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Abstract. The authors investigate the linear vibrations induced in an elastic string by a loading point-like mass constrained to
moving on it with constant horizontal velocity. Exact solutions are shown in the case of subsonic regime. The displacement
is explicitly provided in terms of a power series determined by iteration, which is shown to converge to the solution of
the problem. The presence of a discontinuity in the right extremum of the considered space interval is also shown both
analytically and numerically.
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1. Introduction

The present paper deals with the analysis of linear vibrations induced in an elastic string by a loading
point-like mass moving on it having a constant component of the velocity parallel to the reference con-
figuration of the string. Problems of this kind are common to a wide field of engineering applications and
significant literature exist on this topic (see e.g., [29,30,34,37,53]; a useful introduction to the problem
is [57], while experimental results are provided in [8]). Despite the great amount of studies devoted to
this theme, there are still some related mathematical questions not completely defined in the available
literature. This state of affairs might perhaps be due to scarcity of concrete examples of exact solutions
to which compare the available numerical results.

The aim of this work is to exhibit an example of exact solutions in the case of the so-called subsonic
regime; more precisely, the situation when the speed of the traveling mass is less than the string celerity.

In [30], the authors study a similar problem by means of Fourier transforms, the paradox cited in
the title of their paper is related to the fact that the problem presented in the paper is not well posed,
since the solution cannot respect all the imposed conditions; in fact, the authors find a solution with a
discontinuity at the end of the string. Also in [34] the authors, obtaining the equations governing the
system by means of variational methods, discuss about the nonwellposedness of the problem and find a
numerical solution.

In [37], the authors consider the same problem, starting from a different point of view, i.e., considering
explicitly in the motion equation of the mass, a term related to the moving contact force p(t) between
the mass and the string. This force, being an internal force of the system, is not explicitly present in the
variational formulation proposed in [34]. The authors of [37] consider strings of finite, semi-infinite and
infinite length and devote most of the paper to the determination of the explicit form of p(t), obtaining
the expressions for the displacements only as a consequence of the ones for p(t).

In this paper, we will directly address the problem of finding the expression of the displacement, given
in terms of a power series (see [35] and also the classical reference [69]), which is shown to converge to
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the solution of the problem. Moreover, we also show analytically and numerically the presence of the
discontinuity in the right extremum of the considered space interval.

The physical model and the governing equations which are here assumed are those described in [34].
The key points and notations of that paper are shortly recalled for convenience of the reader.

The taut string has length L, mass per-unit length m, is subjected to an axial prestress force N and
is traveled by a single-point mass M , bilaterally constrained to the string, and moving at a constant
horizontal velocity U . Denoting x̄(t) the known instantaneous abscissa of M at time t, the resulting
vertical string displacement at the same time t is thereafter denoted by v+(x, t) (v−(x, t)) for points
having abscissa x greater (less) than x̄(t), respectively. The orientation of z = v±(x, t) is assumed to be
in accordance with the convention that positive displacements correspond to displacements in the upward
direction. The governing equations are obtained by the authors by means of variational techniques, i.e.,
imposing that the action functional of the system vanishes and deriving the Euler–Lagrange equations (see
Eqs. (1–5) in [34]). The final strong formulation leads to the following initial boundary value problem
(see 1 below) which also includes matching and jump conditions, for the displacement and its spatial
derivative, respectively, along the straight line x = x̄(t) = Ut.

Π1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mv−
tt(x, t) − Nv−

xx(x, t) = 0, in D−

mv+
tt(x, t) − Nv+

xx(x, t) = 0, in D+

(N − mU2)[[vx]] = Mg + M(v−
tt + 2Uv−

xt + U2v−
xx), for x = x̄(t), t ∈ (

0, L
U

)

[[v]] = 0, in x = x̄(t), ∀t ∈ (
0, L

U

)

v−(0, t) = v+(L, t) = 0, ∀t ∈ [
0, L

U

]

v+(x, 0) = 0, ∀x ∈ [0, L]
v+
t (x, 0) = 0, ∀x ∈ [0, L]

(1)

where the sets D− and D+ are defined by D− = {(x, t) : t ∈ (
0, L

U

)
, x ∈ (0, x̄(t))} and D+ = {(x, t) :

t ∈ (
0, L

U

)
, x ∈ (x̄(t), L)}, respectively. Moreover, for any function ϕ(x, t) the jump along the line

x = x̄(t) = Ut is given by
[[ϕ(x̄(t), t)]] = ϕ+(Ut, t) − ϕ−(Ut, t). (2)

The assumption of null initial conditions v+(x, 0), v+
t (x, 0) is not a real limitation since, by addition

of regular solutions to the one found out here, one could treat the case of arbitrary initial data.
Following [34], the equations of system (1) are first of all recast in a dimensionless form

x̃ =
x

L
; t̃ =

1
L

√
N

m
t; ṽ =

v

L
; Ũ =

√
m

N
U ; μ =

M

mL
; p =

Mg

N
; (3)

where
N

m
is the celerity of the mass, μ is the mass ratio, Ũ is the dimensionless velocity of the mass M ,

equal to the ratio between the mass velocity and the celerity of the taut string, p is the dimensionless
load, equal to the ratio of the weight of the traveling mass and the prestress force N .

