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Ground state sign-changing solutions for a class of Schrödinger–Poisson
type problems in R

3

Sitong Chen and Xianhua Tang

Abstract. This paper is dedicated to studying the following Schrödinger–Poisson system
{−�u + V (x)u + λφu = K(x)f(u), x ∈ R

3,
−�φ = u2, x ∈ R

3,

where V, K are positive continuous potentials, f is a continuous function and λ is a positive parameter. We develop a direct
approach to establish the existence of one ground state sign-changing solution uλ with precisely two nodal domains, by
introducing a weaker condition that there exists θ0 ∈ (0, 1) such that

K(x)

[
f(τ)

τ3
− f(tτ)

(tτ)3

]
sign(1 − t) + θ0V (x)

|1 − t2|
(tτ)2

≥ 0, ∀ x ∈ R
3, t > 0, τ �= 0

than the usual increasing condition on f(t)/|t|3. Under the above condition, we also prove that the energy of any sign-
changing solution is strictly larger than two times the least energy, and give a convergence property of uλ as λ ↘ 0.

Mathematics Subject Classification. 35J20 · 35J65.

Keywords. Schrödinger–Poisson system, Sign-changing solution, Ground state.

1. Introduction

In this paper, we are concerned with the existence of sign-changing solutions for the following Schrödinger–
Poisson system {−�u + V (x)u + λφu = K(x)f(u), x ∈ R

3,
−�φ = u2, x ∈ R

3,
(1.1)

where V,K : R3 → R, f : R → R and λ are a positive parameter. Such a system, also known as the
nonlinear Schrödinger–Maxwell system, arises in many mathematical physics contexts. For instance, in
Abelian Gauge theories, (1.1) provides a model to describe the interaction of a nonlinear Schrödinger
field with an electromagnetic field (see [12,13,25]). In quantum electrodynamics, (1.1) describes the
interaction between a charge particle interacting with the electromagnetic field. Moreover, (1.1) also
appears in semiconductor theory, nonlinear optics and plasma physics. For more details in the physical
aspects, we refer the readers to [5,6,38].

In recent years, there has been increasing attention to systems like (1.1) on the existence of positive
solutions, ground state solutions, multiple solutions and semiclassical states; see for examples [8,15–
17,19,20,24,31,41] and the references therein. To the authors’ knowledge, there are very few results on
the existence of sign-changing solutions for Problem (1.1).

As in [39], to avoid involving too much details when checking the compactness, we assume V satisfies
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(V) V ∈ C(R3,R), V (x) > 0 for all x ∈ R
3 and H ⊂ H1(R3), such that, for 2 < q < 6, the embedding

H ↪→ Lq(R3)

is compact, where

H :=

⎧⎪⎨
⎪⎩

H1
r (R3) =

{
u ∈ H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,{

u ∈ D1,2(R3) :
∫
R3

V (x)u2dx < ∞
}

, if V (x) is not a constant (1.2)

with the norm

‖u‖ =

⎛
⎝∫

R3

(|∇u|2 + V (x)u2
)
dx

⎞
⎠

1/2

.

It is well known that for u ∈ H, if φu be the unique solution of −�φu = u2 in D1,2(R3), then

φu(x) =
1
4π

∫
R3

u2(y)
|x − y|dy. (1.3)

Define the energy functional Φλ : H → R by

Φλ(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2
)
dx +

λ

4

∫
R3

φuu2dx −
∫
R3

K(x)F (u)dx, (1.4)

where F (u) =
u∫
0

f(s)ds. The functional Φλ is well defined for every u ∈ H and Φλ ∈ C1(H,R). Moreover,

for any u, ϕ ∈ H, we have

〈Φ′
λ(u), ϕ〉 =

∫
R3

(∇u · ∇ϕ + V (x)uϕ) dx + λ

∫
R3

φuuϕdx −
∫
R3

K(x)f(u)ϕdx. (1.5)

Clearly, critical points are the weak solutions of (1.1). Furthermore, if u ∈ H is a solution of (1.1) and
u± �= 0, then u is a sign-changing solution of (1.1), where

u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}.

When λ = 0, Eq. (1.1) reduces to the following semilinear Schrödinger equation

− �u + V (x)u = K(x)f(u), x ∈ R
3. (1.6)

In the last two decades, this equation has been studied extensively under various hypotheses on the
potential and the nonlinearities; see for example [9–11,14,27,28,32–36,42] and the references therein.

