accuracy of these methods, we evaluate the constitutive
functions of the elastic potential and the Cauchy stress, for a biaxial test, under different conditions, i.e. different fibre
distributions and different ratios of the nominal strains in the two directions. The results are then compared against those
obtained for an averaging method available in the literature, as well as against the integration made at each increment of
deformation.
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1. Introduction

Soft biological tissues can be seen as highly complex fibre-reinforced materials [1]. The solid phase can be
represented by a mixture of an isotropic matrix and transversely isotropic fibres. The spatial arrangement
of the fibres largely defines the anisotropy and inhomogeneity of the tissue (e.g. [2,3]). In some tissues, the
fibres can be thought of as being arranged in a finite number of families, each family being determined by
the common direction of the fibres belonging to it. For instance, tissues typically modelled with a single
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fibre family are ligaments and tendons [4], and tissues with two fibre families are blood vessels [5,6] and
the atrium of the heart [7,8].

However, the fibres usually have some dispersion with respect to the dominant direction(s) (e.g. [6]).
Moreover, there are tissues in which the dominant direction changes with location within the tissue or in
which a dominant direction cannot be clearly defined. A prime example is articular cartilage, in which
the fibre orientation varies along the depth of the tissue, from parallel to the surface in the superficial
zone, to random in the middle zone (no dominant direction), to aligned to the depth direction in the deep
zone [9,10]. Whenever one wishes to consider the dispersion about the dominant direction(s) or tissues
with more complex fibre orientations, it is necessary to describe the arrangement of the fibres by means
of an infinite number of statistically oriented fibres, which requires the use of an orientation probability
distribution.

Orientation probability distributions in soft tissue biomechanics were first used by Lanir [11] and later
adopted by several researchers (e.g. [6,12–14]). Similar techniques were independently developed in the
context of composite materials with inclusions [15,16] and were subsequently transferred to biomechanical
problems such as the determination of the overall elastic properties or the overall permeability of soft
tissues. These models were extended to the case of large deformations, at first for the elasticity alone [17]
and then for both elasticity and permeability [18]. Here, we shall use the notation and concepts developed
in these previous works.

For an extensive physical quantity, such as mass, momentum, energy, the overall extent q of the
quantity associated with the mixture as a whole is obtained as the weighted sum

q =
∑

α

φα qα, (1)

where qα is the value of the quantity in the constituent α and φα is the volumetric fraction of the
constituent α. For lack of better knowledge, this rule-of-mixture can be extended also to quantities, such
as the permeability, whose overall value may or may not be a linear combination as in Eq. (1). We
are interested in mixtures including one or more fibre families, each having statistical orientation. The
fibres in each family share the same properties but have different orientations, described by a probability
distribution. Therefore, we think of each fibre family as an infinity of fibres and evaluate its overall
contribution by means of an integral over all directions in space. The overall contribution of each fibre
family to a certain physical quantity, given by the averaging integral of the quantity, is called fibre
ensemble.

The method proposed in [6], which we call GOH method (Gasser–Ogden–Holzapfel method), accounts
for the overall effect of each family of statistically oriented fibres by means of the directional average of the
material structure tensor (the tensor product of the unit vector representing the material fibre direction
by itself). In their approach to the overall elastic properties of the arterial wall, after having defined a
fibre elastic potential as a function of the structure tensor of a given direction, Gasser et al. [6] replaced
the structure tensor by its directional average. The rule-of-mixture method gives the same results of the
GOH method whenever the material property to be averaged is an affine function (i.e. a constant plus a
linear function) in the structure tensor [17]. The GOH method has the advantage of requiring one single
integration, directly. Indeed, once the probability distribution is known, the directional average of the
structure tensor is a given tensor that has to be evaluated only once and then used in all subsequent
calculations. This makes the finite element (FE) implementation of the GOH method quite straightforward
and, indeed, the GOH method is available in the material libraries of the commercially available software
ABAQUS (Dassault Systèmes, Vélizy-Villacoublay, France).

In general, in the FE implementation of our rule-of-mixture method, the fibre ensemble (averaging
integral of a certain physical quantity) must be calculated at each increment of deformation [17,19]. This
is because of the coupled dependence of the integrand from both the structure tensor and the deformation.
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Although sometimes fairly expensive from the computational point of view, an efficient numerical
implementation of this method has been proposed [20], based on the use of spherical t-designs [21],
in which the surface of the unit sphere is discretised into a suitable set of points, and the integral is
evaluated as a summation on the discretised set of points. We recall that, since the oriented segment
joining the centre of the unit sphere with a given point on its surface defines univocally a direction in
space, the integration over the spherical surface can be made equivalent to integrating over all directions
in space. Other numerical methods for finding the integration points on the surface of the sphere could
be used (e.g. [22–24]), and a description of some of these methods can be found in [25]. However, a
single, direct integration is possible whenever the integrand is a separable function of the deformation
and the structure tensor, as is the case for tensor-power polynomial functions of the structure tensor
(the definition of tensor-power polynomial is given later, in Sect. 2.3). We note that the GOH method is
obtained in the instance of a tensor-power polynomial of degree one, which is an affine function of the
structure tensor.

In this work, based on the direct integrability of polynomial functions, we introduce and compare three
possible direct methods of approximation of the averaging integrals, with the purpose of estimating their
accuracy and establishing the ranges within which they perform as alternative options to step-by-step
integration criteria, while being computationally cheaper. We refer to these three methods as:

1. INEX (Invariant Expansion): the function to be averaged is viewed as a function of the invariants
of the deformation that include the structure tensor, and then expanded in Taylor series about the
values of the invariants in the reference configuration; then, the resulting polynomial is integrated;

2. STEX (Structure Tensor Expansion): the function to be averaged is expanded in Taylor series
about the structure tensor of a convenient direction, and the resulting (tensor-power) polynomial is
integrated;

3. PARG (Polynomial Argument): the function to be averaged is given by some function of an argument
that is a (tensor-power) polynomial in the structure tensor, and the average is taken of the polynomial
rather than of the whole function; in other words, the average is taken of the “outermost” argument
that can be written as a (tensor-power) polynomial in the structure tensor.

These three methods are also compared with methods available in the literature:

4. GOH (Gasser–Ogden–Holzapfel): the model proposed by Gasser et al. [6]; the GOH method can
be seen as the extreme of our PARG method, in which the “innermost” argument is averaged: the
structure tensor;

5. FESD (Fibre Ensemble with Spherical Designs): the step-by-step integration of the fibre ensemble
of a certain physical quantity performed with the method of the spherical t-designs [20,26].

The comparison is made based on a benchmark test in the context of elasticity, namely a biaxial tension
test of a fibre-reinforced tissue sample, and the limitations of each methods are discussed.

2. Theoretical background

We refer the reader to the Appendix, where we briefly review the fairly standard continuum mechanics
notation that we use (Appendix A), recall the definitions of the invariants of the deformation for the
cases of isotropy and transverse isotropy (Appendix B), as well as some basic relations in nonlinear
hyperelasticity (Appendix C), which will serve as our example of application of the averaging methods
proposed in Sect. 3.

The notation follows that in a previous work [19], with a few small exceptions that allow for a lighter
notation. The reference configuration of a body is denoted B (rather than BR), the referential volumetric
fraction of constituent α of a mixture is denoted Φα (rather than φαR), and the referential probability
distribution of orientation of the fibres is denoted Ψ (rather than ψ).
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In this section, we first recall the volumetric–distortional decomposition of the deformation, which
we use for a purpose different than the usual one (quasi-incompressible materials) and introduce some
definitions that are useful for the objectives of this work. Then, we introduce some important definitions
in tensor algebra and elucidate the averaging method based on the rule of mixtures that we employ in
this work, and that gives rise to what we call the fibre ensemble. Finally, we recall the method by Gasser
et al. [6] (GOH method), to which we compare our results.

2.1. The volumetric–distortional decomposition of the deformation

The volumetric–distortional decomposition of the deformation gradient F [27–29] is often employed in the
treatment of quasi-incompressible materials. However, we shall use it for a different purpose, as outlined
in Sect. 3.1. The deformation gradient tensor F can be decomposed into its volumetric and distortional
(or isochoric) part, F = J1/3F̄ . We refer to F̄ as to the distortional (or isochoric) part of F , since,
by construction, it is characterised by having a unitary determinant, i.e. det F̄ = 1. Consistently, we
decompose the right Cauchy-Green deformation tensor as C = J2/3C̄, where the isochoric part of C is
given by C̄ = F̄

T
.F̄ and satisfies the equality det C̄ = 1.

2.2. Some important definitions in tensor algebra

Here, we introduce some definitions for the case of material tensors but, naturally, these are analogous
for the case of spatial tensors. We indicate the full contraction of a material “contravariant” tensor T

and a material “covariant” tensor Z of the same order r by means of the bra-ket notation 〈T|Z〉 =
TA1...ArZA1...Ar

. Note that the bra-ket notation can be used symmetrically, i.e. 〈T|Z〉 = 〈Z|T〉. For the
particular case of second-order tensors, we can alternatively write T : Z ≡ 〈T |Z〉 = TABZAB and we
call T : Z the double contraction of T and Z.

Given any n material tensors A1, . . . ,An of the same “contravariant” order r, “covariant” order s and
overall order r + s, the major-symmetric part of the n(r + s)-th-order tensor

T = A1 ⊗ · · · ⊗ An (2)

is given by

msym(T) =
1
n!

∑

σ∈Sn

Aσ1 ⊗ · · · ⊗ Aσn
, (3)

where each σ = {σ1, . . . , σn} is one of all the n! possible permutations Sn of {1, . . . , n}. Note that, if the
tensors Ai are of the first order (i.e. they are all vectors W i or all covectors Πi), then the major-symmetric
part of T coincides with its symmetric part.