However, for the sake of simplicity, we will discard the symbol ˜ on the variables; thus, the system
takes the following final form

Π2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v−
tt(x, t) − v−

xx(x, t) = 0, in D−

v+
tt(x, t) − v+

xx(x, t) = 0, in D+

(1 − U2)[[vx]] = p + μ(v−
tt + 2Uv−

xt + U2v−
xx), in x = Ut

[[v]] = 0, in x = Ut

v−(0, t) = v+(1, t) = 0, ∀t ∈ [
0, 1

U

]

v+(x, 0) = 0, ∀x ∈ [0, 1]
v+
t (x, 0) = 0, ∀x ∈ [0, 1]

(4)
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where D− = {(x, t) : t ∈
(

0,
1
U

)

, x ∈ (0, x̄(t))} and D+ = {(x, t) : t ∈
(

0,
1
U

)

, x ∈ (x̄(t), 1)}.

According to these last formulas, the condition characterizing the subsonic case is expressed by the
inequality U < 1. In [34] the supersonic case is considered, too, but it will not be discussed here, because
it is less interesting, from a mathematical point of view, since the mass always precedes the string
movements.

In our paper, for problem (1), we will exhibit a solution only in the subsonic case U = 0.5, because,
as shown in Fig. 1, in this case, differently from the construction of the solution in D+, which in any case
needs an infinite partition in subdomains, the construction of the solution in D− needs a much simpler
geometry. Changing the value of U implies just a more complex geometry of D−, which however does
not imply any theoretical complication concerning the technique used in this paper.

The paper has the following structure: In Sect. 2, we approach the problem dividing the domain
D = D+ ∪ D− into several subdomains, depending on the characteristic lines of the equation governing
the system. We determine a function H, which describes the behavior of the solution along the line
x = Ut, and we expand H in series with respect to the time t. Since the line x = Ut is divided by the
characteristic lines into infinite segments, whose endpoins tend to the limit point Plim = (1, 1/U), in
Sect. 3, we build H by means of the solutions of an infinite sequence of problems along the line x = Ut.
This approach implies that the solution, as expected, cannot a priori satisfy any condition in Plim. In
Sect. 4, we will show some numerical simulations which describe the shape of the solution and confirm the
presence of a discontinuity at the endpoint Plim. In Sect. 5, some remarks are added, and the potential
relevance of the presented results for related fields is discussed.

2. Setting of the problem with U = 0.5 (a special subsonic case)

In order to find the solution to problem (4), it is convenient to introduce a decomposition of the domains
D+ and D− in collections of sub-domains D±

j , which share parts of their boundaries with the boundary
of D. This partition is obtained as illustrated in Fig. 1. Other parts of their boundaries consist either of
pieces of the characteristic blue straight lines x − t = constant, of the characteristic green straight lines
x + t = constant, or of pieces of the red straight line x = Ut.

We begin by considering, on the straight line x = Ut, the sequence of points {Ωj}j=0,1,2... given by:

Ω0 = (0, 0), Ωj =
(

2U(1 − λj)
(1 + U)(1 − λ)

,
2(1 − λj)

(1 + U)(1 − λ)

)

∀j ∈ N, λ =
1 − U

1 + U
(5)

whose time coordinates are, respectively, denoted by

t0 = t(Ω0) = 0, tj = t(Ωj) =
2(1 − λj)

(1 + U)(1 − λ)
for j = 1, 2 . . . (6)

Let us observe that, in the subsonic case, λ < 1.
The points Ωj can also be characterized in the following way

Ωj =

(

(1 − λ)
j−1∑

k=0

λk , (1 + λ)
j−1∑

k=0

λk

)

=
(

(1 − λj) ,
1 + λ

1 − λ
(1 − λj)

)

=
(

(1 − λj),
1
U

(1 − λj)
)

(7)

which implies the recursive formula tj−1 =
tj(1 + U) − 2

1 − U
, recalling that

1 − λ

1 + λ
= U ; 1 − λ =

2U

1 + U
; 1 + λ =

2
1 + U

. (8)
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D4
+

Q1=(0, 2)

Fig. 1. Scheme of the division of the space-time domain D in subdomains. The subset D+ is divided in infinitely many
subdomains (in figure 5 of them are shown)

It is easily seen that
[

0,
1
U

)