As far as we know, there are different ways to get the sign-changing solutions of Eq. (1.6), for example
by constructing invariant sets and descending flow (see Bartsch et al. [3]), using the Ekeland’s variational
principle and the implicit function theorem (see Noussair and Wei [26]), and applying variational method
together with the Brouwer degree theory (see Bartsh and Weth [4]). For more discussions on the existence
of sign-changing solutions of (1.6), we refer the reader to the book [43] and the references therein. However,
these methods of finding sign-changing solutions for (1.6) heavily rely on the following decomposition,
u ∈ H,

Φ0(u) = Φ0(u+) + Φ0(u−), (1.7)
〈Φ′

0(u), u+〉 = 〈Φ′
0(u

+), u+〉, 〈Φ′
0(u), u−〉 = 〈Φ′

0(u
−), u−〉, (1.8)



ZAMP Ground state sign-changing solutions Page 3 of 18 102

where Φ0 : H → R is the energy functional of (1.6) given by

Φ0(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2
)
dx −

∫
R3

K(x)F (u)dx (1.9)

and
〈Φ′

0(u), ϕ〉 =
∫
R3

(∇u · ∇ϕ + V (x)uϕ) dx −
∫
R3

K(x)f(u)ϕdx, ∀ u, ϕ ∈ H. (1.10)

When λ > 0, the nonlocal term φu(x) is involved in the energy functional Φλ, it is easy to see that

φu(x) = φu+(x) + φu−(x), (1.11)

but for the functional Φλ, we have

Φλ(u) = Φλ(u+) + Φλ(u−) +
λ

4

∫
R3

[
φu+(u−)2 + φu−(u+)2

]
dx, (1.12)

〈Φ′
λ(u), u+〉 = 〈Φ′

λ(u+), u+〉 + λ

∫
R3

φu−(u+)2dx, (1.13)

〈Φ′
λ(u), u−〉 = 〈Φ′

λ(u−), u−〉 + λ

∫
R3

φu+(u−)2dx. (1.14)

Clearly, the functional Φλ does no longer satisfy the decompositions (1.7) and (1.8). Hence, the methods
of getting sign-changing solutions of (1.6) seem not applicable to Problem (1.1), and it is much more
difficult to find sign-changing solutions of (1.1).

Define

Mλ :=
{
u ∈ H : u± �= 0, 〈Φ′

λ(u), u+〉 = 〈Φ′
λ(u), u−〉 = 0

}
, (1.15)

M0 :=
{
u ∈ H : u± �= 0, 〈Φ′

0(u), u+〉 = 〈Φ′
0(u), u−〉 = 0

}
, (1.16)

Nλ := {u ∈ H : u �= 0, 〈Φ′
λ(u), u〉 = 0} , (1.17)

N0 := {u ∈ H : u �= 0, 〈Φ′
0(u), u〉 = 0} , (1.18)

mλ := inf
u∈Mλ

Φλ(u), cλ := inf
u∈Nλ

Φλ(u), (1.19)

m0 := inf
u∈M0

Φ0(u), c0 := inf
u∈N0

Φ0(u). (1.20)

When (V ) holds, K ≡ 1, f ∈ C1(R,R) and verifies the following hypotheses:
(F1) f(t) = o(|t|) as t → 0;
(F2) f has a “quasicritical” growth, namely lim|t|→∞ f(t)/t5 = 0;
(F3) lim|t|→∞ f(t)/t3 = ∞;
(F4′) f(t)

|t|3 is nondecreasing on (−∞, 0) ∪ (0,∞),

Shuai and Wang [30] investigated the existence and asymptotic behavior of sign-changing solutions
to (1.1). More precisely, by the parametric method and implicit function theorem, they showed that
for each u ∈ H with u± �= 0 there is a unique pair (s, t) ∈ (R+ × R

+) such that su+ + tu− ∈ Mλ; then,
via the quantitative deformation lemma and degree theory, they obtained the minimizer of the energy
functional Φλ over the constraint Mλ is a critical point. Note that f ∈ C1(R,R) plays a crucial role in
using implicit function theorem and (F4′) guarantees the uniqueness of (s, t) mentioned above.

We also mention that when f(u) = |u|p−2u with p ∈ (4, 6), Wang and Zhou [39] proved Mλ �= ∅
by Brouwer degree and obtained the existence of sign-changing solutions to (1.1). Ianni [18] employed a
dynamical (not variational) approach and showed the existence of sign-changing radial solutions to (1.1)
with λ = 1 and V = K ≡ 1, having a prescribed number of nodal domains.