For any material tensor A (of any “contravariant” order r, “covariant” order s, and overall order r+s),
its n-th tensor power is defined as the n(r + s)-th-order tensor

A
⊗n = A ⊗ · · · ⊗ A︸ ︷︷ ︸

n times

, (4)

and, by convention, we set A⊗1 = A and A
⊗0 = 1 ∈ R. Given two tensors A,B (of the same “contravariant”

order r, “covariant” order s, and overall order r + s), the binomial tensor power (A + B)⊗n is given by
the generalised Newton’s formula

(A + B)⊗n =
n∑

k=0

[(
n
k

)
msym

(
A

⊗(n−k) ⊗ B
⊗k

)]
, (5)

where we recall that
(
n
k

)
is the binomial coefficient

(
n
k

)
= n!/(k!(n − k)!).
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2.3. Materials with statistically oriented fibres

Let F be a generic physical quantity associated with a fibre-reinforced material, comprised of an isotropic
matrix and anisotropic statistically oriented fibres. The considered quantity may be either a thermo-
mechanical variable, such as stress, or a material property, such as stiffness or permeability. The mixture
of matrix and fibres is assumed to be constrained, i.e. the matrix and fibres attain the same motion,
with the same velocity v and the same deformation gradient F . For the sake of simplicity, we limit
ourselves to the case of a single family of statistically oriented fibres. The orientation of the fibres is
described by the probability Ψ(M) to find a fibre in a given referential direction M in the material unit
sphere S

2B = {M : ‖M‖ = 1}. The probability density function Ψ is assumed to be invariant under the
transformation M �→ −M and normalised to one over the sphere, i.e. [30,31],

Ψ(−M) = Ψ(M),
∫

S2B

Ψ(M) = 1. (6)

Note that we shall omit writing the “area element” or, more properly, the area two-form [32,33] “dS”
in all surface integrals. If Φ0 and Φ1 are the referential volumetric fractions of the matrix and the fibres,
respectively, the physical quantity F can be written, in the reference configuration, with the rule-of-
mixture expression

F = F̂(C,Ψ) = Φ0 F̂0(C) + Φ1

∫

S2B

Ψ(M) F̂1(C,A), (7)

where A = M ⊗ M is the structure tensor, F̂ is the constitutive function of F , F̂0 is the isotropic
constitutive function of quantity F0 in the matrix, and F̂1 is the anisotropic constitutive function of
quantity F1 in the fibres. The integral

Fe = F̂e(C,Ψ) =
∫

S2B

Ψ(M) F̂1(C,A), (8)

called the fibre ensemble of F1 [18,19], accounts for the effect of the fibres and had initially been intro-
duced for the case of the elastic potential [17].

In general, it is not possible to factorise the deformation C out of the integral, and therefore the
fibre ensemble cannot be calculated directly, but must be evaluated at each increment of deformation.
This has been done [20] by means of the method of the spherical t-designs [21,34], i.e. a set of N points
{M (1), . . . ,M (N)} in the material unit sphere S

2B such that, for polynomials P of degree k ≤ t,
∫

S2B

P(M) =
4π

N

N∑

r=1

P(M (r)), (9)

where 4π is the (surface) measure of the unit sphere S2B. As mentioned in the Introduction, we shall denote
the numerical integration of the rule-of-mixture expression of the fibre ensemble of Eq. (8), performed
with the method of the spherical designs, by the acronym FESD.

It is crucial to remark that a single, direct integration is possible when the constitutive function F̂1 is
a separable function of the structure tensor A and the deformation C. For a (scalar) constitutive function
F̂1, the most common case of separable function is a tensor-power polynomial in the structure tensor A
[19], of the type

F̂1(C,A) = a

[
q0(C) +

n∑

p=1

〈Qp(C)|A⊗p〉
]
, (10)

where a is a material constant with units of F1, q0(C) is a non-dimensional scalar function of the
deformation and the non-dimensional “covariant” tensor functions Qp are such that Qp(C) is a tensor
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of order 2p, which contracts with the “contravariant” tensor-power A⊗p, which is the tensor of order 2p
defined by

A⊗p = A ⊗ · · · ⊗ A︸ ︷︷ ︸
p times

. (11)

Note that the tensors Qp(C) and A⊗p are fully “covariant” and fully “contravariant”, respectively, which
justifies the bra-ket notation, 〈 · | · 〉. For the constitutive function in Eq. (10), it is possible to exploit the
linearity of the integration operator and to factorise the deformation out of each resulting integral, so
that the fibre ensemble of Eq. (8) becomes [19]

Fe = F̂e(C,Ψ) = a

[
q0(C) +

n∑

p=1

〈Qp(C)|Hp〉
]
, (12)

where we define the averaged structure tensor of order 2p as [19,30,31,35]

Hp =
∫

S2B

Ψ(M) A⊗p. (13)

Therefore, an analytical form of the fibre ensemble can be obtained as a function of the deformation C
and can be introduced directly into a finite element implementation, without the need to calculate an
integral at each increment of deformation.

We shall exploit the property of direct integrability of polynomial constitutive functions to propose
our integration methods in Sect. 3.

Remark. We refer to the constitutive function of Eq. (10) as to a tensor-power polynomial because the
tensor power A⊗p is involved, rather than the regular power Ap. Indeed, because of the idempotence of
A [36,37], the regular power would lead to the trivial result Ap = A, which means that any (regular)
polynomial of the N -th order in A would reduce to an affine function in A. The idempotence of A can
be shown in components:

(A2)AD = AABGBCACD = MAMBGBCMCMD = MAMD = AAD. (14)

Furthermore, we note that, for a second-order tensor, whereas the regular power is an internal operation,
the tensor power is an external operation, in so far as its result is a tensor of different order than the
original one. A particularly interesting case occurs when the 2p-th-order tensor Qp(C) can be written as
the tensor product of p tensors of order two. An even more peculiar situation occurs when it holds that
Qp(C) = qp(C)C⊗p, for every p ∈ {1, . . . , N}, with qp(C) being a suitable scalar-valued function of C,
so that Eq. (10) becomes

F̂1(C,A) = a

[
q0(C) +

n∑

p=1

qp(C) 〈C⊗p|A⊗p〉
]
. (15)

Because of the identity

Ip
4 = (C : A)p = 〈C|A〉p =

〈
C⊗p

∣∣A⊗p
〉
, (16)

expression (15) becomes a polynomial of degree N in the fourth invariant I4 = 〈C|A〉 = C : A, i.e.

F̂1(C,A) = F̌1(I4) = q0(C) +
N∑

p=1

qp(C) Ip
4 . (17)
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2.4. Averaged structure tensors Hp of order 2p

To the best of our knowledge, the generalised structure tensors that we denote Hp in Eq. (13) were first
introduced by Kanatani [30], who actually called “fabric tensors” the deviatoric parts of the Hp, with
some normalisation constants [cf., in [30], Equation (3.4), which corresponds exactly to the definition of
Hp, and Equation (3.3), which defines Kanatani’s “fabric tensors”]. Advani and Tucker [31] noted that
all averaged structure tensors of order smaller than p ≥ 2 can be found from Hp by contracting pairs of
its indices (which, in our formalism, requires the use of the metric tensor), as it can be shown, e.g. in
components. Our group first employed the tensors Hp only recently [19] and, regretfully, we were unaware
of the works by Kanatani [30] and Advani and Tucker [31] at that time. For p = 1, the averaged tensor
in Eq. (13) coincides with the second-order tensor given by the average of the structure tensor A,

H =
∫

S2B

Ψ(M)A, (18)

which Gasser et al. [6] called “generalised structure tensor” and used as the basis of their averaging
method (see Sect. 2.5). In the following, we will generally use the identification H1 ≡ H, except in
sums over p involving the tensors Hp of order 2p. To our knowledge, prior to this work, the fourth-order
averaged structure tensor H2 was used in biomechanics by Vasta et al. [38] and Gizzi et al. [39], who
called it simply H.

2.5. The Gasser–Ogden–Holzapfel method (GOH)

The method proposed by Gasser et al. [6], thereby called GOH method, allows for a single, direct integra-
tion, and we describe it here in our notation. Gasser et al. [6] proposed to evaluate the overall effect of the
fibres on a physical quantity F by replacing the structure tensor A in the fibre function F1 = F̂1(C,A)
by means of its directional average H introduced in Eq. (18), to obtain

FGOH = F̂GOH(C,Ψ) = F̂1(C,H), (19)

which they used in Eq. (7) in place of our fibre ensemble F̂e of Eq. (8). When F̂1 is affine in the structure
tensor A, i.e. it is a (tensor-power) polynomial of degree one in A,

F̂1(C,A) = a [q0(C) + Q(C) : A], (20)

where a is a constant, q0 is a scalar function of C, and Q is a second-order “covariant” tensor-valued
function of C, we have

F̂e(C,Ψ) =
∫

S2B

Ψ(M) F̂1(C,A) =
∫

S2B

Ψ(M) a [q0(C) + Q(C) : A]

= a

⎡

⎣q0(C) + Q(C) :

⎛

⎝
∫

S2B

Ψ(M)A

⎞

⎠

⎤

⎦ = a [q0(C) + Q(C) : H]

= F̂1(C,H) = F̂GOH(C,Ψ), (21)

i.e. the rule-of-mixture method coincides with the GOH method [17].

3. Approximation of the fibre ensemble

Here we introduce three methods that provide analytical approximations of the fibre ensemble (8), all
based on the fact that, for a fibre function F̂1 that is a tensor-power polynomial in the structure tensor, a
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single, direct integration is possible [19]. Two of the proposed methods are based on the Taylor expansion
of the fibre function F̂1, in order to obtain polynomial functions in the structure tensor A. In the first
method, we expand in the transversely isotropic invariants, which are linear functions of A (see Eq. (72)).
In the second method, we expand in the structure tensor A. In the third method, in a fashion similar
to that of the GOH method [6], for the case of a fibre function F̂1 that is a function of a tensor-power
polynomial P(A), we replace the fibre ensemble by the same function evaluated at the directional average
of P(A), which can be calculated directly.