=
∞⋃

j=0

[tj , tj+1] (9)

where any couple of intervals Ij = [tj , tj+1], Ik = [tk, tk+1] has non-void intersection only in the case of
consecutive intervals, in which case, the intersection reduces to the point where the preceding interval
ends and the successive begins. It is also convenient to consider the sequence of the points Pj of the
vertical boundary x = 1, given by

P1 = (1, 1); Pj = (1, 1 + tj−1(1 − U)) =

(

1, 1 + 2λ

j−2∑

k=0

λk

)

j ≥ 2. (10)

Here, the generic point Pj is the intersection of the vertical line x = 1 with the characteristic line
x − Utj−1 − t + tj−1 = 0 issuing from Ωj−1, while the generic point Ωj is the intersection of x = Ut with
the characteristic line x − 1 + t − t(Pj) = 0 issuing from Pj .

By means of these sets of points, we partition the domains D+ and D− according to the following
formulas

D+ =
∞⋃

j=0

D+
j (11)

with

D+
0 = {(x, t) : t � x � 1, 0 � t � 1}

D+
1 = {(x, t) : Ut � x � t, 0 � t � t(P1)} ∪ {(x, t) : Ut � x � 1 + t(P1) − t, t(P1) � t � t1}

D+
2 = {(x, t) : Ut1 � x � 1, 1 + t(P1) − x � t � x + t1(1 − U)}

D+
2j−1 = {(x, t) : Ut � x � t + 1 − t(Pj), tj−1 � t � t(Pj)}

∪{(x, t) : Ut � x � 1 + t(Pj) − t, t(Pj) � t � tj}, for j � 2
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D+
2j = {(x, t) : Utj � x � 1, t(Pj) + 1 − x � t � tj(1 − U) + x}, for j � 2

D− =
∞⋃

j=1

D−
j (12)

with

D−
1 = {(x, t) ∈ D− : t + x � 1 + t(P1)}

D−
j = {(x, t) ∈ D− : 1 + t(Pj) � x + t � 1 + t(Pj+1)} for j = 2, 3, . . .

It must be remarked that, in Fig. 1, the characteristic line P1Ω1, with equation t + x = 2, intersects
the line x = 0 in the point Q1 = (0, 2).When we consider the case U = 0.5, since the line x = Ut ends in
the point P∞ = (1, 2), in order to study the problem, it is sufficient to divide the domain D− into two
parts, D−

1 and D−
2 . Thus, the study of the case U = 0.5 simplifies the analysis of the problem. Nothing

would substantially change in the geometry of D+ and D− if we would consider 0.5 < U < 1, while values
of U < 0.5 would imply a more complicated partition of D−, just from a technical point of view, without
adding any new theoretical issue about the technique for finding the solution on D−. This justifies our
choice of considering only the case U = 0.5, in order to show the mathematical approach to the explicit
solution.

Finally, on the line x = Ut, we introduce the notations:

H(t) = v+(Ut, t) = v−(Ut, t), t ∈ [t0, t∞) =
[

0,
1
U

)

(13)

H0(t) = H(t) if t ∈ [0, t1] (14)

Hj(t) = H(t) if t ∈ [tj , tj+1] (15)

It is also useful to introduce the two functions

V (x, t) = vt(x, t) − vx(x, t) and W (x, t) = vt(x, t) + vx(x, t) (16)

which are constant along the lines x− t = const, x+ t = const, respectively. Concerning their restrictions
to the sets D+ and D−, we use the notations

V ±(x, t) = v±
t (x, t) − v±

x (x, t) (17)

W±(x, t) = v±
t (x, t) + v±

x (x, t) (18)

Further distinctions can be introduced, when necessary, such as for instance

V ±
j (x, t) = restriction of V ±(x, t) to the set D±

j (19)

W±
j (x, t) = restriction of W±(x, t) to the set D±

j (20)

It is easy to show that

Ḣ(t) = v+
x (Ut, t) + v+

t (Ut, t) = v−
x (Ut, t) + v−

t (Ut, t)

Ḧ(t) = U2v+
xx(Ut, t) + 2Uv−

xt(Ut, t) + v−
xx(Ut, t) (21)

where ˙ denotes the total derivative of H with respect to t.
Thanks to Eq. (13) and the Hadamard conditions in (1), the equations expressing the jump of the

partial derivatives and, consequently, of the functions V ±(Ut, t), W±(Ut, t) can be written as follows:

v−
x (Ut, t) = v+

x (Ut, t) −
[

p

1 − U2
+

μ

1 − U2
Ḧ(t)

]

(22)

v−
t (Ut, t) = v+

t (Ut, t) + U

[
p

1 − U2
+

μ

1 − U2
Ḧ(t)

]

(23)
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or, equivalently:

V −(Ut, t) = V +(Ut, t) +
p

1 − U
+

μ

1 − U
Ḧ(t) (24)

W−(Ut, t) = W+(Ut, t) − p

1 + U
− μ

1 + U
Ḧ(t). (25)

It is evident that the solution of our problem is achieved once one finds the function H(t) = v(Ut, t). In
order to determine the function H(t), we now state and prove the following lemma.