102 Page 4 of 18 S. Chen and X. Tang ZAMP

Recently, when V satisfies lim|x|→∞ V (x) = V∞ := supx∈R3 V (x) ≥ infx∈R3 V (x) > 0 and |V (x)−V∞|
does a limited growth condition, f ∈ C1(R,R) and satisfies (F1)–(F3) and (F4′), Alves et al. [2] proved
the existence of sign-changing solutions to (1.1) with λ = 1. In this paper, they introduced some new
ideas and techniques association with the deformation lemma and Miranda’s theorem. They started by
establishing some estimates involving functions that change sign and then successfully overcame the
difficulty lack of compactness about embedding H1(R3) ↪→ Ls(R3) with s ∈ [2, 6). Finally, they found a
sign-changing solution as an existence result by minimization in a closed subset containing all the sign-
changing solutions of the equation. However, we must point out that both f ∈ C1(R,R) and (F4′) are
needed in [2].

In the nonautonomous case, Liang et al. [21], via the constraint variational method and quantitative
deformation lemma, proved the existence of sign-changing solutions to (1.1) with λ = 1 when f ∈ C1(R,R)
satisfies (F1)–(F3) and (F4′), and V,K satisfy:

(V0) V (x),K(x) > 0 for all x ∈ R
3, V ∈ C(R3,R) and K ∈ C(R3,R) ∩ L∞(R3,R);

(V1) if {An} ⊂ R
3 is a sequence of Borel sets such that the Lebesgue measure of An is less than

R, for all n and some R > 0, then

lim
r→∞

∫
An∩Bc

r(0)

K(x)dx = 0, uniformly in n ∈ N;

(V2) K/V ∈ L∞(R3); or
(V3) there exists p ∈ (2, 6) such that

K(x)
[V (x)](6−p)/4

→ 0, |x| → ∞.

This kind of conditions was first introduced by Alves and Souto [1] to get a positive ground state
solution of (1.6), which can be used to certify that the space E given by

E =

⎧⎨
⎩u ∈ D1,2(R3) :

∫
R3

V (x)u2dx < ∞
⎫⎬
⎭

with the same norm as in H is compactly embedded into the weighted Lebesgue space

Lq
K(R3) =

⎧⎨
⎩u : u is measurable on R

3 and
∫
R3

K(x)|u|qdx < ∞
⎫⎬
⎭

for some q ∈ (2, 6); see [1, Proposition 2.1]. Hereafter, we say that (V,K) ∈ K if these conditions hold.
Note that they used the Brouwer fixed point theorem to show that Mλ �= ∅.

To the authors’ knowledge, in the autonomous (see [2,18,30,39]) or nonautonomous case (see [21]),
without f ∈ C1(R,R) and condition (F4′), there seem no results on the existence of least energy sign-
changing solutions and the convergence property as λ ↘ 0 for Problem (1.1) in the literature.

To state our results, we introduce the following assumptions:

(K) K ∈ C(R3,R) ∩ L∞(R3,R) and K(x) > 0 for all x ∈ R
3 ;

(F4) there exists a θ0 ∈ (0, 1) such that for any x ∈ R
3, t > 0 and τ �= 0

K(x)
[
f(τ)
τ3

− f(tτ)
(tτ)3

]
sign(1 − t) + θ0V (x)

|1 − t2|
(tτ)2

≥ 0. (1.21)

Obviously, (F4′) implies (F4). In fact, either (V ) or (V,K) ∈ K holds, and there exist many functions
satisfying assumptions (F1)–(F4), but not (F4′). For example, let V ≡ 1 and 0 < K(x) ≤ M for all
x ∈ R

3, or (V,K) ∈ K with |K/V |∞ := M > 0, and
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f(t) =
{ |t|3t, |t| ≤ 	,

α|t|3t + 1
3M t, |t| > 	

with α, 	 > 0 and 3(1 − α)	3M = 1. Then, f satisfies (F1)–(F4) with θ0 = 1/2 but not satisfy (F4′).
Motivated by the works [30,37], we have developed a more direct approach to show that Mλ �= ∅

and the minimizer is a sign-changing solution without f ∈ C1(R,R) and (F4′). Roughly speaking, we
first establish an inequality between Φλ(u) and Φλ(su+ + tu−) (see Lemma 2.1 below) under a weaker
condition (F4) and then prove that if u ∈ H with u± �= 0, there is a unique pair (s, t) ∈ (R+ × R

+)
such that su+ + tu− ∈ Mλ (see Lemma 2.4), which is entirely different from the method presented
in [21,30,39]. Taking advantage of the above-mentioned inequality, we can show the minimizer of the
constrained problem is a sign-changing solution, which has precisely two nodal domains. We can also give
a convergence property of uλ as λ ↘ 0, which reflects some relationship between λ > 0 and λ = 0 in
Problem (1.1).

Our main results can be stated as follows.