3.1. Taylor expansion in the invariants (INEX)

Let F̌1(I1, I2, I3, I4, I5) = F̂1(C,A) be the fibre constitutive function written as a function of the five
transversely isotropic invariants (when looking at a single direction M , the symmetry is naturally that of
transverse isotropy). For the sake of a lighter notation, let us omit writing the three isotropic invariants
I1, I2, I3 among the arguments of F̌1 and, for the sake of a simpler presentation, let us assume that F̌1

does not depend on the fifth invariant I5. If I5 were included, the derivation would be analogous, but
lengthier, and the Taylor expansion formulae would require the introduction of the multi-index notation.
Furthermore, we write I4 = J2/3Ī4, i.e. we express I4 in terms of its purely distortional counterpart Ī4.
Therefore, let us write the fibre quantity F1 as a constitutive function of J and Ī4, i.e.

F1 = F̂1(C,A) = F̌1(J, Ī4). (22)

We remark that, although we omitted indicating explicitly the dependence of F̌1 on I3 = J2, in the sequel
we express F̌1 as a function of Ī4 and J in order to emphasise that J is used to express I4 as J2/3Ī4.
We also remark that we are not decomposing I4 into its volumetric and distortional parts in order to
impose incompressibility, which is the most common case in which one uses the volumetric–distortional
decomposition, but because it serves our purpose of a Taylor expansion at a point of zero (distortional)
deformation, as it will be explained later.

For a given C = J2/3C̄, it is fairly straightforward to prove that the admissible values of I4 and Ī4
belong to the closed intervals Λ(C) = [λ2

min, λ
2
max] and Λ(C̄) = [λ̄2

min, λ̄
2
max], respectively, where λ2

min

and λ2
max are the minimum and maximum eigenvalue of C, and λ̄2

min and λ̄2
max are those of C̄ (see

Appendix D for both an analytical and graphical proof). Note that, in the undeformed configuration, for
which C = C̄ = G (where the metric tensor G serves as the “covariant” identity tensor), the intervals
Λ(C) and Λ(C̄) degenerate into the singleton Λ(G) = {1}. We also remark that the admissible intervals
of I5 and Ī5 have the same form of those of I4 and Ī4, except that the exponents 2 of the maximum and
minimum stretches have to be replaced by exponents 4.

For our purposes, it is very important to note that it is always verified that Ī40 = 1 ∈ Λ(C̄) =
[λ̄2

min, λ̄
2
max]. Indeed, the condition det C̄ = 1 implies that λ̄2

min < 1 and λ̄2
max > 1. Therefore, if F̌1

belongs to the space Cn(Λ̊(C̄)) of continuously differentiable functions up to order n in the open set
Λ̊(C̄) =]λ̄2

min, λ̄
2
max[ of the interior points of Λ(C̄), it is possible to approximate F̌1 by means of a Taylor

expansion in the variable Ī4, about the value Ī40 = 1 ∈ Λ(C̄). For this purpose, we invoke the Taylor’s
expansion formula of order n for F̌1, which reads

F̌1(J, Ī4) = Ťn(J, Ī4) + Řn(J, Ī4) =
n∑

j=0

1
j!

∂(j)F̌1

∂Ī
(j)
4

(J, 1)[Ī4 − 1]j + Řn(J, Ī4), (23)

where Ťn(J, Ī4) is the Taylor polynomial of order n associated with F̌1 at 1 ∈ Λ̊(C̄). If F̌1 is differentiable
n + 1 times in Λ̊(C̄) \ {1}, the remainder Řn(Ī4) can be given in Lagrange’s form as

Řn(J, Ī4) =
1

(n + 1)!
∂(n+1)F̌1

∂Ī
(n+1)
4

(J, ξn+1)[Ī4 − 1]n+1, (24)
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for some ξn+1 ∈ Λ̊(C) lying between 1 and Ī4 and depending on Ī4 as well as on the order n of the
expansion.

We now exploit Ī4 = C̄ : A = J−2/3C : A and write the Taylor polynomial and the remainder as
explicit functions of the structure tensor A, i.e.

Ťn(J, Ī4) = T̂n(C,A) =
n∑

j=0

1
j!

∂(j)F̌1

∂Ī
(j)
4

(J, 1)[J−2/3C : A − 1]j , (25a)

Řn(J, Ī4) = R̂n(C,A) =
1

(n + 1)!
∂(n+1)F̌1

∂Ī
(n+1)
4

(J, ξn+1)[J−2/3C : A − 1]n+1, (25b)

which give

F̂1(C,A) = T̂n(C,A) + R̂n(C,A). (26)

Then, we multiply both sides of Eq. (26) by the probability distribution Ψ(M), integrate over the material
sphere S

2B and obtain

Fe = Gn + En, (27)

where Fe is the fibre ensemble of Eq. (8), and

Gn =
∫

S2B

Ψ(M) T̂n(C,A), (28a)

En =
∫

S2B

Ψ(M) R̂n(C,A), (28b)

are the n-th-order approximation of Fe and the corresponding error En, which is entirely defined by the
difference En := Fe − Gn. Equation (28a) defines the sequence {Gn}n∈N, in which Gn is given by

Gn = Ĝn(C,Ψ) =
n∑

j=0

1
j!

∂(j)F̌1

∂Ī
(j)
4

(J, 1)
∫

S2B

Ψ(M) [J−2/3C : A − 1]j

=
n∑

j=0

1
j!

∂(j)F̌1

∂Ī
(j)
4

(J, 1)
j∑

k=0

(
j

k

)
(−1)k (J−2/3)j−k

∫

S2B

Ψ(M) [C : A]j−k. (29)

The Cauchy-Green deformation tensor C can be factorised out of the integral sign in (29) by using the
identity (16), from which

∫

S2B

Ψ(M) [C : A]j−k =
〈
C⊗(j−k)

∣∣Hj−k

〉
. (30)

By virtue of this result, the n-th-order approximation of Fe can be recast in the compact form

Gn = Ĝn(C,Ψ) =
n∑

j=0

1
j!

∂(j)F̌1

∂Ī
(j)
4

(J, 1)
j∑

k=0

(
j

k

)
(−1)k (J−2/3)j−k

〈
C⊗(j−k)

∣∣∣Hj−k

〉
, (31)

in which the deformation has been completely factorised with respect to directional averaging, the latter
being accounted for by the averaged structure tensor of order 2(j −k), Hj−k. To estimate the error, let us
consider for simplicity the case in which F1 is a scalar constitutive function, so that its associated fibre
ensemble, Fe, and n-th-order approximation, Gn, are scalars too. If the error En = Fe − Gn vanishes as n
goes towards infinity, Fe can be represented exactly by the limit limn→∞ Gn, in which case it holds that

Fe = lim
n→∞ Gn. (32)
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To estimate En, we follow the theory of Taylor expansion formulae, and we infer that, if there exist
positive constants L and Q, such that

∣∣∣∣
∂n+1F̌1

∂Īn+1
4

(J, Ī4)
∣∣∣∣ ≤ LQn+1, ∀ Ī4 ∈ Λ̊(C̄), (33)

then it holds that

|En| ≤
∫

S2B

Ψ(M)
∣∣∣R̂n(C,A)

∣∣∣ ≤ L
Qn+1

(n + 1)!

∫

S2B

Ψ(M)|Ī4 − 1|n+1 ≤ L
Qn+1(λ̄2

max − λ̄2
min)

n+1

(n + 1)!
. (34)

Note that, in the case in which F1 is a tensor-valued constitutive quantity, the estimates (33) and (34)
must be generalised by replacing the absolute value with an appropriate norm.

For a sufficiently high order n of the Taylor’s expansion (23), we enforce the approximation

Fe  Gn, (35)

the accuracy of which increases when the absolute value of the error, |En|, tends towards zero. For example,
this is the case when λ̄2

max and λ̄2
min tend to be equal to each other.

Equations (27) and (35) constitute the INEX (Invariant Expansion) method and provide a polynomial
approximation of the fibre ensemble F̂e, regardless of the form of the orientation probability distribution
Ψ. This is achieved by expanding the fibre constitutive function F̌1(J, · ) about Ī40 = 1, which rules out
any dependence on a “privileged” direction M0. In order to clearly show this, let M0 be any direction,
with the associated structure tensor A0 = M0 ⊗ M0. Since Ī40 = C̄ : A0, when C̄ = G, we have that
Ī40 = 1, for every M0. Therefore, the INEX approximation is valid for any orientation distribution Ψ.
This is in contrast with the STEX method presented in Sect. 3.2, which is based on the expansion about
A0 = M0 ⊗ M0, and is thus accurate only for orientation distributions Ψ with small dispersions about
M0. We observed that the INEX method gave the best results for even orders of expansion.

3.2. Taylor expansion in the structure tensor (STEX)

Given a fibre function F1 = F̂1(C,A) and a structure tensor A0 = M0 ⊗ M0, if F̂1 is of class Cn in a
neighbourhood of A0, it is possible to use Taylor’s expansion formula in A about A0,

F̂1(C,A) = T̂n(C,A) + R̂n(C,A) =
n∑

j=0

1
j!

〈
∂(j)F̂1

∂A(j)
(C,A0)

∣∣∣∣∣(A − A0)⊗j

〉
+ R̂n(C,A), (36)

where, similarly to the case of the INEX method, T̂n(C,A) is the Taylor polynomial of order n, and if
F̂1 is of class Cn+1 in A, the remainder R̂n(C,A) can be expressed in Lagrange’s form (we omit the
details).

Multiplying both sides of Eq. (36) by the probability density Ψ and then integrating over the material
sphere S

2B, we obtain

Fe = Gn + En, (37)

where, analogously to the case of the INEX method, Fe is the fibre ensemble of Eq. (8), Gn is the n-th-
order approximation of Fe and En is the n-th-order error, defined formally as in Eqs. (28a) and (28b).
The term Gn of the sequence {Gn}n∈N is given by
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Gn = Ĝn(C,Ψ) =
∫

S2B

⎡

⎣Ψ(M)
n∑

j=0

1
j!

〈
∂(j)F̂1

∂A(j)
(C,A0)

∣∣∣∣∣(A − A0)⊗j

〉⎤

⎦

=
n∑

j=0

1
j!