Lemma 2.1. Let us consider the sequence of real numbers bk recursively defined by

b2 = − p

2μ
, bk+1 = − 2bk

μ(k + 1)

[

1 −
(

1 − U

1 + U

)k
]−1

for k � 2 (26)

Then the series
∞∑

k=2

bkt
k has radius of convergence +∞, and the function

G(t) =
∞∑

k=2

bkt
k (27)

which belongs to C∞(0,+∞), solves, all over this interval, the following retarded initial value differential
problem:

U p t

1 − U2
+ G

(
t

1 − U

)

− μ

2
Ġ

(
t

1 + U

)

+
μ

2
Ġ

(
t

1 − U

)

= 0 (28)

G(0) = 0, Ġ(0) = 0 (29)

Moreover, G(t) is the unique solution, analytic in a right neighborhood of t = 0.

Proof. From the recursive formula, it is easily seen that lim
k→∞

|bk+1|
|bk| = 0 and thus, our series has infinite

radius of convergence. Furthermore, the left hand side of (28), with G(t) given by (27), takes the form:

U p t

1 − U2
+ b2

t2

(1 − U)2
+ b3

t3

(1 − U)3
+ b4

t4

(1 − U)4
+ . . .

+
[

−μ

2

(

2b2
t

1 + U
+ 3b3

t2

(1 + U)2
+ 4b4

t3

(1 + U)3
+ . . .

)

+
μ

2

(

2b2
t

1 − U
+ 3b3

t2

(1 − U)2
+ 4b4

t3

(1 − U)3
+ . . .

)]

(30)

that means

t

(
U p

1 − U2
+ μ

2U b2
1 − U2

)

+ t2
(

b2
(1 − U)2

− μ

2
3b3

(1 + U)2
+

μ

2
3b3

(1 − U)2

)

+ . . .

+ tk
(

bk
(1 − U)k

− μ

2
(k + 1)bk+1

(1 + U)k
+

μ

2
(k + 1)bk+1

(1 − U)k

)

+ . . . (31)

All the coefficients of this power series are equal to zero if bk satisfy the recursive formula (26), while the
conditions G(0) = Ġ(0) = 0 are evidently fulfilled by the function (27). Thus, the proof that G(t) solves
problem (28) and (29) is achieved. The uniqueness is easily checked by showing that for any solution of
problem (28) and (29) which is the sum of a series

∑∞
k=2 ckt

k, necessarily the ck coincide with the bk
of (26). �



ZAMP An explicit solution for the dynamics of a taut string Page 7 of 17 108

Remark 2.1. Let us remark that in (28) G is computed in two different times, before and after t, respec-
tively. This will be further clarified in the following Section, where the solution is built step-by-step by
means of the functions V ±

j (x, t) and W±
j (x, t).

3. Construction of the approximating power series

Let us now go to our main goal and try to define the solution v±
j (x, t) for each of the domains D±

j . At
first, we will find the corresponding expressions of the functions V ±

j (x, t) and W±
j (x, t) which will in

turn give the gradient of v±
j (x, t). Due to the fact that all the domains D±

j are simply connected, the
further knowledge of the values of v±

j (x, t) provided by the initial (boundary) conditions will determine
the solution in a unique manner wherever needed.

To begin with, let us remark that the homogeneous initial conditions uniquely determine the functions
V +
0 (x, t) and W+

0 (x, t) inside the domain D+
0 . Thus

In D+
0

V +
0 (x, t) = 0, W+

0 (x, t) = 0. (32)
Furthermore, recalling the meaning of these two functions (see Eq. (16)), we obtain:

In D+
1

V +
1 (x, t) =

2
1 − U

Ḣ0

(
t − x

1 − U

)

, W+
1 (x, t) = 0 (33)

With the aid of this formula, system (22), (23) assumes the following form, in which the first
equation is unchanged:

v−
x (Ut, t) = v+

x (Ut, t) −
[

p

1 − U2
+

μ

1 − U2
Ḧ(t)

]

(34)

v−
t (Ut, t) =

1
1 − U

Ḣ(t) + U

[
p

1 − U2
+

μ

1 − U2
Ḧ(t)

]

. (35)

Recalling the identities

V −(x, t) = V −
(

U
t − x

1 − U
,

t − x

1 − U

)

; W−(x, t) = W−
(

U
t + x

1 + U
,

t + x

1 + U

)

(36)

and formulas (17), (18), one deduces that
In D−

1

v−
t (x, t) =

U p

1 − U2
+

1
1 − U

Ḣ0

(
t − x

1 − U

)

