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Abstract. We consider a coexistence of two axisymmetric liquid bridges LBi and LBm of two immiscible liquids i and m
which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces
S1, S2 and free contact lines. Evolution of liquid bridges allows two different configurations of LBi and LBm with multiple
(five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present
its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the
interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.
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1. Introduction

Consider an evolution of two liquid bridges LBi and LBm of immiscible liquids, i (inner) and m (interme-
diate), trapped between two axisymmetric smooth solid bodies with surfaces S1, S2 in such a way that
LBi is immersed into LBm and the latter is immersed into the e (external) liquid (or gas) which occupies
the rest of the space between the two bodies (see Fig. 1a). When liquid m begins to evaporate then LBm

reduces in volume (and width). Depending on the relationships between the contact angles of both liquids
on S1 and S2, there are two scenarios for connectivity breakage of the liquid bridge m between the two
solids. The first scenario (five interfaces) occurs when LBm splits into two parts each supported by a
different solid (see Fig. 1b). The second scenario (three interfaces) occurs when LBm is left as a whole
but has support only on the upper (see Fig. 2b) or lower solid.

Both scenarios lead to a new phenomenon which has not been discussed in literature before, namely an
existence of multiple LBs with non-smooth interfaces. In contrast to the known LBs with fixed and free
contact line (CL), here one of CLs appears as a line where three interfaces with different curvatures meet
together. From a mathematical standpoint, this singular curve is governed by transversality conditions
(in physics they are referred to as the Young relations), and coincidence conditions, i.e., three interfaces
always intersect at one single curve. We derive a relationship combining the constant mean curvatures of
three different interfaces and give the interfaces consistency rules for their coexistence. Another important
result is the vectorial Neumann triangle relation at the triple point which is located on a singular curve.

2. Variational problem for five interfaces

Consider a functional E[r, z] of surface energy
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(a) (b)

Fig. 1. (Color online) a The meridional section of two Und interfaces before LBm rupture. b Five Und interfaces of different
curvatures for three immiscible liquids between two smooth solid bodies with free BC. The endpoints C1, C2, C3, C4 have
one degree of freedom: the upper and lower endpoints are running along S1 and S2, respectively. The endpoints C5, C6 have
two degrees of freedom and are located on two singular curves L1, L2, respectively, which are passing transversely to the
plane of figure

(a) (b)

Fig. 2. (Color online) a Two Und interfaces before LBm rupture. b Three Und interfaces of different curvatures for three
immiscible liquids trapped between two smooth solid bodies with free BCs. The endpoints C1, C2, C4 have one degree of
freedom while C3 has two degrees and is located on a singular curve L which is passing transversely to the plane of figure
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where r′
j = drj/dφj , z′

j = dzj/dφj , R′
α = dRα/dψα and Z ′

α = dZα/dψα and α = 1, 2, l = i,m, e.
Throughout the paper, the Latin and Greek indices enumerate the interfaces and solid surfaces, respec-
tively. The surface tension coefficients γ1 = γ5, γ2 = γ4 and γ3 denote tension at the e–m, m–i and e–i
liquid interfaces, respectively, while γl

sα
stand for surface tension coefficients at the solid–liquid, sα–l,

interfaces (see Fig. 1b).
Two other functionals Vi[r, z] and Vm[r, z] for volumes of liquids i and m read
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where
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j , 1 ≤ j ≤ 5, Bsα
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1
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αR2
α, α = 1, 2.

The isoperimetric problem [4] requires to find a set of functions r̄j(φj), z̄j(φj), providing a local
minimum of E[r, z] with two constraints Vi[r, z] = Vi and Vm[r, z] = Vm imposed on the volumes of
liquids i and m. Consider a composite functional

W [r, z] = E[r, z] − λ1Vm[r, z] − λ3Vi[r, z], (2.4)

with two Lagrange multipliers λj and represent it in the following form,
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where Fj = F(rj , zj , r
′
j , z