〈
∂(j)F̂1

∂A(j)
(C,A0)

∣∣∣∣∣

∫

S2B

Ψ(M) (A − A0)⊗j

〉
. (38)

Note that the integrals on the right-hand side of the bra-ket are independent of the deformation C. Using
the expression (5) of the binomial tensor power and the linearity of the integral operation, it is possible
to write Eq. (38) in the form

Fe  Gn = Ĝn(C,Ψ) =
n∑

j=0

1
j!

〈
∂(j)F̂1

∂A(j)
(C,A0)

∣∣∣∣∣

j∑

k=0

[
(−1)k

(
j
k

)
msym

(
Hj−k ⊗ A⊗k

0

)]
〉

, (39)

which features the averaged structure tensors Hp of Eq. (13). Equations (37) and (39) yield an analytical
approximation of the fibre potential Fe as a function of the deformation C. It seems natural to expand
about the structure tensor A0 = M0 ⊗M0 relative to the dominant direction M0 of the fibres, in which
case the best results are obtained when the dispersion of the fibres about that direction is relatively small.
We note that Vasta et al. [38] have in fact implemented what here we would call the STEX method of
order 2, i.e. involving only H1 ≡ H and H2. Also in this case, the best results were obtained for even
orders of expansion.

3.3. Polynomial argument method (PARG)

In this section, we consider a fibre function of the type

F1 = F̂1(C,A) = f (P(C,A)) , (40)

where f describes the physical quantity that has to be modelled (e.g. the elastic potential) and P(C,A)
is defined by the N -th degree tensor-power polynomial

P(C,A) := q0(C) +
N∑

p=1

〈Qp(C)|A⊗p〉, (41)

in which, as in Eq. (10), q0 and Qp are, respectively, a non-dimensional scalar-valued function and a
non-dimensional “covariant” tensor-valued function of order 2p of the right Cauchy-Green deformation
tensor. We propose to approximate the fibre ensemble as

Fe = F̂e(C,Ψ) =
∫

S2B

Ψ(M) f (P(C,A))  f

⎛

⎝
∫

S2B

Ψ(M)P(C,A)

⎞

⎠ . (42)

This approximation becomes exact if the operation of directional averaging commutes with the function
f. This holds true, for example, when f is a polynomial of degree M in P(C,A), and P(C,A) is expressed
as the F̂1 of Eq. (15), with Qp(C) = qp(C)C⊗p, and qp(C) scalar functions of C, so that P(C,A) can
be written as a polynomial in I4:

P(C,A) = P̌(I4) = q0(C) +
N∑

p=1

qp(C) Ip
4 . (43)
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With these assumptions, f(P(C,A)) can be reformulated as a polynomial of degree MN in I4, i.e.

F̂1(C,A) = f(P(C,A)) = f(P̌(I4)) = a0(C) +
MN∑

h=1

ah(C)Ih
4 = a0(C) +

MN∑

h=1

ah(C)〈C|A〉h, (44)

where each function ah, with h ∈ {0, . . . , MN}, is obtained by combining the functions qp of (17) with
the coefficients of the polynomial expressing f. By using the identity (16), which leads to

∫

S2B

Ψ(M)〈C|A〉h =

〈
C⊗h

∣∣∣∣∣

∫

S2B

Ψ(M)A⊗h

〉
= 〈C⊗h|Hh〉, (45)

the fibre ensemble can be expressed exactly in terms of the averaged generalised structure tensors Hh,
i.e.

Fe =
∫

S2B

Ψ(M)F̂1(C,A) = a0(C) +
MN∑

h=1

ah(C)〈C⊗h|Hh〉. (46)

In general, however, for arbitrary functions f, the approximation (42) is exact in the limit C → G. Indeed,
at C = G, one obtains I4 = I40 = 〈G|A〉 = 1 and the polynomial

P(G,A) = P̌(1) = q0(G) +
N∑

p=1

qp(G) (47)

becomes constant with respect to the structure tensor, thereby rendering the approximation (42) an
identity. Nevertheless, the reliability of (42) deteriorates when C deviates from G.
To highlight the loss of accuracy of (42) when C �= G, let us consider a physically relevant example. We
set N = 2, q0(C) = 1, q1(C) = −2, and q2(C) = 1, so that P(C,A) takes the form

P(C,A) = 1 − 2〈C|A〉 + 〈C⊗2|A⊗2〉 = (〈C|A〉 − 1)2 , (48)

and we assume that the fibre function F1 represents the anisotropic elastic potential of the Holzapfel–
Gasser–Ogden [5] type

F̂1(C,A) = Ŵ1a(C,A) = 1
2c1a

[
exp

(
(〈C|A〉 − 1)2

)
− 1

]
. (49)

In this case, after introducing the auxiliary variable η = (〈C|A〉 − 1)2, the function f is identified with

f(η) = 1
2c1a[exp(η) − 1]. (50)

Since f can be expanded in Taylor series about η = 0, we obtain

f(η) = 1
2c1a

+∞∑

n=1

ηn

n!
. (51)

Thus, substituting (51) into (42) yields (for brevity, we omit the dependence of functions on their own
arguments)

Fe =
∫

S2B

Ψ f = 1
2c1a

∫

S2B

Ψ
+∞∑

n=1

ηn

n!
= 1

2c1a

+∞∑

n=1

1
n!

∫

S2B

Ψηn. (52)

At each order n ≥ 1, we write the integral
∫

S2B
Ψηn as

∫

S2B

Ψ ηn =

⎛

⎝
∫

S2B

Ψη

⎞

⎠
n

+ Rn, (53)
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where we refer to Rn as to the n-th-order residuum of the approximation. Consequently, (52) can be
rewritten as

Fe = 1
2c1a

+∞∑

n=1

1
n!

⎛

⎝
∫

S2B

Ψ η

⎞

⎠
n

+ 1
2c1a

+∞∑

n=1

1
n!
Rn. (54)

Since the first term on right-hand side of (54) is the exponential of the mean value of η, we obtain

Fe = 1
2c1a

+∞∑

n=1

1
n!

⎛

⎝
∫

S2B

Ψ η

⎞

⎠
n

+ 1
2c1a

+∞∑

n=1

1
n!
Rn

= 1
2c1a

⎡

⎣exp

⎛

⎝
∫

S2B

Ψ η

⎞

⎠ − 1

⎤

⎦ + 1
2c1a

+∞∑

n=1

1
n!
Rn (55)

We remark that the residuum Rn can be computed exactly at any order. Indeed, it holds true that

Rn =
∫

S2B

Ψ ηn −

⎛

⎝
∫

S2B

Ψ η

⎞

⎠
n

=
2n∑

j=0

(
2n

j

)
(−1)j〈C⊗(2n−j)|H2n−j〉 −

(
〈C⊗2|H2〉 − 2〈C|H〉 + 1

)n
. (56)

It can be shown, however, that even in the case of an equi-biaxial test (performed on an incompressible
material characterised by diagonal matrix representation of C, [C] = diag{λ2, λ2, λ−4}), the residuals
may not tend to zero sufficiently fast, even for values of λ sufficiently close to unity. This behaviour
contributes to corrupt the reliability of the PARG method and to deteriorate its agreement with the
FESD method.

We note that, as it happens for the whole F̂1 in the general case of Eq. (8), if P in Eq. (42) is an
affine function, i.e. a polynomial of degree one, the PARG method reduces to the GOH method proposed
in [6]. The main difference between the PARG method and the GOH method is the level at which the
fibre ensemble is approximated. While in the GOH method the averaging integral is performed on the
innermost argument, the structure tensor A, in the PARG method of Eq. (42), we take the average of the
outermost argument, P(C,A), that can be written as a tensor-power polynomial in A. We remark that,
while the GOH method is applicable to any constitutive function, the PARG method is only applicable
when the constitutive function is expressible as a function of a tensor-power polynomial in A.

4. Application to elasticity

As an example of application of the integration methods presented in Sect. 3, we look at the averaged
physical quantities that are most often sought for in the mechanics of fibre-reinforced materials and
biomechanics of soft tissue: elastic potential and stress. Therefore, our physical quantity F takes the
meaning of elastic potential W in Eq. (7), and we write

W = Ŵ (C,Ψ) = Φ0 Ŵ0(C) + Φ1

∫

S2B

Ψ(M) Ŵ1(C,A). (57)

The averaging integral of the fibre potential W1 is called the fibre ensemble potential [17]:

We = Ŵe(C,Ψ) =
∫

S2B

Ψ(M) Ŵ1(C,A). (58)
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In general, it is possible to attribute some “bulk” isotropic stiffness to the fibres, e.g. by using a fibre
potential Ŵ1 given by the sum of an isotropic term and a term depending solely on the anisotropic
invariants I4 and I5 [18]. The fibre potential Ŵ1 could therefore be written, as a function W̌1 of the
invariants, as

W̌1(I1, I2, I3, I4, I5) = W̌1i(I1, I2, I3) + W̌1a(I4, I5). (59)

Furthermore, in those cases in which the contribution of a fibre in direction M is to be ruled out if the
direction undergoes contraction, i.e. if I4 = C : A < 1, it is possible to use the Heaviside step function
H evaluated at I4 − 1 and write

W̌1a(I4, I5) = H(I4 − 1) W̌1b(I4, I5), (60)

where W̌1b describes the anisotropic behaviour in extension and is called “base” potential. We remark
that, in order to be able to employ the integration methods presented in Sect. 3, we must renounce
discriminating between fibres in extension (which are unaffected by the Heaviside step function) and
fibres in contraction (which are “killed” by the Heaviside step to reflect the fact that they do not bear
load). Indeed, if we were to use the Heaviside step in the fibre potential as in Eq. (59), all approximating
potentials presented in Sect. 3 would have to be multiplied by the Heaviside step as well. The Heaviside
step with argument I4 −1 = C : A−1 would rule out the possibility of a single, direct integration. There
are two reasons for this: a) it would be in general impossible to know which fibres undergo contraction
a priori, and one would have to evaluate this at each increment of deformation; b) the hypotheses of
continuity and differentiability necessary for expandability of functions in Taylor series would be, in
general, violated. Therefore, an integration at each increment of deformation would remain the only
available solution method, thus defeating the purpose of the proposed approximation methods.