− μ

2(1 + U)
Ḧ0

(
x + t

1 + U

)

+
μ

2(1 − U)
Ḧ0

(
t − x

1 − U

)

v−
x (x, t) = − p

1 − U2
− 1

1 − U
Ḣ0

(
t − x

1 − U

)

− μ

2(1 + U)
Ḧ0

(
x + t

1 + U

)

− μ

2(1 − U)
Ḧ0

(
t − x

1 − U

)

(37)

Identities (37) are due to the fact that V − (resp. W−) is constant along the lines t − x = constant (resp.
t + x = constant). By integrating the linear differential form naturally associated with these last two
equations and recalling that v(Ut, t) = H0(t), ∀t ∈ [0, t1], we obtain:

v−(x, t) = p

(
Ut − x

1 − U2

)

+ H0

(
t − x

1 − U

)

− μ

2
Ḣ0

(
x + t

1 + U

)

+
μ

2
Ḣ0

(
t − x

1 − U

)

(38)
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Finally, thanks to the boundary condition v(0, t) = v−(0, t) = 0, and together with Lemma 2.1, it is seen
that H0(t) is the solution, all over [0,∞), of the problem

p Ut

1 − U2
+ H0

(
t

1 − U

)

− μ

2
Ḣ0

(
t

1 + U

)

+
μ

2
Ḣ0

(
t

1 − U

)

= 0 (39)

H0(0) = 0, Ḣ0(0) = 0 (40)

Thus, (see Lemma 2.1) (assuming analyticity for H0) one has

H0(t) = G(t) =
∞∑

k=0

bkt
k, ∀t ∈ [0, t1] (41)

where the bk are provided by (26).
The passage from (38) to (39) explains the meaning of the retarded Eq. (28): the values of G (or,

equivalently, H0) for all times in [0, t1] are strictly related to v−(x, t), which is completely determined on
D−

1 .
Similar considerations will be made for what concerns the following intervals [tj−1, tj ]
We now have to find out, for each j, the solution Hj(t) relative to the interval [tj−1, tj ]. To this end,

we proceed step-by-step for the various domains D+
j . In this analysis, the following Lemmas 3.1 and 3.2

will turn out of some utility.

Lemma 3.1. The function H0(t), solution of (39), satisfies the identity:

2 p U2

1 − U2
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

− μ

2
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

2

(
1 + U

1 − U

)

Ḧ0

(
t(1 + U) − 2

1 − U

)

= − p U

1 + U
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

−
(

1 + U

1 − U

)

Ḣ0

(
t(1 + U) − 2

1 − U

)

Proof. This identity is evidently equivalent to

p U

1 − U
− μ

2
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

2

(
1 + U

1 − U

)

Ḧ0

(
t(1 + U) − 2

1 − U

)

+
(

1 + U

1 − U

)

Ḣ0

(
t(1 + U) − 2

1 − U

)

= 0 (42)

The left hand side of Eq. (42) is obtained by differentiating the left hand side of Eq. (39) and then
substituting t with t(1 + U) − 2. Therefore, Eqs. (42) is fulfilled and the theorem is proven. �

Lemma 3.2. The function V −(Ut, t) is completely determined all over
[

0,
1
U

)

by the knowledge of H0(t),

∀t ∈ [0, t1].

Proof. Thanks to Eqs. (33) and (41) it is enough to consider the ‘remaining’ time interval
[

t1,
1
U

)

. Due

to the properties of the function V (x, t) and the condition v−(0, t) = 0, we have:

V −(Ut, t) = V −(0, (1 − U)t) = −W−(0, (1 − U)t), ∀t ∈
[

0,
1
U

)

(43)

Moreover, the jump condition (25) with the second of Eqs. (33) and (20) give

V −(Ut, t) = −W−(0, (1 − U)t) =
p

1 + U
+

μ

1 + U
Ḧ0

(
t(1 − U)
1 + U

)

(44)
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where, recalling that U = 0.5,

0 <
t(1 − U)
1 + U

<
2

1 + U
= t1, ∀t ∈

[

t1,
1
U

)

(45)

�

At this point, we are in the position of computing, for each j, the functions V +
j (Ut, t) and W+

j (Ut, t),
which, together with the jump and boundary conditions, lead to a set of ordinary differential equations
whose solution determines the function Hj(t).