Theorem 1.1. Assume that (V), (K) and (F1)–(F4) hold. Then, Problem (1.1) has a sign-changing solution
uλ ∈ Mλ such that Φλ(uλ) = infMλ

Φλ > 0, which has precisely two nodal domains.

Theorem 1.2. Assume that (V), (K) and (F1)–(F4) hold. Then, Problem (1.1) has a solution ū ∈ Nλ

such that Φλ(ū) = infNλ
Φλ; moreover, mλ > 2cλ for all λ > 0.

Theorem 1.3. Assume that (V), (K) and (F1)–(F4) hold. Then, Problem (1.6) has a sign-changing solution
v0 ∈ M0 such that Φ0(v0) = infM0 Φ0 > 0, which has precisely two nodal domains. Furthermore, for any
sequence {λn} with λn ↘ 0 as n → ∞, there exists a subsequence which we label in the same way such
that uλn

→ u0 in H, where u0 ∈ M0 is a sign-changing solution of (1.6) with Φ0(u0) = infM0 Φ0 > 0.

We must point out that if (V,K) ∈ K, our method is still valid after a slight modification. In this
sense, our results not only unify but also generalize the previous results.

Corollary 1.4. Assume that (V,K) ∈ K and (F1)–(F4) hold. Then, all conclusions in Theorems 1.1–1.3
hold in E.

The paper is organized as follows. In Sect. 2, we provide several lemmas, which are crucial in proving
our main results. In Sect. 3, we show the existence of a ground sign-changing solution with precisely two
nodal domains. In Sect. 4, we first investigate the ground state solutions of Nehari type and then prove
Theorem 1.2. We complete the proofs of Theorem 1.3 and Corollary 1.4 in Sects. 5 and 6, respectively.

Throughout this paper, we denote the norm of Ls(R3) by ‖u‖s =

(∫
R3

|u|sdx

)1/s

for s ≥ 2, Br(x) =

{y ∈ R
3 : |y − x| < r}.

2. Some preliminary lemmas

In this section, we first show the following lemmas and corollaries which will play crucial roles in this
paper.

Lemma 2.1. Assume that (V), (K) and (F1)–(F4) hold. Then,

Φλ(u) ≥ Φλ(su+ + tu−) +
1 − s4

4
〈Φ′

λ(u), u+〉 +
1 − t4

4
〈Φ′

λ(u), u−〉

+
(1 − θ0)(1 − s2)2

4
‖u+‖2 +

(1 − θ0)(1 − t2)2

4
‖u−‖2

+
λ(s2 − t2)2

4

∫
R3

φu+(u−)2dx, ∀ u = u+ + u− ∈ H, s, t ≥ 0. (2.1)
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Proof. For any x ∈ R
3, t ≥ 0, τ ∈ R, (F4) yields

K(x)
[
1 − t4

4
τf(τ) + F (tτ) − F (τ)

]
+

θ0V (x)
4

(1 − t2)2τ2

=

1∫
t

{
K(x)

[
f(τ)
τ3

− f(sτ)
(sτ)3

]
+ θ0V (x)

(1 − s2)
(sτ)2

}
s3τ4ds ≥ 0. (2.2)

By (1.3) and Fubini theorem, we see that
∫
R3

φu+(u−)2dx =
∫
R3

φu−(u+)2dx. (2.3)

Hence, it follows from (1.4), (1.5), (2.2) and (2.3) that

Φλ(u) − Φλ(su+ + tu−)

=
1
2
(‖u‖2 − ‖su+ + tu−‖2

)
+

λ

4

∫
R3

[
φuu2 − φsu++tu−(su+ + tu−)2

]
dx

+
∫
R3

K(x)[F (su+ + tu−) − F (u)]dx

=
1 − s4

4

⎛
⎝‖u+‖2 + λ

∫
R3

φu+(u+)2dx

⎞
⎠+

1 − t4

4

⎛
⎝‖u−‖2 + λ

∫
R3

φu−(u−)2dx

⎞
⎠

+
(1 − s2)2

4
‖u+‖2 +

(1 − t2)2

4
‖u−‖2 +

λ(1 − s2t2)
2

∫
R3

φu+(u−)2dx

+
∫
R3

K(x)[F (su+) + F (tu−) − F (u+) − F (u−)]dx

=
1 − s4

4
〈Φ′

λ(u), u+〉 +
1 − t4

4
〈Φ′

λ(u), u−〉

+
(1 − s2)2

4
‖u+‖2 +

(1 − t2)2

4
‖u−‖2 +

λ(s2 − t2)2

4

∫
R3

φu+(u−)2dx

+
∫
R3

K(x)
[
1 − s4

4
f(u+)u+ + F (su+) − F (u+)