This means that, in terms of range of applicability to the evaluation of the overall elastic behaviour,
the methods presented in Sect. 3 are limited to those cases in which all fibres, or at least most of the fibres,
are in extension. This can be safely said for tissues with fibres lying mostly on a plane and subjected
to tensile plane stress. A typical example is that of blood vessels, which work as inflated-extended tubes
under physiological conditions. Schematically, blood vessels can be represented as having, at every point,
two dominant fibre directions (with some dispersion) mostly contained in the tangent plane at that point
(see, e.g. Figure 1 in [5]).

Remark. We are aware of the existence of mathematical models in which the collagen fibres contribute
to the tissue’s overall compressive stiffness. It has been recently reported [40] that this is the case, for
example, in aged or diseased intervertebral discs, and it was assumed that the fibres’ contribution to
compressive loads increases with increasing strain magnitude and is influenced by the orientation of the
fibres. Still, to the best of our knowledge and understanding, in articular cartilage (the tissue which
motivated our current study) no correlation of compressive stiffness with collagen content has been
observed [41]. For this reason, we decided to exclude all fibres that are not stretched. Even though this
modelling assumption may turn out to be far from reality in some circumstances, we do not make it with
the purpose of simplifying the calculations. On the contrary, the necessary introduction of the Heaviside
step in the evaluation of the fibre ensemble makes it highly nonlinear in a non-differentiable way, thereby
excluding a priori the possibility of applying the methods proposed in this work.

For our illustrative purposes, let us choose simple forms of the matrix potential Ŵ0, isotropic fibre
potential Ŵ1i and (base) anisotropic fibre potential Ŵ1b (such that Ŵ1a = H(I4 − 1) Ŵ1b),

Ŵ0(C) = 1
2 c0 (I1(C) − 3), (61a)

Ŵ1i(C) = 1
2 c1i (I1(C) − 3), (61b)

Ŵ1b(C,A) = 1
2 c1a

[
exp

(
(C : A − 1)2

)
− 1

]
, (61c)
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in which c0, c1i and c1a are material parameters, and we assume referential volumetric fractions Φ0 =
Φ1 = 0.5. The exponential form of the base anisotropic potential in Eq. (61c) has been chosen because
it predicts well the characteristic stress response of soft tissues with collagen fibres being undulated in
the undeformed configuration, with a toe region and a region of increased stiffness [42]. Moreover, since
it consists of the exponential of a polynomial in I4 = C : A, it also allows the use of the PARG method
proposed in Sect. 3.3. Note that, although the invariant I5 should also be included in order to obtain
a complete transversely isotropic representation (and avoid unphysical results, see, e.g. [43]), very often
I5 is left out, in order to limit the number of material parameters, and therefore of experimental tests,
needed to characterise the material. In passing, we note that the form chosen for Ŵ1 makes it a particular
case of exponential Fung potential [44–47], which is the exponential of a quadratic form in the Green–
Lagrange strain. Indeed, by using the definition of Green–Lagrange strain E = 1

2 (C − G), we can write
the argument of the exponential in (61c) as a quadratic form in E:

(C : A − 1)2 = (C : A − G : A)2 = (2E : A)2 = 4 [E : (A ⊗ A) : E] . (62)

In a Cartesian (material) reference frame with axes E1, E2, E3, we consider a sample of incompressible
soft tissue, which undergoes a biaxial tension test in directions E1 and E2, with a prescribed ratio of the
nominal strain in direction 2 to the nominal strain in direction 1, i.e.

ζ =
λ2 − 1
λ1 − 1

. (63)

In an isochoric (J = det F = 1) biaxial test in directions E1 and E2, with nominal strain ratio ζ, the
matrix representations of the deformation gradient F and the right Cauchy-Green deformation C are

[F ] = diag
[
λ, ζ(λ − 1) + 1,

1
λ(ζ(λ − 1) + 1)

]
, (64)

[C] = diag
[
λ2, (ζ(λ − 1) + 1)2,

1
λ2(ζ(λ − 1) + 1)2

]
, (65)

so that ζ = 1 describes an equi-biaxial test, for which [F ] = diag[λ, λ, λ−2] and [C] = diag[λ2, λ2, λ−4],
0 < ζ < 1 means that direction E1 is being stretched more than direction E2, and ζ > 1 vice versa.

We assume that the fibres are oriented according to a transversely isotropic von Mises distribution
(see, e.g. [6,20,48]),

�(Θ) =
1
π

√
b

2π

exp[b(cos(2Θ) + 1)]
erfi(

√
2b)

, (66)

where Θ is the angle between the generic direction M and the axis of transverse isotropy M0, erf(x) and
erfi(x) = −i erf(i x) denote the error function at x and the imaginary error function at x, respectively
[49], and b is called concentration parameter. In the form reported in Eq. (66), the von Mises distribution
can accommodate both positive and negative values of the concentration parameter [19,48,50]. The limit
b → +∞ describes fibres all aligned in the direction M0 of the axis of symmetry, the limit b → 0
represents isotropy, and the limit b → −∞ describes fibres all lying on the transverse plane, which is, by
definition, orthogonal to the direction of the axis of symmetry M0. For simplicity, we assume that the
axis of symmetry M0 coincides with the direction E1 of axis 1 of the biaxial test (Fig. 1).

The approximated integration methods proposed in Sect. 3 are applied to the calculation of the
ensemble potential Ŵe with the provision that, even if the fibres are modelled as extension-only, i.e.
Ŵ1a = H(I4 − 1) Ŵ1b, the approximation is made with Ŵ1a ≡ Ŵ1b. Indeed, as noted above, we must
renounce to excluding the fibres in contraction when employing our approximation methods. The three
proposed methods are implemented with the assumptions outlined below:
1. INEX: the expansion is performed about Ī40 = 1 as outlined in Sect. 3.1 and is truncated at

order 6, which, in contrast with what happens with the structure tensor expansion STEX, is still
computationally manageable;
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2. STEX: the expansion is performed about the structure tensor A0 = M0 ⊗ M0 of the direction
M0 ≡ E1 of the axis of symmetry of the potential; the expansion is truncated at order 4, which is
the maximum order of expansion that the computational resources in our hands allowed;

3. PARG: the outermost argument of polynomial form in the fibre potential Ŵ1 of Eq. (61c) is given
by (C : A − 1)2, the directional average of which is evaluated.

The three proposed methods are compared against:
4. GOH: replacement of the structure tensor A in Eq. (61c) with the directional average H of Eq. (18)

[6];
5. FESD: integration of the fibre ensemble, at each increment of deformation, by means of the method

of the spherical t-designs; note that all fibres, in extension and contraction, are taken into account,
i.e. as in the three proposed methods, we consider Ŵ1a ≡ Ŵ1b;

6. FESDH: integration of the fibre ensemble at the each increment of deformation, as originally intro-
duced in [20] for the elastic properties, i.e. with the fibre potential Ŵ1a = H(I4 − 1) Ŵ1b, that
“kills” the fibres in contraction; this is done to verify under which conditions “sparing” the fibres in
contraction is an acceptable approximation.

The method for the evaluation of the stresses is provided in Appendix E. The values of the elastic
potential W and the total Cauchy stresses σ11 and σ22 are plotted as a function of the stretch λ under
the deformation described by Eq. (65) and are normalised with respect to the material parameter c0 of
Eq. (61a), while c1i and c1a are assumed to have the values 0.5 c0 and 5 c0, respectively. At a given value
of the strain ratio ζ, a set of three plots (W , σ11 and σ22) is produced for each value of the concentration

Fig. 1. Fibre arrangement for the samples undergoing biaxial test in the plane of directions E1 and E2. The orientation
of the fibres follows a von Mises distribution with axis of symmetry M0 parallel to E1. The cases of b = 4 (fibres mostly
aligned in the direction of symmetry), b = 1, b = 0 (fibres isotropically distributed), b = −1 and b = −4 (fibres mostly lying
on the transverse plane) are shown as an example
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parameter b equal to 4 (strong alignment in the direction of symmetry of the probability distribution),
1 (weak alignment), 0 (isotropic distribution), −1 (weak alignment on the transverse plane), −4 (strong
alignment). Figure 2 reports the plots obtained for ζ = 1 (equi-biaxial test), Fig. 3 for ζ = 0.5 (direction
E1 stretched more than direction E2) and Fig. 4 for ζ = 2 (direction E2 stretched more than direction
E1). All calculations were performed with Mathematica (Wolfram Research, Champaign, Illinois, USA).

We note (Fig. 1) that the fibre distribution with negative values of the concentration parameter b is
quite unrealistic: in a quasi-two-dimensional sample of a real soft tissue, very few fibres would be oriented
out-of-plane. We chose to keep this distribution, particularly for the quite extreme case of b = −4, because
most of the fibres are oriented out-of-plane, and therefore undergo contraction. This offers a way to verify
what discrepancy the fibres in contraction cause between the results of the FESD calculation that does
not exclude them and those of the FESDH calculation that does exclude them.

5. Results

The FESDH method, including the Heaviside function in order to “kill” the fibres in contraction, is
regarded as the “correct” computation, in so far as it rigorously follows the rule of mixtures as in Eqs. (7)
and (57). For the tested values of the concentration parameter b and the strain ratio ζ, the FESD that
does not discriminate between fibres in extension and contraction gives very close results to the “correct”
FESDH method, except for some discrepancy, mainly in the potential, for the case of large negative b.
A discrepancy between FESD and FESDH is expected as, for large negative b, the orientation of a quite
large fraction of the fibres is close to the E3 (out-of-plane) direction, and these fibres are therefore in
contraction. However, the discrepancy is much smaller than expected (see e.g. the plots for b = −1 and
b = −4 in Fig. 3).

Among all tested methods, the INEX method is systematically the one that gives the results closest
to those of FESDH/FESD for all values of b in the equi-biaxial case (Fig. 2), almost always in the case
of ζ = 0.5, except in a few cases in which it is slightly outperformed by the PARG method and the GOH
method (e.g. potential and stresses for b = 4, Fig. 3). For ζ = 2, while the INEX method is generally the
second closest to the spherical designs method (after the STEX method, as mentioned below), the fit is
not as good as in the cases of ζ = 1 and ζ = 0.5.