Here are the steps of the needed algorithm:

V +
2j−1(Ut, t) = − 2U p

1 − U2
+

μ

1 + U
Ḧ0

(
t(1 − U)
1 + U

)

− μ

1 − U
Ḧj(t), for j = 1, 2, 3, . . . (46)

V +
0 (1, t) = − 2U p

1 − U2
+

μ

1 + U
Ḧ0

(
t − 1
1 + U

)

− μ

1 − U
Ḧ0

(
t − 1
1 − U

)

(47)

V +
2j (1, t) = − 2U p

1 − U2
+

μ

1 + U
Ḧ0

(
t − 1
1 + U

)

− μ

1 − U
Ḧj

(
t − 1
1 − U

)

, for j = 1, 2, 3, . . . (48)

W+
1 (1, t(P1)) = −V +

0 (1, t(P1)) (49)

W+
2j−1(1, t(Pj)) = −V +

2j−2(1, t(Pj)) (50)

W+
2j−1(x, t) =

2U p

1 − U2
− μ

1 + U
Ḧ0

(
t + x − 2

1 + U

)

+
μ

1 − U
Ḧj−1

(
t + x − 2

1 − U

)

, for j = 1, 2, 3, . . . (51)

W+
1 (Ut, t) =

2U p

1 − U2
− μ

1 + U
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

1 − U
Ḧ0

(
t(1 + U) − 2

1 − U

)

(52)

W+
2j−1(Ut, t) =

2U p

1 − U2
− μ

1 + U
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

1 − U
Ḧj−1

(
t(1 + U) − 2

1 − U

)

, for j = 2, 3, . . . (53)

The functions V +
j (Ut, t), W+

j (Ut, t) (see Eqs. (46) and (53)) and the following identities:

Ḣj(t) =
[

∂

∂t
v+
2j−1(x, t) + U

∂

∂x
v+
2j−1(x, t)

]

x=Ut

(54)

∂

∂t
v+
j (x, t) =

1
2

[
V +
j (x, t) + W+

j (x, t)
]

∂

∂x
v+
j (x, t) =

1
2

[
W+

j (x, t) − V +
j (x, t)

]
(55)

lead to

Ḣj(t) =
(

1 − U

2

)

V +
2j−1(Ut, t) +

(
1 + U

2

)

W+
2j−1(Ut, t) (56)

and then to the linear second order ordinary differential equation

μ

2
Ḧj(t) + Ḣj(t) =

2 p U2

1 − U2
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

(57)

− μ

2
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

2

(
1 + U

1 − U

)

Ḧj−1

(
t(1 + U) − 2

1 − U

)

. (58)



108 Page 10 of 17 A. Maria Bersani, A. Della Corte, G. Piccardo and N. L. Rizzi ZAMP

Now, we seek the solution of Eq. (57) which satisfies the Cauchy conditions

Hj(tj) = Hj−1(tj), Ḣj(tj) = Ḣj−1(tj) (59)

Note that ∀t ∈ [tj , tj+1] the right hand side of Eq. (57) is a known quantity.
Thus, thanks to a notation of the kind:

F 0
j−1(t) =

2 p U2

1 − U2
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

− μ

2
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

2

(
1 + U

1 − U

)

Ḧj−1

(
t(1 + U) − 2

1 − U

)

(60)

the explicit form of the solution to (57) and (59) can be written as

Hj(t) = Hj−1(tj) +

t∫

tj

s∫

tj

e
µ
2 (s−t)

[
F 0
j−1(s) + Hj−1(tj) + Ḣj−1(tj)

]
dsdt. (61)

However, a more relevant point is provided by the following lemma.

Lemma 3.3. The function Hj(t) which solves the Cauchy problem (57) and (59) satisfies the further
condition

Ḧj(tj) = Ḧj−1(tj) (62)

Proof. The proof is obtained via mathematical induction.
In the case j = 1 the equality (62) has the form:

Ḧ1(t1) = Ḧ0(t1) (63)

and Eq. (57) is

μ

2
Ḧ1(t) + Ḣ1(t) =

2 p U2

1 − U2
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

− μ

2
Ḧ0

(
t(1 + U) − 2

1 + U

)

+
μ

2

(
1 + U

1 − U

)

Ḧ0

(
t(1 + U) − 2

1 − U

)

(64)

which, thanks to Lemma 3.1, has the equivalent form:
μ

2
Ḧ1(t) + Ḣ1(t) = − p U

1 + U
+

μ

2

(
1 − U

1 + U

)

Ḧ0

(
t(1 − U)
1 + U

)

−
(

1 + U

1 − U

)

Ḣ0

(
t(1 + U) − 2

1 − U

)

(65)

Furthermore, differentiating Eq. (39) and multiplying by (1 − U) one obtains:

p U

1 + U
+ Ḣ0

(
t

1 − U

)

− μ

2

(
1 − U

1 + U

)

Ḧ0

(
t

1 + U

)

+
μ

2
Ḧ0

(
t

1 − U

)

= 0 (66)

which in turn, for t = 2λ = 2
(

1 − U

1 + U

)

gives

μ

2
Ḧ0

(
2

1 + U

)

= − p U

1 + U
− Ḣ0

(
2

1 + U

)

+
μ

2

(
1 − U

1 + U

)