]
dx

+
∫
R3

K(x)
[
1 − t4

4
f(u−)u− + F (tu−) − F (u−)

]
dx

≥ 1 − s4

4
〈Φ′

λ(u), u+〉 +
1 − t4

4
〈Φ′

λ(u), u−〉 +
(1 − θ0)(1 − s2)2

4
‖u+‖2

+
(1 − θ0)(1 − t2)2

4
‖u−‖2 +

λ(s2 − t2)2

4

∫
R3

φu+(u−)2dx

+
∫
R3

{
K(x)

[
1 − s4

4
f(u+)u+ + F (su+) − F (u+)

]
+

θ0V (x)
4

(1 − s2)2|u+|2
}

dx
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+
∫
R3

{
K(x)

[
1 − t4

4
f(u−)u− + F (tu−) − F (u−)

]
+

θ0V (x)
4

(1 − t2)2|u−|2
}

dx

≥ 1 − s4

4
〈Φ′

λ(u), u+〉 +
1 − t4

4
〈Φ′

λ(u), u−〉 +
(1 − θ0)(1 − s2)2

4
‖u+‖2

+
(1 − θ0)(1 − t2)2

4
‖u−‖2 +

λ(s2 − t2)2

4

∫
R3

φu+(u−)2dx, ∀ s, t ≥ 0.

This shows that (2.1) holds. �

Corollary 2.2. Assume that (V), (K) and (F1)–(F4) hold. Then, for u = u+ + u− ∈ Mλ

Φλ(u) ≥ Φλ(su+ + tu−) +
(1 − θ0)(1 − s2)2

4
‖u+‖2 +

(1 − θ0)(1 − t2)2

4
‖u−‖2

+
λ(s2 − t2)2

4

∫
R3

φu+(u−)2dx, ∀ s, t ≥ 0. (2.4)

Corollary 2.3. Assume that (V), (K) and (F1)–(F4) hold. Then, for u = u+ + u− ∈ Mλ

Φλ(u+ + u−) = max
s,t≥0

Φλ(su+ + tu−). (2.5)

Secondly, we check that Mλ �= ∅ and mλ > 0 can be achieved, which are the key points in this paper.

Lemma 2.4. Assume that (V), (K) and (F1)–(F4) hold. If u ∈ H with u± �= 0, then there exists a unique
pair (su, tu) of positive numbers such that suu+ + tuu− ∈ Mλ.

Proof. Let

g1(s, t) = s2‖u+‖2 + λs4

∫
R3

φu+(u+)2dx + λs2t2
∫
R3

φu−(u+)2dx

−
∫
R3

K(x)f(su+)su+dx (2.6)

and

g2(s, t) = t2‖u−‖2 + λt4
∫
R3

φu−(u−)2dx + λs2t2
∫
R3

φu+(u−)2dx

−
∫
R3

K(x)f(tu−)tu−dx. (2.7)

For any fixed t ≥ 0, it is easy to verify using (F1) and (F3) that g1(0, t) = 0, g1(s, t) > 0 for s > 0 small
and g1(s, t) < 0 for s large. From continuity of g1(s, t) on s, there is a st > 0 such that g1(st, t) = 0 for
t ≥ 0. We claim that st > 0 is unique for any t ≥ 0. In fact, for any given t0 ≥ 0, let ŝ1, ŝ2 > 0 such that

g1(ŝ1, t0) = g1(ŝ2, t0) = 0. (2.8)

Then, it follows from (1.5), (2.6) and (2.8) that

〈Φ′
λ(ŝ1u

+ + t0u
−), u+〉 = 〈Φ′

λ(ŝ2u
+ + t0u

−), u+〉 = 0. (2.9)
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From (2.1) and (2.9), we have

Φλ(ŝ1u
+ + t0u

−) ≥ Φλ(ŝ2u
+ + t0u

−) +
ŝ4
1 − ŝ4

2

4ŝ4
1

〈Φ′
λ(ŝ1u

+ + t0u
−), ŝ1u

+〉

+
(1 − θ0)(ŝ2

1 − ŝ2
2)

2

4ŝ2
1

‖u+‖2

= Φλ(ŝ2u
+ + t0u

−) +
(1 − θ0)(ŝ2

1 − ŝ2
2)

2

4ŝ2
1

‖u+‖2 (2.10)

and

Φλ(ŝ2u
+ + t0u

−) ≥ Φλ(ŝ1u
+ + t0u

−) +
ŝ4
2 − ŝ4

1

4ŝ4
2

〈Φ′
λ(ŝ2u

+ + t0u
−), ŝ2u

+〉

+
(1 − θ0)(ŝ2

2 − ŝ2
1)