The STEX method is by far the most inappropriate. As expected, it works best when the probability
Ψ is peaked around the direction M0 about which the expansion is performed. For the considered von
Mises probability, this situation corresponds to values of the concentration parameter b greater than
zero. Indeed, for the fairly large value b = 4, it is very close to the FESDH/FESD method. However,
even for b = 4, it fails to describe a physically correct behaviour for the stress in direction 2, when
ζ = 0.5 (Fig. 3). The results become generally disastrous for lower values of b, with several occurrences of
unphysical behaviour (i.e. decreasing stress in direction 2 for increasing strain), although in some cases
(e.g. particularly for ζ = 2, Fig. 4) the STEX method evaluates the potential very accurately, even for
small or negative b.

The PARG method turned out to be a fairly reasonable approximation of the FESDH/FESD method.
For the equi-biaxial test (Fig. 2) and for ζ = 2 (Fig. 4), it is more accurate for positive values of b.
However, this trend is reversed for ζ = 0.5 (Fig. 3), i.e. the PARG works better for negative values of b.
In general, for given b and ζ, the values of the potential and the stresses yielded by the PARG method lie
between those of the INEX and the GOH methods, with a few exceptions (e.g. b = 4 in the equi-biaxial
test and b = 4,−4 for ζ = 0.5) where the PARG method is the closest to the FESDH/FESD method. For
all tested conditions, the PARG method is closer to the FESDH/FESD method than the GOH method
is.

The GOH method has a good agreement with the FESDH/FESD method for large positive values of
the concentration parameter b. However, for b = 0 (isotropic distribution) and negative values of b, the
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Fig. 2. Elastic potential and stress for the equi-biaxial test (ζ = 1)

behaviour of the GOH method deviates quite substantially from that of the FESDH/FESD method. For
the tested values of b and ζ, the behaviour of the GOH method is easily predictable, in the sense that,
for a given ζ, a higher value of b necessarily means a behaviour closer to FESDH/FESD, and there seems
to be no exceptions.
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Fig. 3. Elastic potential and stress for a biaxial test with ζ = 0.5

To give an idea about the computational time for each method, we show in Table 1 the time required to
produce the curves for the equi-biaxial test reported in Fig. 2 for b = 4. In order to examine quantitatively
the accuracy of the proposed methods, we provide in Figs. 5a, b the curves describing, for two different
values of the concentration parameter b, the absolute error of the elastic potential W , computed for
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Fig. 4. Elastic potential and stress for a biaxial test with ζ = 2

λ ∈ [1.0, 1.6] by regarding the FESDH method as the reference one, i.e. EM := |WM −WFESDH|, with M ∈
{STEX, INEX,PARG,GOH,FESD}. The thin, black lines corresponding to the values of the absolute
error 0.05 for b = 4, and 0.1 for b = −4 define a threshold that identifies, for each value of the concentration
parameter, a maximal range of validity, i.e. the maximal subset of the stretch interval [1.0, 1.6] within
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Table 1. Computational time (s) for graphs at ζ = 1 and b = 4 and stretch range λ ∈ [1.0, 1.6]; time increment in FESD
and FESDH is 40ms

Quantity STEX INEX PARG GOH FESD FESDH

Elastic potential W 0.66 0.06 0.05 0.06 1.66 2.81
Stress σ11 0.78 0.44 0.08 0.14 25.20 38.80
Stress σ22 0.19 0.55 0.08 0.06 25.34 38.17

(a) (b)

Fig. 5. Absolute error |WM − WFESDH| of the elastic potential W , with M ∈ {STEX, INEX, PARG, GOH, FESD}, for two
different values of the concentration parameter, b = 4 and b = −4

Table 2. Relative error (%) for the elastic potential W , in the equi-biaxial test (ζ = 1) and at λ = 1.3

b FESD INEX STEX PARG GOH

4 0.06 0.04 1.30 1.13 4.85
1 3.87 4.63 45.35 1.26 26.92
0 9.20 10.26 102.85 6.44 14.86
−1 14.99 16.45 163.98 12.49 29.02
−4 23.02 25.99 250.77 21.95 39.35

Table 3. Relative error (%) for the stress σ11, in the equi-biaxial test (ζ = 1) and at λ = 1.3

b FESD INEX STEX PARG GOH

4 0.0007 0.7728 3.5272 2.9521 6.9328
1 0.7915 1.2773 181.0450 6.5662 34.0420
0 3.0387 3.8109 552.9186 4.2988 41.0398
−1 7.6397 8.7854 1205.4554 2.3712 35.4135
−4 20.4896 22.8115 2664.3860 19.3050 13.5467

which the absolute error is assumed to be acceptable. Furthermore, for a given value of λ belonging to
this range, i.e. λ = 1.3, Tables 2 and 3 report the values of the relative error of the elastic potential and
the stress σ11 for varying concentration parameter b. In doing this, we take the FESDH method as the
term of comparison.

Clearly, the results obtained by using the FESD approach are by far the closest to the ones determined
by FESDH. This is because the two procedures differ from each other only by the presence of the Heaviside
step function. Thus, for situations in which almost all fibres are stretched, there is virtually no difference
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between FESD and FESDH. In contrast, when there is a substantial fraction of fibres that are not
stretched, the results obtained by employing the FESD deviate from those predicted by the FESDH.
Specifically, both the amplitude and the sense of the deviations depend on the stretch λ, concentration
parameter b and deformation mode ζ. For example, the FESD overestimates the values of W/c0 for ζ = 1
and b = −4 (cf. Fig. 2), while it underestimates them for ζ = 2 and b = −4 (cf. Fig. 4). Looking at Table 2,
we also notice that, in contrast to what happens for all other methods, the relative error pertaining to
INEX decreases with decreasing b, i.e. when the fibres tend to lie transversely to the symmetry axis.
We argue that this result is related to the fact that the INEX method does not select any particular
structure tensor for the Taylor expansion formula approximating the elastic potential. On the contrary,
since the STEX method necessitates to specify the structure tensor around which the Taylor expansion
formula is constructed, it produces a comparatively small absolute error (cf. Fig. 5a) when the fibres are
concentrated around a given direction (b = 4), while its accuracy deteriorates for decreasing b, i.e. when
the fibres tend to deviate from that direction.

We notice that, for b = 4, the INEX and PARG approximations are the closest to FESDH/FESD.
For the case of PARG, this may be due to the fact that this method does not substitute F̂1 with its
Taylor polynomial but, rather, it calculates an exact average of the polynomial argument of the fibre
constitutive function. Thus, the more the fibres are peaked around a given direction, the more accurate
the PARG method becomes. Looking at the columns of Tables 2 and 3 relative to the INEX and PARG
methods, we notice that the choice of the “optimal” approximation criterion is quite problem-dependent
(i.e. it depends on b). Consequently, there could be cases (e.g. in inhomogeneous problems, or if b changes
in time due to some sort of tissue remodelling) in which the approximation method has to be chosen
adaptively, thereby switching from one to the other in order to minimise the error. For completeness, we
mention that the relative errors associated with the stress σ11 are not monotonic functions of b for the
FESD and the PARG methods. A plausible explanation for this behaviour could be their capability of
resolving the fibre orientation with increasing dispersion (i.e. with b → −∞).

All the methods belonging to the class of approximations not calling for step-by-step integrations (such
as the algorithms based on the spherical designs) fail to be accurate after some “threshold” value of the
stretch that depends on the deformation mode (biaxial, equi-biaxial, etc.) as well as on the concentration
parameter associated with the chosen probability density distribution.

As is visible in the plots of the components of Cauchy stress, the main influence on the monotonicity
and convexity of the curves is given by the interplay between the concentration parameter, b, which
characterises the von Mises distribution, and the parameter ζ, which defines the deformation mode. In
particular, for ζ = 1 and ζ = 0.5, the stress curves lose convexity with decreasing b. Indeed, when the
deformation along the symmetry axis is greater than, or equal to, the deformation in the transverse plane,
on which the fibres tend to lie for decreasing b, the STEX method is the one that deviates the most from
the FESDH predictions, thereby introducing unphysical stiffnesses (cf. e.g. Figs. 2 and 3).

Moreover, a computation of the stress, e.g. σ11, shows that the summand of σ11 responsible for the
concavity in the stress curves is given by the Lagrange multiplier introduced to account for the incom-
pressibility constraint. To show that this is actually the case, we take as example the stress approximated
by means of the INEX method. Hereafter, for ease of demonstration, we write its expression only for the
Taylor expansion of the elastic potential up to the second order. In the figures, however, we show also
the stress for the case of an expansion up to the sixth order. By using the elastic potential (57), along
with (61a)–(61c) and arresting the Taylor expansion of Ŵ1(C,A) at the order n = 2, the approximated
expression of the constitutive part of the second Piola–Kirchhoff stress tensor reads

Sapp
c := 2

∂Ŵ

∂C
(C) = Φ0 c0 G−1 + Φ1 c1i G−1 + Sapp

1a , (67)

where [cf. (98)]

Sapp
1a = 2Φ1c1a[H2 : C − H1]. (68)
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Fig. 6. Normalised stresses and pressure for the INEX method: a order 2, b order 6

Because of the imposed incompressibility, the overall second Piola–Kirchhoff stress tensor is given by
Sapp = −pC−1 + Sapp

c , where p is the Lagrange multiplier (not coinciding with the pressure in the
present treatment) associated with the incompressibility constraint. Accordingly, for an equi-biaxial test
(i.e. when [C] = diag{λ2, λ2, λ−4}), the component σ11 of the Cauchy stress tensor becomes

σ11 = −p + (Φ0c0 + Φ1c1i)λ4 + σ11
1a, (69)

with σ11
c := (Φ0c0 + Φ1c1i)λ4 + σ11

1a being the constitutive part of σ11 and

σ11
1a = 2Φ1c1a

[
(H2)1111λ4 + (H2)1122λ4 + (H2)1133

1
λ2

− (H1)11λ2
]
. (70)

Plotting σ11 versus λ shows that σ11
c is a convex function of λ, whereas the negative of the Lagrange

multiplier, −p, is a concave function λ. Since σ11
c grows almost linearly for values of λ close to unity, the

composition σ11 = −p + σ11
c turns out to be non-convex. This is depicted in Fig. 6a, b, where the effect

of raising the order of the approximation is testified by the increasing curvature, for large enough values
of λ of the constitutive part of stress.