Ḧ0

(
2

1 + U
λ

)

(67)

Furthermore, by computing Eq. (65) in t = t1 = 2
1+U , and recalling that Ḣ0(0) = 0, one obtains:

μ

2
Ḧ1

(
2

1 + U

)

= − p U

1 + U
− Ḣ1

(
2

1 + U

)

+
μ

2

(
1 − U

1 + U

)

Ḧ0

(
2

1 + U
λ

)

(68)

From (67) and (68), thanks to the hypothesis Ḣ1

(
2

1+U

)
= Ḣ0

(
2

1+U

)
, we find that

Ḧ1

(
2

1 + U

)

= Ḧ0

(
2

1 + U

)

(69)
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that is (62) with t = t1. Now, we have to show that, if the equality Ḧj−1(tj−1) = Ḧj−2(tj−1) is satisfied
by the corresponding solutions Hj−2(t) and Hj−1(t), then the equality Ḧj(tj) = Ḧj−1(tj) is satisfied by
the solutions Hj−1(t) and Hj(t).

This is achieved by considering a pair of formulas of the type (57), (59) corresponding to the pair of
consecutive indices j − 1, j evaluated at the point t = tj , and then subtracting the first from the second
one (concerning the correctness of this procedure see Remark 3.1 below):

μ

2

(
Ḧj(tj) − Ḧj−1(tj)

)
+

(
Ḣj(tj) − Ḣj−1(tj)

)

=
μ

2

(
1 + U

1 − U

) [

Ḧj−1

(
tj(1 + U) − 2

1 − U

)

− Ḧj−2

(
tj(1 + U) − 2

1 − U

)]

(70)

From (70), observing that tj(1+U)−2
1−U = tj−1 (see (5), (6) and (7)) and recalling the induction hypothesis,

one sees that
μ

2

(
Ḧj(tj) − Ḧj−1(tj)

)
+

(
Ḣj(tj) − Ḣj−1(tj)

)
= 0 (71)

Therefore, since the (Cauchy) condition Ḣj(tj) = Ḣj−1(tj) is also satisfied, we finally obtain

Ḧj(tj) = Ḧj−1(tj) (72)

�
Remark 3.1. It is worth noting that each function Hj(t) is a global solution, all over [0,∞), of an initial
value problem, for an ordinary differential equation which is utilized to write down (70), even though the
identity

H(t) = v(Ut, t) (73)
holds true only for t ∈ [tj−1, tj ].

The function H(t) obtained step-by-step with the method just described is a function of the class
C2([0,∞)) such that H(t) = v(Ut, t) if v(x, t) is a solution of Problem (1), thus, v+(x, t) (resp. v−(x, t))

is a function of the class C2
loc in the right (resp. left) neighborhood of the open segment x = Ut, t ∈

[

0,
1
U

)

.

Once one has determined the function H(t), the two formulas (46), (53) and the boundary conditions
along x = 1 determine V +

j (x, t) and W+
j (x, t) in D+

j for any j > 1. Afterward, one determines V −
j (x, t)

and W−
j (x, t) by means of the jump conditions along x = Ut. The functions V +

0 and W+
0 are determined

by the boundary conditions along t = 0 and x = 1. The functions V −
1 (x, t) and W−

1 (x, t) are determined
by means of the jump conditions along x = Ut and the boundary conditions along x = 0.

4. Numerical simulations

The iterative technique used to find the exact solution of the problem does not allow us to arrive in a

finite number of steps to the point
(

1,
1
U

)

. This is why we cannot expect the solution can respect the

boundary condition in this point. Here, we want to show some numerical simulations which confirm the

presence of a discontinuity of the solution in the point
(

1,
1
U

)

.

As already remarked, the choice of a constant speed U = 0.5 is arbitrary and is related to the fact
that, in this case, the structure of D+ and D− is simple. Considering subsonic cases with different speeds
does not affect the scheme of our approach, but only complicates the geometry of D+ and D−.

Equation (57) has been solved with MATLAB (employing a Runge–Kutta-based ODE solver), suitably
selecting the integer j and the last term of the power series in order to have convergence of the solution
with an error comfortably controlled by the accuracy of the numerical procedure.
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Fig. 2. Left Parametric analysis of the deformed shape of the string when varying p between 0.1 and 0.5. Right Parametric
analysis of the deformed shape of the string when varying µ between 0.08 and 1

We performed a parametric analysis in order to check the sensitivity of the system to changes in the
two parameters that characterize it, i.e., p and μ. In the first simulation, we set the parameter μ = 0.1
and vary p in a set equally spaced between 0.1 and 0.5. The results are shown in Fig. 2-left. It can be
seen that the deflection increases with the parameter p. In the second case, we set p = 0.25 and vary μ in
a set equally spaced between 0.08 and 1. Figure 2-right exhibits the effect of the traveling mass. In these
plots, we can see that increasing the value of μ, the minimum of the vertical string displacement moves
toward the right end.