′
j) and Gl

α(Rα, Zα, R′
α, Z ′

α) are given as follows,

F1 = E1 − λ1V1, F2 = E2 − λ2V2, F3 = E3 − λ3V3, (2.6)
F4 = E4 − λ4V4, F5 − λ5V5,
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Calculate first variation of W when the functions r̄j(φj) and z̄j(φj) are perturbed by uj(φj) and vj(φj),
respectively,
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The functions uj(φj) and vj(φj) may be derived using a requirement that the upper free endpoints of
the first and second interfaces at Fig. 1b are running along S1 and the lower free endpoints of the forth
and fifth interfaces—along S2 ,
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where α = 1 for j = 1, 2 and α = 2 for j = 4, 5. Substitute (2.8) into (2.7) and integrate by parts
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where δF/δyj = ∂F/∂yj − d/dx
(
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, denotes the variational derivative for the functional∫
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in (2.9) gives rise to the Young–Laplace equations (YLE) [1],

δFj

δrj
= 0,

δFj

δzj
= 0 → z′

j

rj
+ z′′

j r′
j − z′

jr
′′
j =

λj

γj
, 1 ≤ j ≤ 5. (2.12)

Setting the remaining terms (2.11) to zero gives rise to the four transversality relations,
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and one more transversality relation
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In the case of one liquid bridge LBm and two immiscible liquids m and e between two smooth solids
S1, S2, the first and forth relations in (2.13) coincide with those derived in [1], formula (2.15), while the
rest of relations disappear. Regarding condition (2.14), the perturbations uj
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in such a way that the three disturbed interfaces 1, 2, 3 (and other three 3, 4, 5) always intersect at one
point,

u1

(
φ2
1

)
= u2

(
φ2
2

)
= u3

(
φ1
3

)
, v1

(
φ2
1

)
= v2

(
φ2
2

)
= v3

(
φ1
3

)
,

u3

(
φ2
3

)
= u4

(
φ1
4

)
= u5

(
φ1
5

)
, v3

(
φ2
3

)
= v4

(
φ1
4

)
= v5

(
φ1
5

)
. (2.15)

Combine (2.14), (2.15) and use independence of u1

(
φ2
1

)
, v1

(
φ2
1

)
, u3

(
φ2
3

)
, v3

(
φ2
3

)
and obtain four relations,

∂F1

∂r′
1

(
φ2
1

)
+

∂F2

∂r′
2

(
φ2
2

) − ∂F3

∂r′
3

(
φ1
3

)
= 0,

∂F1

∂z′
1

(
φ2
1

)
+

∂F2

∂z′
2

(
φ2
2

) − ∂F3

∂z′
3

(
φ1
3

)
= 0,

∂F3

∂r′
3

(
φ2
3

) − ∂F4

∂r′
4

(
φ1
4

) − ∂F5

∂r′
5

(
φ1
5

)
= 0,

∂F3

∂z′
3

(
φ2
3

) − ∂F4

∂z′
4

(
φ1
4

) − ∂F5

∂z′
5

(
φ1
5

)
= 0. (2.16)

Boundary conditions (BC) (2.13, 2.15) have to be supplemented by condition of coincidence of interfaces
in C5, C6 located on singular curves L1, L2, respectively,
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while the angular coordinates φk
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Thus, we have 24 BC for the ten YLE (2.12) of the second order. Let us arrange them as follows,
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where
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2.1. Curvature law and interface consistency rules

Analysis of YLE (2.12) yields an important conclusion about the curvatures Hj of five interfaces. Consider
(2.12) and recall that according to [1], λj = 2γjHj . Combining this scaling with (2.6), we arrive at
relationships between the curvatures of three interfaces,

γ1H1 + γ2H2 = γ3H3, H1 = H5, H2 = H4. (2.24)

Simple verification of (2.24) can be done in special cases. Indeed, if the liquids i and m are indistin-
guishable, i.e., γ1 = γ3 and γ2 = 0, then H1 = H3. On the other hand, if the liquids m and e are
indistinguishable, i.e., γ2 = γ3 and γ1 = 0, then H2 = H3. In the case γ1 = γ2 = γ3 �= 0, we arrive at
relation known in theory of double bubble [6] when three spherical soap surfaces meet at a contact line.
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Interfaces Mns+ Cat Nod−

Mns+ Mns+ Mns+ Mns±

Cat Mns+ Cat Nod−
Nod− Mns± Nod− Nod−

We can formulate strong statements on consistency of five interfaces based on relations (2.24). Recall
[1] that there exists only one type, Nod−, of interfaces with negative H, while the other interfaces have
positive H: nodoid Nod+, cylinder Cyl, unduloid Und, sphere Sph, or zero curvature, catenoid Cat. Denote
by Mns+ = {Nod+,Cyl,Und,Sph} a set of interfaces with H > 0 and by Mns± =

{
Mns+,Cat,Nod−}

a
set of all admissible interfaces. The rules of interfaces consistency with curvatures H1,H2,H3 are given in
Table, e.g., if the first and second interfaces are Cat and Nod− then the third interface has to be also Nod−,
but if the first and second interfaces are Und and Nod− then the third interface may be any of six interfaces.