6. Summary and discussion

In a biological tissue (or industrial material) with a statistical distribution of reinforcing fibres, the effect
of the fibres on the overall constitutive function F̂ of a given physical quantity can be obtained by
integrating the fibre constitutive function F̂1, weighted by an orientation probability distribution, over
the set of all directions in space [cf. Eq. (7)]. The resulting integral, called fibre ensemble F̂e in this work
[cf. Eq. (8)], can in general only be evaluated numerically at each increment of deformation, since the
deformation (usually represented by the right Cauchy-Green deformation tensor C) cannot be factorised
out of the integral sign, except in the case in which F̂1 is expressed as a tensor-power polynomial in
the structure tensor A [19]. Even though the numerical integration of F̂e is flexible and can be made
very accurate, it is sometimes computationally expensive. Indeed, especially in time-dependent nonlinear
problems, it has to be “called” at each time step and at each iteration of some nonlinear solver, thereby
increasing computational costs. With the aim of containing these costs, we exploited polynomials to
achieve a single, direct integration of a given fibre constitutive function F̂1 and thus an approximation of
the corresponding fibre ensemble F̂e. We elaborated three methods: a Taylor expansion in the transversely
isotropic invariants (INEX method), which we presented in the case of functions of the fourth invariant
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I4 alone, but which can be seamlessly extended to functions including also the fifth invariant, I5; a Taylor
expansion in the structure tensor A about a given value A0 corresponding to a direction M0 (STEX
method); and, for the case of fibre constitutive functions F̂1 expressed as some function of a polynomial
P(C,A), the replacement of P(C,A) with its directional average (PARG method). The latter method is
similar to the GOH method proposed in [6]. We emphasise that our methods are not meant to replace the
step-by-step integration, which is considered to be the most accurate method to represent a constitutive
function expressed by the rule of mixtures, and was regarded as term of comparison to test the accuracy
of our approximations. Rather, our methods aim to offer alternative options to step-by-step integration
schemes, such as the FESD and the FESDH, since the direct integration of constitutive functions can
be performed before discretising the system in time and before starting any iterative scheme for solving
nonlinear problems.

We chose to test the proposed methods for the case of the elastic potential and the associated stress. We
compared the proposed methods to the “exact” integration, performed at each increment of deformation
by means of the method of the spherical designs [20,21,34], which we have called here FESD method,
as well as to the GOH method [6]. A calculation including the Heaviside function was made with the
method of the spherical designs (FESDH method) in order to eliminate the contribution of the fibres
in contraction and to estimate in which conditions counting also the fibres undergoing contraction is
acceptable.

As mentioned in Sect. 5, for most of the tested conditions, the INEX method (expansion in the
invariants) was the closest to the “rigourous” integration performed with FESDH/FESD method (fibre
ensemble evaluated by means of the method of the spherical designs, with or without the Heaviside
function to eliminate the fibres in contraction). What really distinguishes the INEX method from the
other ones is that its accuracy is weakly dependent on the distribution of the fibres (concentration
parameter b). Moreover, one could improve the accuracy of the approximation by simply computing a
higher-order expansion. In contrast, the accuracy of the other tested methods shows a clear dependence
on the distribution of the fibres, i.e. their accuracy is higher for high values of b and decreases, often
sensibly, as b becomes negative.

In conclusion, when implementing the fibre ensemble (Eq. (8)) arising from the rule of mixtures into
finite elements, the method of Taylor expansion in the invariants (INEX) constitutes a valid, computa-
tionally inexpensive, direct integration method, alternative to programming a complex user subroutine
that employs the method of the spherical designs to perform the directional averages at each increment of
deformation. The integrals Hp needed in the INEX method (Eqs. (27) and (35)) can be evaluated directly
(Eq. (13)) with a commercially available calculation package such as Mathematica (Wolfram Research,
Champaign, Illinois, USA), and then exported into a much simpler user subroutine to be used in the
finite element code. In fact, once the highest order 2n of the expansion is set, one can simply calculate
the corresponding tensor Hn and then obtain all tensors Hp of lower order 2 ≤ 2p < 2n by contracting
any n − p pairs of indices [31]. Moreover, for the case of the von Mises distribution, which is determined
univocally by the concentration parameter b, the tensors Hp can be exported as functions of b, which has
the obvious advantage of providing a function rather than an array of values. It is in our future plans to
develop similar methods for fibre-reinforced biological tissues seen as higher-gradient materials (see, e.g.
[51–53]).
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Appendix A. Continuum mechanics notation and definitions

The deformation χ maps material points X = (X1,X2,X3) in the reference configuration B into spatial
points x = (x1, x2, x3) in the physical space S. The deformation gradient F has components F a

A = χa
,A

and pushes-forward material vectors W with components WA into spatial vectors FW with compo-
nents F a

AWA. The inverse F −1 pulls-back spatial vectors w with components wa into material vectors
F −1w with components (F −1)A

a wa. The transpose FT pulls-back spatial covectors π with components
πa into material covectors FTπ with components (FT)A

a πa = F a
A πa. The inverse transpose F −T

pushes-forward material covectors Π with components ΠA into spatial covectors F −T Π with compo-
nents (F −T )a

AΠA = (F −1)A
aΠA. The determinant J = det F is called volume ratio and measures

volumetric deformation.
The reference configuration B and the physical space S are equipped with metric tensors G and g,

respectively, which define the scalar products of material and spatial vectors as 〈W ,Y 〉 = W .Y =
WGY = WAGABY B and 〈w,y〉 = w.y = wgy = wagab yb, respectively. The pull-back of the spa-
tial metric g is the right Cauchy-Green deformation tensor C = FTg F = FT.F , with components
(FT)A

a gab F b
B = F a

A gab F b
B . The pull-back of the inverse spatial metric g−1 is the Piola defor-

mation tensor B = F −1g−1F −T = F −1.F −T = C−1, with components (F −1)A
a gab(F −T )b

B =
(F −1)A

a gab(F −1)B
b. The difference between the pulled-back material metric C and the natural material

metric G, normalised by the coefficient 1/2, is the Green–Lagrange strain E = 1
2 (C − G).

Appendix B. Invariants of the deformation

Isotropy is the material symmetry defined as the invariance of a given physical quantity with respect to
the whole group of rotations [54]. For an isotropic material, the three scalar invariants of the deformation
are

I1 = tr (C) = G−1 : C, (71a)

I2 = 1
2 [(tr(C))2 − tr(C2)], (71b)

I3 = det(C). (71c)

Given a vector M , belonging to the material (or referential) unit sphere S
2B = {M : ‖M‖ = 1},

transverse isotropy with respect to the direction M is defined as the invariance under arbitrary rotations
about M . When the material properties do not depend on the sense of M , it is possible to introduce the
structure tensor A = M ⊗ M , which is invariant for inversions of M , i.e. transformations of the type
M �→ −M . For the case of transverse isotropy, two additional invariants are defined as a function of the
structure tensor A [55]:

I4 = C : A = MCM = (FM).(FM) = λ2
M , (72a)

I5 = C2 : A, (72b)

where λ2
M is the square of the stretch in direction M . By enforcing the volumetric–distortional decom-

position of C, i.e. C = J2/3C̄ (see Sect. 2.1), the invariants introduced in Eqs. (71a)–(72b) can be
rewritten as I1 = J2/3Ī1, I2 = J4/3Ī2, I3 = J2Ī3, I4 = J2/3Ī4, and I5 = J4/3Ī5, where the generic Īq,
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with q = 1, . . . , 5, is obtained by substituting C with C̄ in the expression of the corresponding invariant
Iq. Clearly, it holds that Ī3 = det C̄ = 1.

Appendix C. Hyperelasticity

An elastic material is called hyperelastic if the stress can be obtained by differentiation of a func-
tion, called elastic potential or elastic strain energy density, with respect to the conjugated measure
of strain/deformation. If the potential is given as a function W = Ŵ (C) of the right Cauchy-Green
deformation C, the second Piola–Kirchhoff stress is obtained as

S = 2
∂Ŵ

∂C
(C). (73)

The Cauchy stress is obtained by means of the forward Piola transformation

σ = J−1F S FT = J−1F

[
2
∂Ŵ

∂C
(C)

]
FT. (74)

If the material is incompressible, the kinematical constraint J = 1 of isochoric (i.e. volume-preserving)
motion must be enforced by means of the Lagrange multiplier p (which does not have the physical meaning
of hydrostatic pressure in this treatment), and the second Piola–Kirchhoff stress tensor is given by

S = −J pB + 2
∂Ŵ

∂C
(C), (75)

where B = C−1 is the Piola deformation tensor. To obtain the Cauchy stress σ, a forward Piola trans-
formation is performed on S, i.e.

σ = −p g−1 + J−1F

[
2
∂Ŵ

∂C
(C)

]
FT, (76)

where g−1 is the inverse spatial metric tensor, which plays the role of the “contravariant” identity tensor.

Appendix D. Admissible interval of I4 or Ī4
We want to prove that, under a deformation C, the admissible values of I4 = C : A belong to the
interval [λ2

min, λ
2
max], where λ2

min and λ2
max are the minimum and maximum eigenvalues of C, for every

A = M ⊗ M . The same holds for the case of the distortional part C̄ of the deformation, i.e. Ī4 ∈
[λ̄2

min, λ̄
2
max], where λ̄2

min and λ̄2
max are the minimum and maximum eigenvalues of C̄.

Let us consider the representation of the deformation C in terms of its eigenvalues,

[C] = [CAB ] = diag[λ2
1, λ2

2, λ2
3], (77)

Note that we can write the fourth invariant as

I4 = C : A = C : (M ⊗ M) = MCM = MA CABMB, (78)

from which we obtain the equation of an ellipsoid, with matrix [ 1
I4

CAB ] = diag[λ2
1

I4
,

λ2
2

I4
,

λ2
3

I4
], i.e.