2

4ŝ2
2

‖u+‖2

= Φλ(ŝ1u
+ + t0u

−) +
(1 − θ0)(ŝ2

2 − ŝ2
1)

2

4ŝ2
2

‖u+‖2. (2.11)

(2.10) and (2.11) imply ŝ1 = ŝ2. Therefore, st := s̃(t) > 0 is unique for t ≥ 0, i.e., g1(s, t) = 0 defines an
implicit function s = s̃(t) for t ≥ 0. Since s0 = s̃(0), and for every t ≥ 0, g1(s, s) > 0 for small s > 0 and
g1(t, t) < 0 for large s > 0, then one has

g1(st, t) = 0, ∀ t ≥ 0; st > t for small t ≥ 0, st < t for large t ≥ 0. (2.12)

It is easy to verify that s̃(t) is continuous on [0,∞).
Analogously, g2(s, t) = 0 also defines an implicit function t = ts := t̃(s) > 0 for s ≥ 0 such that

g2(s, ts) = 0, ∀ s ≥ 0; ts > s for small s ≥ 0, ts < s for large s ≥ 0. (2.13)

(2.12) and (2.13) imply that the planar curves s = s̃(t) and t = t̃(s) intersect at some point (su, tu) with
su, tu > 0, which implies that g1(su, tu) = g2(su, tu) = 0. Therefore, suu+ + tuu− ∈ Mλ.

Next, we prove the uniqueness. Let (s1, t1) and (s2, t2) such that siu
+ + tiu

− ∈ Mλ, i = 1, 2. In view
of Corollary 2.2, one has

Φλ(s1u
+ + t1u

−) ≥ Φλ(s2u
+ + t2u

−) +
(1 − θ0)(s2

1 − s2
2)

2

4s2
1

‖u+‖2

+
(1 − θ0)(t21 − t22)

2

4t21
‖u−‖2 (2.14)

and

Φλ(s2u
+ + t2u

−) ≥ Φλ(s1u
+ + t1u

−) +
(1 − θ0)(s2

1 − s2
2)

2

4s2
2

‖u+‖2

+
(1 − θ0)(t21 − t22)

2

4t22
‖u−‖2. (2.15)

Both (2.14) and (2.15) imply (s1, t1) = (s2, t2). �

Lemma 2.5. Assume that (V), (K) and (F1)–(F4) hold. Then,

inf
u∈Mλ

Φλ(u) = mλ = inf
u∈H,u± �=0

max
s,t≥0

Φλ(su+ + tu−).

Proof. Both Corollary 2.3 and Lemma 2.4 imply the above lemma. �

Lemma 2.6. Assume that (V), (K) and (F1)–(F4) hold. Then, mλ > 0 is achieved.
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Proof. Similar as [30, (2.14)], we can derive from (F1)–(F3) that there exists a constant α > 0 such that
‖u±‖2 > α for all u ∈ Mλ. Let {un} ⊂ Mλ be such that Φλ(un) → mλ. Observe that (2.2) with t = 0
yields

K(x)
[
1
4
f(τ)τ − F (τ)

]
+

θ0V (x)
4

τ2 ≥ 0, ∀ x ∈ R
3, τ ∈ R. (2.16)

Thus, from (1.4), (1.5) and (2.16), one has for large n ∈ N

mλ + 1 ≥ Φλ(un) − 1
4
〈Φ′

λ(un), un〉

≥ (1 − θ0)
4

‖un‖2 +
∫
R3

{
K(x)

[
1
4
f(un)un − F (un)

]
+

θ0V (x)
4

|un|2
}

dx

≥ (1 − θ0)
4

‖un‖2. (2.17)

This shows that {un} is bounded in H, and then, there exists a uλ ∈ H such that u±
n ⇀ u±

λ in H. By
(V ), (K), (F1)–(F3), (1.5) and [40, A.1], we can get

0 < α ≤ ‖u±
n ‖2 +

∫
R3

φun
(u±

n )2dx =
∫
R3

K(x)f(u±
n )u±

n dx =
∫
R3

K(x)f(u±
λ )u±

λ dx + o(1), (2.18)

which yields u±
λ �= 0. Moreover, by (1.3) and Hardy–Littlewood–Sobolev inequality (see [22] or [23,

page 98]), one has

lim inf
n→∞

∫
R3

φun
(u±

n )2dx =
∫
R3

φuλ
(u±

λ )2dx.