2.2. Standard parameterization and symmetric setup

Consider nonzero curvature interfaces rj(φj), zj(φj), 1 ≤ j ≤ 5, between two solid bodies, {Rα(ψα),
Zα(ψα)}, α = 1, 2, and choose interfaces parameterization in such a way that the lower φ2

j and the upper
φ1

j coordinates of endpoints C1, C2, C3, C4 are located on the solid surfaces S1, S2 and governed by BC
while the other two points C5, C6 denote the triple points located on singular curves L1, L2 where three
different interfaces meet together.

Following [1] write the parametric expressions for the shape of such interfaces zj(φj) and rj(φj),

zj(φj)=
M(φj , Bj)

2|Hj | + dj , rj(φj)=
1

2|Hj |
√

1 + B2
j + 2Bj cos φj , (2.25)

M(φ,B) = (1 + B)E
(

φ

2
,m

)
+ (1 − B)F

(
φ

2
,m

)
, m2 =

4B

(1 + B)2
,

where

r′
j = −Bj sin φj

2|Hj |rj
, z′

j =
1 + Bj cos φj

2|Hj |rj
,

z′
j

r′
j

= −1 + Bj cos φj

Bj sin φj
, (2.26)

and r′2
j + z′2

j = 1. For all interfaces, we have to find 24 unknowns: 15 − 1 = 14 interfaces parameters
Hj , Bj , dj [due to (2.24)] and 10 endpoint values φ1

j , φ
2
j . These unknowns have to satisfy 24 BCs in

(2.19–2.23).
When both surfaces S1 and S2 are similar and the picture in Fig. 1b is symmetric w.r.t. midline

between S1 and S2, then such setup reduces the problem above to 6 YLE (2.19–2.21) for the first, second
and third interfaces with 12 unknowns:

φ1
1, φ1

2, φ1
3, φ2

1, φ2
2, d1, d2, B1, B2, B3, H1, H2,

and

φ2
3 = π, 2d3 = −M(π,B3)/|H3|, H3 = (γ1H1 + γ2H2)/γ3.

This number coincides with 12 BCs which comprise 10 BCs in (2.20, 2.21) and two first BCs in (2.22).
Calculate the partial derivatives ∂Fj/∂r′

j , ∂Fj/∂z′
j and write these twelve BCs,

γ1r1 (r′
1R

′
1 + z′

1Z
′
1) +

(
γm

s1
− γe

s1

)
R1

√
R′2

1 + Z ′2
1 + λ1Z

′
1

R2
1 − r21

2
= 0,

φ1 = φ1
1, ψ1 = ψ1

1 ,

r1
(
φ2
1

)
= r3

(
φ1
3

)
, z1

(
φ2
1

)
= z3

(
φ1
3

)
,

z1
(
φ1
1

)
= Z1

(
ψ1
1

)
, r1

(
φ1
1

)
= R1

(
ψ1
1

)
, (2.27)
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γ2r2 (r′
2R

′
1 + z′

2Z
′
1) +

(
γi

s1
− γm

s1

)
R1

√
R′2

1 + Z ′2
1 + λ2Z

′
1

R2
1 − r22

2
= 0,

φ2 = φ1
2, ψ1 = ψ2

1 ,

r2
(
φ2
2

)
= r3

(
φ1
3

)
, z2

(
φ2
2

)
= z3

(
φ1
3

)
,

z2
(
φ1
2

)
= Z1

(
ψ2
1

)
, r2

(
φ1
2

)
= R1

(
ψ2
1

)
, (2.28)