MA
[

1
I4

CAB

]
MB = 1, ⇒ (M1)2

I4/λ2
1

+
(M2)2

I4/λ2
2

+
(M3)2

I4/λ2
3

= 1, (79)

and semi-axes given by
√

I4/λα. If we also impose the fact that M is a unit vector, we obtain

‖M‖2 = M .M = MGM = MAGABMB = 1. (80)
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Fig. 7. Graphical representation of the admissible values of I4: a minimum value of I4, b I4 ∈ Λ̊(C), c maximum value of
I4

Assuming Cartesian coordinates for simplicity of representation, we have that the matrix of the metric
tensor G reduces to the identity, i.e. GAB = δAB , and the equation above reduces to the equation of the
unit sphere

MAδABMB = 1, ⇒ (M1)2 + (M2)2 + (M3)2 = 1 (81)

The admissible values of I4 are those for which the ellipsoid and the sphere intersect, i.e. the system of
equations given by (79) and (81) admits a solution. Evidently, the minimum value of I4 is attained when
the major semi-axis of the ellipsoid (

√
I4/λmin) equals the radius of the sphere, i.e. I4 = λ2

min (Fig. 7a),
and the maximum value of I4 is attained when the minor semi-axis of the ellipsoid (

√
I4/λmax) equals

the radius of the sphere, i.e. I4 = λ2
max (Fig. 7c). For I4 ∈ Λ̊(C) =]λ2

min, λ
2
max[, the intersection of the

ellipsoid and the sphere is given by two symmetric curves (Fig. 7b).

Appendix E. Example of evaluation of the stress

In the INEX and STEX methods, our strategy for the evaluation of the stress was to first expand the
ensemble potential and then differentiate the Taylor-expanded potential with respect to the deformation.
This was aimed at minimising the number of integrals to be performed. As an example, let us look at
the evaluation of the stress for the INEX method, in which, if the incompressibility constraint J = 1 is
enforced, we have

We  Gn = Ĝn(C,Ψ) =
n∑

j=0

1
j!

∂(j)W̌1

∂Ī
(j)
4

(1, 1)
j∑

k=0

(
j

k

)
(−1)k

〈
C⊗(j−k)

∣∣∣Hj−k

〉
. (82)

The Cauchy stress is computed according to Eq. (76), in which J = 1 can be set, i.e.

σ = FSFT = −p g−1 + F

[
2
∂Ŵ

∂C
(C)

]
FT = −p g−1 + σc, (83)

where p is the Lagrange multiplier associated with the condition J = 1, and σc is the constitutive part
of σ (here, p is not the hydrostatic pressure, because σc need not be deviatoric in this formulation of
incompressible hyperelasticity). By using the elastic potential

Ŵ (C) = Φ0Ŵ0(C) + Φ1

∫

S2B

Ψ(M)Ŵ1(C,A), (84)
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σc can be written as

σc = F

[
2Φ0

∂Ŵ0

∂C
(C)

]
FT + F

⎡

⎣2Φ1

∫

S2B

Ψ(M)
∂Ŵ1

∂C
(C,A)

⎤

⎦FT

= F

[
2Φ0

∂Ŵ0

∂C
(C)

]
FT + F

[
2Φ1

∂Ŵe

∂C
(C)

]
FT, (85)

where Ŵe(C) =
∫

S2B
Ψ(M)Ŵ1(C,A) is the fibre ensemble elastic potential. Next, Ŵ1(C,A) is written as

the sum of an isotropic and an anisotropic contribution, i.e.

Ŵ1(C,A) = Ŵ1i(C) + Ŵ1a(C,A), (86)

and the fibre ensemble potential becomes

Ŵe(C) = Ŵ1i(C) +
∫

S2B

Ψ(M)Ŵ1a(C,A), (87)

so that σc takes on the form

σc = F

[
2Φ0

∂Ŵ0

∂C
(C) + 2Φ1

∂Ŵ1i

∂C
(C)

]
FT + F

⎡

⎣2Φ1

∫

S2B

Ψ(M)
∂Ŵ1a

∂C
(C,A)

⎤

⎦FT. (88)

The general formula (88) should now be specialised according to the approximation method that is
adopted. Since both Ŵ0(C) and Ŵ1i(C) contribute to σc in the same way for all methods (indeed, they
are independent of the direction of the fibres and thus need not be approximated by any of our methods),
we can restrict our calculations by focusing on the anisotropic stress contribution of the fibres only, i.e.

σ1a := F

⎡

⎣2Φ1

∫

S2B

Ψ(M)
∂Ŵ1a

∂C
(C,A)

⎤

⎦FT. (89)

Moreover, since the averaging integral in (89) pertains only to the partial second Piola–Kirchhoff stress
tensor

S1a := 2Φ1

∫

S2B

Ψ(M)
∂Ŵ1a

∂C
(C,A), (90)

it suffices for our purposes to provide, for each of the four proposed approximation methods, the corre-
sponding approximated expression of S1a, which we denote by Sapp

1a . The stress S1a computed according
to the FESDH method shall be regarded as “exact”.

We recall that, for the FESDH method, Ŵ1a(C,A) = H(C : A − 1)Ŵ1b(C,A), and S1a is given by

S1a = 2Φ1

∫

S2B

Ψ(M)H(C : A − 1)
∂Ŵ1b

∂C
(C,A). (91)

In the FESD, INEX, PARG and STEX methods, we do not premultiply Ŵ1b by the Heaviside function,
so that Ŵ1a(C,A) ≡ Ŵ1b(C,A) holds true. Thus, with reference to the FESD approximation, Sapp

1a is
given by

Sapp
1a = 2Φ1

∫

S2B

Ψ(M)
∂Ŵ1a

∂C
(C,A) = 2Φ1

∂

∂C

∫

S2B

Ψ(M)Ŵ1a(C,A). (92)
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For the INEX method, we approximate
∫

S2B
Ψ(M)Ŵ1a(C,A) as

∫

S2B

Ψ(M)Ŵ1a(C,A) 
n∑

j=0

1
j!

∂(j)W̌1a

∂Ī
(j)
4

(1, 1)
j∑

k=0

(
j

k

)
(−1)k

〈
C⊗(j−k)

∣∣∣Hj−k

〉
. (93)

Consequently, Sapp
1a reads

Sapp
1a = 2Φ1

n∑

j=1

1
j!

∂(j)W̌1a

∂Ī
(j)
4

(1, 1)
j−1∑

k=0

(
j

k

)
(−1)k ∂

∂C

〈
C⊗(j−k)

∣∣∣Hj−k

〉
, (94)

and one has to compute the derivative

T :
(

∂

∂C

〈
C⊗�

∣∣∣H�

〉)
= � 〈H�|T ⊗ C⊗(�−1)〉, � ∈ N, � ≥ 1, n ≥ 1, (95)

where T is an arbitrary “covariant” second-order tensor. This result can be proven by invoking the fact
that, at least in the case of transverse isotropy, H� is fully symmetric for every �, and noticing that (we
show the explicit index calculation only for � = 1, 2):

∂

∂CRS

〈
C⊗1

∣∣∣H1

〉
=

∂

∂CRS

(
CMN (H1)MN

)
= (IT)MN

RS(H1)MN = (H1)RS , (96)

∂

∂CRS

〈
C⊗2

∣∣∣H2

〉
=

∂

∂CRS

(
CMNCPQ(H2)MNPQ

)

= (IT)MN
RSCPQ(H2)MNPQ + CMN (IT)PQ

RS(H2)MNPQ

= 2(H2)RSABCAB . (97)

Therefore, we obtain (again with the help of an arbitrary “covariant” second-order tensor T )

T : Sapp
1a = 2Φ1

n∑

j=1

1
j!

∂(j)W̌1a

∂Ī
(j)
4

(1, 1)
j−1∑

k=0

(
j

k

)
(−1)k (j − k)

〈
Hj−k

∣∣∣T ⊗ C⊗(j−k−1)
〉

. (98)

For the PARG method, we write Ŵ1a(C,A) = f(P(C,A)), where f is any differentiable function of its
argument, and P(C,A) is a tensor-power polynomial. Then, we enforce the approximation

∫

S2B

Ψ(M)Ŵ1a(C,A) =
∫

S2B

Ψ(M)f (P(C,A))  f

⎛

⎝
∫

S2B

Ψ(M)P(C,A)

⎞

⎠ . (99)

and Sapp
1a becomes

Sapp
1a =2Φ1 f

′

⎛

⎝
∫

S2B

Ψ(M)P(C,A)

⎞

⎠

⎛

⎝ ∂

∂C

∫

S2B

Ψ(M)P(C,A)

⎞

⎠ . (100)

In the specific case in which

f(P(C,A)) = 1
2c1a [exp (P(C,A)) − 1] and P(C,A) = (〈C|A〉 − 1)2 ,

so that
∫

S2B

Ψ(M)P(C,A) = 〈C⊗2|H2〉 − 2〈C|H1〉 + 1, (101)
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we obtain

Sapp
1a = Φ1c1a exp

⎛

⎝
∫

S2B

Ψ(M)P(C,A)

⎞

⎠

⎛

⎝ ∂

∂C

∫

S2B

Ψ(M)P(C,A)

⎞

⎠

= Φ1c1a exp
(
〈C⊗2|H2〉 − 2〈C|H1〉 + 1

)
(2H2 : C − 2H1) . (102)

Finally, for the STEX method, if T is an arbitrary “covariant” second-order tensor, we have

T : Sapp
1a = T : 2Φ1

∂Ŵ1a

∂C
(C,A)

+ 2Φ1

n∑

j=1

〈
1
j!

∂(j+1)Ŵ1a

∂A(j)∂C
(C,A0)

∣∣∣∣∣T ⊗
j∑

k=0

[
(−1)k

(
j

k

)
msym

(
Hj−k ⊗ A⊗k

0

)]〉
. (103)
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