Circlets in the plot mark the extrema of the subintervals on which the solution is constructed. As
anticipated, in both cases, the solution shows a jump discontinuity in the right extremum.

To allow a comparison, in Fig. 3, left panel, the simulation shown in Fig. 2 (left panel) has been
performed by means of a standard Galerkin method.

A discretization consisting of 1000 points, with 40 Galerkin modes, was employed. The result is
consistent with what shown in the previous figure based on the analytic method for what concerns the
overall shape of the graph and the maximum amplitude. However, some differences concern: (i) the limit
value at the right extremum, which in the case of the Galerkin simulation appears to be always positive
independently of the value of p (in the right panel of Fig. 3 a zoom on the right extremum is shown);
this appears to be another form of the paradox related to the presence of the nonholonomic constraint
imposing constant horizontal component of the velocity of the mass, which in case of Fig. 2 (left) leads
to a jump discontinuity. (ii) The qualitative behavior in the second half of the graph, since the Galerkin
simulation shows bumps that are not visible in the simulation based on the analytical iteration, showing
the inadequacy of the numerical method for this case.

In Fig. 4, left panel, the simulation shown in Fig. 2 (right) has been performed by means of the same
Galerkin method as in the previous one. In this case, even larger differences are observable in the last
part of the graph. In Fig. 4, right panel, a zoom helps noticing that Galerkin simulation in this case is
again not reliable.

On the whole, it appears that Galerkin simulations are useful to grasp the general behavior of the
solution and the maximum amplitude, but one cannot rely on them to get an accurate pointwise estimate
of the solution, especially in the final part.
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Fig. 3. On the left standard Galerkin method applied to the simulation shown in Fig. 2 (left); on the right the corresponding
zoom on the right extremum
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Fig. 4. On the left standard Galerkin method applied to the simulation shown in Fig. 2 (right); on the right the corresponding
zoom on the right extremum

5. Conclusion and discussion

In this paper we determined the explicit solution of the dynamical equilibrium of a taut string of finite
length carrying a traveling mass, in the subsonic case, building the solution in terms of a power series in
time, for every segment into which the line x = Ut is divided by the characteristic lines. This approach
allows us to confirm the paradox highlighted in [30,34], due to a lack of wellposedness of the problem.

This paradoxical situation will be subject of further investigation. Let us however remark that, from a
physical point of view, setting a constant velocity U implies that, in order to allow the mass to reach the
end point, we should have to apply an infinite force. This was already observed in previous investigations
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on traveling masses. In particular, in [38], dealing with the problem in large deformations and including
extensibility, the author points out that, even with finite speed of the moving mass, an infinitely large
longitudinal resistance force can be exerted on the load. Aim of our future research will be to approach the
problem where an external force is introduced, without imposing a kinematic condition on the traveling
mass.

The technique here described could be in the future applied to determine the explicit solution of
other problems, like, for example, the study of the dynamics of strings traveled by train of forces, as in
[49,53]. The more complex problem involving a beam instead of a string is already known in the literature
([1,13,56]). In this respect, impact effects between the mass and the beam, which can be of significant
practical relevance since the constraint is of course never perfectly verified by real-world objects, could be
investigated with the theoretical, numerical and experimental methods developed in [4,5,17,20,48]. Also,
the onset of buckling due to the traveling load (see e.g., [3,58,64,65]) may concern this more complex
case of study in case of compressive prestress. It is also natural to consider the possibility of further
generalizing the method to 2D elastic bodies, and in this case, the nature of the problem, entailing the
presence of concentrated loads, suggests the consideration of higher gradient energy models which can
sustain loads of this type (for related theoretical results see [7,23,26,28,36,54,55,70], while for numerical
investigations, see [19,27,40,62,66–68]; a formulation of elasticity which is suitably general for this kind of
continua is provided in [31]). The interaction of the traveling mass with a microstructure (as for instance
the generalized continua studied e.g., in [2,22,24,32,39,41,42,59–61,63]) can also be of great interest
both theoretically and for applications of the results to metamaterials ([10,21,25]).

Future numerical studies of this problem can employ suitably refined forms of finite element methods,
such as isogeometric analysis (see e.g., [6,9,11,12,16,43]). Specifically, it will be useful to employ a
nesting form-finding procedure, typical for cable structures (as in [44,45]) in isogeometric formulation
with singularities, as developed in [46,47], reducing the formulation to a standard shape optimization
problem on the lengths of two portion of the cable. As the problem is of dynamical nature, the tools
developed in [14,15] may also be of help. Finally, the generalization to multiple masses may entail the
onset of instabilities, for the investigation of which the numerical techniques employed in [18,33,50–52]
can be useful.
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