γ1r1r
′
1 + γ2r2r

′
2 − γ3r3r

′
3 = 0, φ1 = φ2

1, φ2 = φ2
2, φ3 = φ1

3,

γ1r1z
′
1 + γ2r2z

′
2 − γ3r3z

′
3 =

1
2

(
λ1r

2
1 + λ2r

2
2 − λ3r

2
3

)
. (2.29)

After simplification we obtain

γ1 cos θ11 + γm
s1

− γe
s1

= 0, γ2 cos θ21 + γi
s1

− γm
s1

= 0, (2.30)

r1
(
φ2
1

)
= r2

(
φ2
2

)
= r3

(
φ1
3

)
,

z1
(
φ1
1

)
= Z1

(
ψ1
1

)
, r1

(
φ1
1

)
= R1

(
ψ1
1

)
,

z1
(
φ2
1

)
= z2

(
φ2
2

)
= z3

(
φ1
3

)
,

z2
(
φ1
2

)
= Z1

(
ψ2
1

)
, r2

(
φ1
2

)
= R1

(
ψ2
1

)
,

γ1r
′
1

(
φ2
1

)
+ γ2r

′
2

(
φ2
2

) − γ3r
′
3

(
φ1
3

)
= 0,

γ1z
′
1

(
φ2
1

)
+ γ2z

′
2

(
φ2
2

) − γ3z
′
3

(
φ1
3

)
= 0, (2.31)

where cos θj
1 =

(
r′
jR

′
1 + z′

jZ
′
1

)
/
√

R′2
1 + Z ′2

1 determines the contact angle θj
1 of the jth interface and S1.

Two equalities in (2.30) give the Young relations at the points C1, C2 on S1, while two equalities in (2.31)
represent the Neumann triangle relations at the triple point C5 located on a singular curve [8]. Indeed,
the latter equalities are the r and z projections of the vectorial equality for capillary forces f j at C5 in
outward directions w.r.t. C5 and tangential to meridional section of menisci,

f1(C5) + f2(C5) + f3(C5) = 0, fj(C5) = γj

{
r′
j(C5), z′

j(C5)
}

. (2.32)

Finish this section with one more observation related to the surface tensions γj and contact angles of
three interfaces on solid surface. Bearing in mind that γ3 cos θ31 + γi

s1
− γe

s1
= 0, combine the last equality

with two others in (2.30) and obtain,

γ1 cos θ11 + γ2 cos θ21 = γ3 cos θ31. (2.33)

2.3. Solving the BC equations (liquid bridges between two parallel plates)

Making use of standard parametrization (2.25), we present below 12 BCs (2.30, 2.31) for 12 unknowns
φ1
1, φ

1
2, φ

1
3, φ

2
1, φ

2
2, d1, d2, B1, B2, B3,H1,H2, in a way convenient for numerical calculations,

γ1B1 sin φ2
1

|H1| +
γ2B2 sin φ2

2

|H2| =
γ3B3 sin φ1

3

|H3| ,

γ1B1 cos φ2
1

|H1| +
γ2B2 cos φ2

2

|H2| =
γ3B3 cos φ1

3

|H3| ,

√
1 + 2Bj cos φ2

j + B2
j

|Hj | =

√
1 + 2B3 cos φ1

3 + B2
3

|H3| , j = 1, 2, (2.34)

M(φ2
1, B1)

2|H1| + d1 =
M(φ2

2, B2)
2|H2| + d2 =

M(φ1
3, B3)

2|H3| + d3,

d3 = −M(π,B3)
2|H3| ,
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(a) (b)

Fig. 3. (Color online) a Five Und interfaces for three immiscible media (i—water; m—octane; e—air) trapped between two
similar solid plates (Z1 − Z2 = 2) with free BC. b Enlarged view of the vicinity of the triple point C5 on the singular curve
where three phases coexist. The angles between the adjacent interfaces read: Φ12 = 36.76◦, Φ23 = 159.43◦, Φ31 = 163.81◦

Interfaces γj (mN/m) θj Bj Hj dj φ2
j φ1

j

1 (e–m) 21.8 19◦ 0.959 0.095 −11.424 184.39◦ 208.74◦
2 (m–i) 50.8 39◦ 0.778 0.272 −4.664 186.405◦ 216.34◦
3 (e–i) 72.8 34.4◦ 0.855 0.218 −5.599 180◦ 188.14◦