From this, (2.18), the weak semicontinuity of norm and Fatou’s Lemma, we have

‖u±
λ ‖2 +

∫
R3

φuλ
(u±

λ )2dx ≤ lim inf
n→∞

⎡
⎣‖u±

n ‖2 +
∫
R3

φun
(u±

n )2dx

⎤
⎦ =

∫
R3

K(x)f(u±
λ )u±

λ dx, (2.19)

which implies
〈Φ′

λ(uλ), u±
λ 〉 ≤ 0. (2.20)

Thus, from (1.4), (1.5), (2.1), (2.16), (2.20), the weak semicontinuity of norm, Fatou’s Lemma and
Lemma 2.5, we have

mλ = lim
n→∞

[
Φλ(un) − 1

4
〈Φ′

λ(un), un〉
]

= lim
n→∞

⎧⎨
⎩

1
4
‖un‖2 +

∫
R3

K(x)
[
1
4
f(un)un − F (un)

]
dx

⎫⎬
⎭

≥ 1
4

lim inf
n→∞

⎡
⎣‖∇un‖2

2 + (1 − θ0)
∫
R3

V (x)|un|2dx

⎤
⎦

+ lim inf
n→∞

∫
R3

{
K(x)

[
1
4
f(un)un − F (un)

]
+

θ0

4
V (x)|un|2

}
dx

≥ 1
4

⎡
⎣‖∇uλ‖2

2 + (1 − θ0)
∫
R3

V (x)|uλ|2dx

⎤
⎦
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+
∫
R3

{
K(x)

[
1
4
f(uλ)uλ − F (uλ)

]
+

θ0

4
V (x)|uλ|2

}
dx

=
1
4
‖uλ‖2 +

∫
R3

K(x)
[
1
4
f(uλ)uλ − F (uλ)

]
dx

= Φλ(uλ) − 1
4
〈Φ′

λ(uλ), uλ〉

≥ sup
s,t≥0

[
Φλ(su+

λ + tu−
λ ) +

1 − s4

4
〈Φ′

λ(uλ), u+
λ 〉 +

1 − t4

4
〈Φ′

λ(uλ), u−
λ 〉
]

− 1
4
〈Φ′

λ(uλ), uλ〉

≥ sup
s,t≥0

Φλ(su+
λ + tu−

λ ) ≥ mλ,

which implies

lim
n→∞ ‖∇un‖2

2 = ‖∇uλ‖2
2, lim

n→∞

∫
R3

V (x)|un|2dx =
∫
R3

V (x)|uλ|2dx. (2.21)

Therefore, un → uλ in H, then Φλ(uλ) = mλ and uλ ∈ Mλ. �

Finally, with the help of the above conclusions, we prove the minimizer of the constrained problem is
a critical point.

Lemma 2.7. Assume that (V), (K) and (F1)–(F4) hold. If u0 ∈ Mλ and Φλ(u0) = mλ, then u0 is a
critical point of Φλ.

Proof. Assume that u0 = u+
0 + u−

0 ∈ Mλ, Φλ(u0) = mλ and Φ′
λ(u0) �= 0. Then, there exist δ > 0 and

	 > 0 such that

u ∈ H, ‖u − u0‖ ≤ 3δ ⇒ ‖Φ′
λ(u)‖ ≥ 	. (2.22)

In view of Corollary 2.2, one has for all s, t ≥ 0,

Φλ(su+
0 + tu−

0 ) ≤ Φλ(u0) − (1 − θ0)(1 − s2)2

4
‖u+

0 ‖2 − (1 − θ0)(1 − t2)2

4
‖u−

0 ‖2

= mλ − (1 − θ0)(1 − s2)2

4
‖u+

0 ‖2 − (1 − θ0)(1 − t2)2

4
‖u−

0 ‖2. (2.23)

Let D = (0.5, 1.5) × (0.5, 1.5). Then,

κ := max
(s,t)∈∂D

Φλ(su+
0 + tu−

0 ) < mλ. (2.24)

For ε := min{(mλ − κ)/3, 1, 	δ/8}, S := B(u0, δ), [40, Lemma 2.3] yields a deformation η ∈ C([0, 1] ×
H,H) such that

i) η(1, u) = u if Φλ(u) < mλ − 2ε or Φλ(u) > mλ + 2ε;
ii) η

(
1,Φmλ+ε

λ ∩ B(u0, δ)
) ⊂ Φmλ−ε

λ ;
iii) Φλ(η(1, u)) ≤ Φλ(u), ∀ u ∈ H.