M(φ1
j , Bj) − M(φ2

j , Bj)
2|Hj | = Z1

(
ψj
1

)
− M(φ1

3, B3)
2|H3| − d3,

|Hj | =

√
1 + 2Bj cos φ1

j + B2
j

2R1

(
ψj
1

) , Bj =
[
cos φ1

j + sin φ1
j tan θj

1

]−1

, j = 1, 2,

where H3 = H1γ1/γ3 + H2γ2/γ3.
The numerical optimization of the solution was done by a standard gradient descent algorithm. The

cost function for the optimization problem was chosen to be the weighted sum of absolute values of the
differences between the right- and the left-hand sides of the six first equations in (2.34).

In Fig. 3, we present the shapes of five interfaces of different curvatures for three immiscible media:
i—water, m—octane (C8H18, a component of petrol), and e—air, trapped between two similar glass
plates with free BCs and capillary parameters taken from [3]. The parameters of the interfaces are given
in Table below Fig. 3. The volumes of liquids confined inside interfaces read Vm = 4.009, Vi = 2.674.

3. Variational problem for three interfaces

Consider a functional E[r, z] of surface energy

E[r, z] =
3∑

j=1

φ1
j∫

φ2
j

Ejdφj +

ψ2
1∫

0

Ai
s1

dψ1 +

ψ1
1∫

ψ2
1

Am
s1

dψ1 (3.1)

+

∞∫

ψ1
1

Ae
s1

dψ1 +

ψ3
2∫

0

Ai
s2

ψ2 +

∞∫

ψ3
2

Ae
s2

ψ2,
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and two functionals Vi[r, z] and Vm[r, z] of volumes of the i and m liquids

Vm[r, z] =

φ1
1∫

φ2
1

V1dφ1 −
φ1
2∫

φ2
2

V2dφ2 −
ψ1

1∫

ψ2
1

Bs1dψ1, (3.2)

Vi[r, z] =

φ1
2∫

φ2
2

V2dφ2 +

φ1
3∫

φ2
3

V3dφ3 −
ψ2

1∫

0

Bs1dψ1 +

ψ3
2∫

0

Bs2dψ2,

where all integrands Ej , Ai,m,e
sα

, Vj and Bsα
are defined in (2.2, 2.4).

Consider the composed functional W [r, z] = E[r, z] − λ1Vm[r, z] − λ3Vi[r, z] and represent it in the
following form,

W [r, z] =
3∑

j=1

φ1
j∫

φ2
j

Fjdφ1 +

ψ2
1∫

0

Gi
1dψ1 +

ψ1
1∫

ψ2
1

Gm
1 dψ1 +

∞∫

ψ1
1

Ge
1dψ1 (3.3)

−
ψ3

2∫

0

Gi
2dψ2 −

∞∫

ψ3
2

Ge
2dψ2,

where the integrands are given in (2.6).
Applying a similar technique as in Sect. 2, we arrive at the first variation,

δW =
5∑

j=1

⎡

⎢⎣

φ1
j∫

φ2
j

(
uj

δFj

δrj
+ vj

δFj

δzj

)
dφj +

(
uj

∂Fj

∂r′
j

+ vj
∂Fj

∂z′
j

)φ1
j

φ2
j

⎤

⎥⎦ (3.4)

+
(
Gi
1 − Gm

1

)
δψ2

1 + (Gm
1 − Ge

1) δψ1
1 − (

Gi
2 − Ge

2

)
δψ3

2 .

This case does not allow a symmetric version and therefore is less reducible compared to the case
of 5 interfaces w.r.t. the number of unknowns and BC equations. This number is equal 15: 9 interface
parameters Hj , Bj , dj , and 6 endpoint values φ1

j , φ
2
j . They satisfy 15 BC equations

δF1

δr1
=

δF1

δz1
= 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dR1
dψ1

(
ψ1
1

)
∂F1
∂r′

1

(
φ1
1

)
+ dZ1

dψ1

(
ψ1
1

)
∂F1
∂z′

1

(
φ1
1

)
+

Gme
1

(
ψ1
1

)
= 0,

r1
(
φ2
1

)
= r3

(
φ1
3

)
, z1

(
φ2
1

)
= z3

(
φ1
3

)
,

z1
(
φ1
1

)
= Z1

(
ψ1
1

)
, r1

(
φ1
1

)
= R1

(
ψ1
1

)
,

δF2

δr2
=

δF2

δz2
= 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dR1
dψ1

(
ψ2
1

)
∂F2
∂r′

2

(
φ1
2

)
+ dZ1

dψ1

(
ψ2
1

)
∂F2
∂z′

2

(
φ1
2

)
+

Gim
1

(
ψ2
1

)
= 0,

r2
(
φ2
2

)
= r3

(
φ1
3

)
, z2

(
φ2
2

)
= z3

(
φ1
3

)
,

z2
(
φ1
2

)
= Z1

(
ψ2
1

)
, r2

(
φ1
2

)
= R1

(
ψ2
1

)
,

(3.5)
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δF3

δr3
=

δF3

δz3
= 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F1
∂r′

1

(
φ2
1

)
+ ∂F2

∂r′
2

(
φ2
2

) − ∂F3
∂r′

3

(
φ1
3

)
= 0,

∂F1
∂z′

1

(
φ2
1

)
+ ∂F2

∂z′
2

(
φ2
2

) − ∂F3
∂z′

3

(
φ1
3

)
= 0,

dR2
dψ2

(
ψ3
2

)
∂F5
∂r′

5

(
φ2
3

)
+ dZ2

dψ2

(
ψ3
2

)
∂F5
∂z′

5

(
φ2
3

)
+

Gie
2

(
ψ3
2

)
= 0,

z5
(
φ2
5

)
= Z2

(
ψ3
2

)
, r5

(
φ2
5

)
= R2

(
ψ3
2

)
,

that gives

γ1 cos θ11 + γm
s1

− γe
s1

= 0, γ2 cos θ21 + γi
s1

− γm
s1

= 0,

γ3 cos θ32 + γi
s2

− γe
s2

= 0, (3.6)

γ1r
′
1

(
φ2
1

)
+ γ2r

′
2

(
φ2
2

) − γ3r
′
3

(
φ1
3

)
= 0,

γ1z
′
1

(
φ2
1

)
+ γ2z

′
2

(
φ2
2

) − γ3z
′
3

(
φ1
3

)
= 0,

r1
(
φ2
1

)
= r2

(
φ2
2

)
= r3

(
φ1
3

)
, z1

(
φ2
1

)
= z2

(
φ2
2

)
= z3

(
φ1
3

)
,

r1
(
φ1
1

)
=R1

(
ψ1
1

)
, r2

(
φ1
2

)
=R1

(
ψ2
1

)
, r3

(
φ2
3

)
= R2

(
ψ3
2

)
, (3.7)

z1
(
φ1
1

)
=Z1

(
ψ1
1

)
, z2

(
φ1
2

)
=Z1

(
ψ2
1

)
, z3

(
φ2
3

)
= Z2

(
ψ3
2

)
.

Three equalities in (3.6) cannot be reduced to a single equality similar to (2.33) if the upper and lower
solid bodies have different capillary properties, namely γi

s2
− γi

s1
�= γe

s2
− γe

s1
, i.e.,

γ1 cos θ11 + γ2 cos θ21 �= γ3 cos θ32.

3.1. Solving the BC equations (liquid bridges between two parallel plates)

Using a standard parametrization (2.25) and relation (2.24) for H3, we present below 14 BCs (3.6,3.7)
for 14 unknowns:

φ1
1, φ1

2, φ1
3, φ2

1, φ2
2, φ2

3, d1, d2, d3, B1, B2, B3, H1, H2,

in a way convenient for numerical calculations,

Bj = [cos φ1
j + sinφ1

j tan θj
1]

−1,
M(φ1

j , Bj)
2|Hj | + dj = Z1

(
ψj
1

)
, j = 1, 2,

B3 = [cos φ2
3 + sin φ2

3 tan θ32]
−1,

M(φ2
3, B3)

2|H3| + d3 = Z2

(
ψ3
2

)
,

|H1| =

√
1 + 2B1 cos φ1

1 + B2
1

2R1 (ψ1
1)

, |H2| =

√
1 + 2B2 cos φ1

2 + B2
2

2R1 (ψ2
1)

, (3.8)

γ1B1 sin φ2
1

|H1| +
γ2B2 sin φ2

2

|H2| =
γ3B3 sin φ1

3

|H3| ,

γ1B1 cos φ2
1

|H1| +
γ2B2 cos φ2

2

|H2| =
γ3B3 cos φ1

3

|H3| ,

√
1 + 2Bj cos φ2

j + B2
j

|H1| =

√
1 + 2B3 cos φ1

3 + B2
3

|H3| , j = 1, 2,

M(φ2
1, B1)

2|H1| + d1 =
M(φ2

2, B2)
2|H2| + d2 =

M(φ1
3, B3)

2|H3| + d3,

where H3 = (H1γ1 +H2γ2)/γ3. In Fig. 4, we present the shapes of three interfaces of different curvatures
for three immiscible media: i—water, m—hexane (C6H14, a component of petrol), and e—air, trapped
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(a) (b)

Fig. 4. (Color online) a Two Und and one Nod interfaces for three immiscible media (i—water, m—hexane, and e—air)
trapped between two (not similar) solid plates (Z1 − Z2 = 1) with free BC. b Enlarged view of the vicinity of the triple
point C5 on singular curve L where three phases coexist. The angles between the adjacent interfaces reach the following
values: Φ12 = 46.04◦, Φ23 = 173.28◦, Φ31 = 140.68◦

Interfaces γj (mN/m) θj Bj Hj dj φ2
j φ1

j

1 (e–m) 18.4 19◦ 1.091 0.229 −2.521 199.51◦ 228.89◦
2 (m–i) 51.1 40◦ 0.775 0.379 −3.257 217.19◦ 228.50◦
3 (e–i) 72.8 49◦ 0.841 0.324 −3.574 169.79◦ 211.11◦

between two plates composed of different materials (glass and glass coated with polymer film) with free
BCs and capillary parameters taken from [3]. The parameters of the interfaces are given in Table below
Fig. 4. The volumes of liquids confined inside interfaces read Vm = 0.4377, Vi = 0.8940.

4. Conclusion

We formulate a variational problem for coexistence of axisymmetric interfaces of three immiscible liquids:
two of them, i and m, immersed in a third liquid (or gas) e and trapped between two smooth solid bodies
with axisymmetric surfaces S1, S2 and free contact lines. Assuming the volume constraints of two liquids
i and m, we find the governing (Young–Laplace) equations (2.12) supplemented by boundary conditions
and Young relation (2.13) on S1, S2 and transversality relations (2.16) on singular curve where all liquids
meet together.

We consider two different cases when the problem allows the coexistence of five (Sect. 2) or three
(Sect. 3) interfaces. In the first case, the problem is reduced to solving 16 boundary conditions, 4 Young
relations and 4 transversality relations (2.19–2.23), i.e., 24 equations for 24 variables. In the second case,
this number is reduced substantially, namely to 15 equations with 15 variables (3.5) including 10 boundary
conditions, 3 Young relations and 2 transversality relations.

We derive the relationship (2.24) combining the constant mean curvatures of three different interfaces,
e–m, m–i , e–i , and give consistency rules for interface coexistence (Sect. 2.1).

Another result is the vectorial Neumann triangle relation (2.32) at the triple point which is located on
a singular curve. It has a clear physical interpretation as the balance equation of capillary forces. More
importantly, it gives a new insight on the old assertion about the usual Young relations (2.30, 3.6) at
a solid/liquid/gas interface refered by R. Finn [2] to T. Young: the contact angle at a solid/liquid/gas
interface is a physical constant depending only on the materials, and in no other way on the particular
conditions of problem, and a well-known contradiction with uncompensated normal force reaction of
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solid (see [2] and references therein). Indeed, being applied to the contact line of three continuous media,
liquid–gas–solid, vectorial relation (2.32) assumes a non-smooth (singular) deformation [5] of solid surface
with finite elastic modulus E.

Surface tension plays a negligible role at large scales, but it may be crucial when very flexible objects
or microscopic sizes � are considered. In the last decade, an interplay between surface forces of a liquid
droplet and elasticity of a solid substrate was studied experimentally in slender structures of thickness h,
where � > �ec =

√
Eh3/γ and �ec denotes the elasto-capillary length: an elastic structure will be strongly

deflected by surface tension forces (see [7] and references therein).
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