By Corollary 2.3, Φλ(su+
0 + tu−

0 ) ≤ Φλ(u0) = mλ for s, t ≥ 0; then, it follows from ii) that

Φλ(η(1, su+
0 + tu−

0 )) ≤ mλ − ε, ∀ s, t ≥ 0, |s − 1|2 + |t − 1|2 < δ2/‖u0‖2. (2.25)
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On the other hand, by iii) and (2.23), one has

Φλ(η(1, su+
0 + tu−

0 )) ≤ Φλ(su+
0 + tu−

0 )

≤ mλ − (1 − θ0)(1 − s2)2

4
‖u+

0 ‖2 − (1 − θ0)(1 − t2)2

4
‖u−

0 ‖2

≤ mλ − (1 − θ0)δ2

8‖u0‖2
min{‖u+

0 ‖2, ‖u−
0 ‖2},

∀ s, t ≥ 0, |s − 1|2 + |t − 1|2 ≥ δ2/‖u0‖2. (2.26)

Combining (2.25) with (2.26), we have

max
(s,t)∈D̄

Φλ(η(1, su+
0 + tu−

0 )) < mλ. (2.27)

Define g(s, t) := su+
0 + tu−

0 . By an argument similar as [29, Page 1268] or [30, Page 3277], we get
η(1, g(D)) ∩ Mλ �= ∅, which contradicts to the definition of mλ. �

3. Sign-changing solutions

Proof of Theorem 1.1. In view of Lemmas 2.6 and 2.7, there exists a uλ ∈ Mλ such that Φλ(uλ) = mλ

and Φ′
λ(uλ) = 0. Thus, uλ is a sign-changing solution of (1.1).

Now, we show that uλ has exactly two nodal domains. Let uλ = u1 + u2 + u3, where

u1 ≥ 0, u2 ≤ 0, Ω1 ∩ Ω2 = ∅, u1|Ω2∪Ω3 = u2|Ω1∪Ω3 = u3|Ω1∪Ω2 = 0, (3.1)
Ω1 := {x ∈ R

3 : u1(x) > 0}, Ω2 := {x ∈ R
3 : u2(x) < 0}, Ω3 := R

3 \ (Ω1 ∪ Ω2), (3.2)

and Ω1,Ω2 are connected open subsets of R3.
Setting v = u1 + u2, we see that v+ = u1 and v− = u2, i.e., v± �= 0. From (1.4), (1.5), (2.1), (2.16)

and (3.1), one has

mλ = Φλ(uλ) = Φλ(uλ) − 1
4
〈Φ′

λ(uλ), uλ〉

= Φλ(v) + Φλ(u3) +
λ

4

∫
R3

(
φu3v

2 + φvu2
3

)
dx

−1
4

⎡
⎣〈Φ′

λ(v), v〉 + 〈Φ′
λ(u3), u3〉 + λ

∫
R3

(
φu3v

2 + φvu
2
3

)
dx

⎤
⎦

≥ sup
s,t≥0

[
Φλ(sv+ + tv−) +

1 − s4

4
〈Φ′

λ(v), v+〉 +
1 − t4

4
〈Φ′

λ(v), v−〉
]

−1
4
〈Φ′

λ(v), v〉 + Φλ(u3) − 1
4
〈Φ′

λ(u3), u3〉

≥ sup
s,t≥0

⎡
⎣Φλ(sv+ + tv−) +

λs4

4

∫
R3

φu3(v
+)2dx +

λt4

4

∫
R3

φu3(v
−)2dx

⎤
⎦

+
1
4
‖u3‖2 +

∫
R3

K(x)
[
1
4
f(u3)u3 − F (u3)

]
dx
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≥ sup
s,t≥0

Φλ(sv+ + tv−) +
(1 − θ0)

4
‖u3‖2

≥ mλ +
(1 − θ0)

4
‖u3‖2,

which shows u3 = 0. Therefore, uλ has exactly two nodal domains. �

4. Ground state solutions and sign-changing solutions

As Sect. 2, we can prove the following lemmas and corollaries.

Lemma 4.1. Assume that (V), (K) and (F1)–(F4) hold. Then,

Φλ(u) ≥ Φλ(tu) +
1 − t4

4
〈Φ′

λ(u), u〉 +
(1 − θ0)(1 − t2)2

4
‖u‖2,

∀ u ∈ H, t ≥ 0. (4.1)

Corollary 4.2. Assume that (V), (K) and (F1)–(F4) hold. Then, for u ∈ Nλ

Φλ(u) ≥ Φλ(tu) +
(1 − θ0)(1 − t2)2

4
‖u‖2, ∀ t ≥ 0. (4.2)

Corollary 4.3. Assume that (V), (K) and (F1)–(F4) hold. Then, for u ∈ Nλ

Φλ(u) = max
t≥0

Φλ(tu). (4.3)

Lemma 4.4. Assume that (V), (K) and (F1)–(F4) hold. If u ∈ H \ {0}, then there exists a unique tu > 0
such that tuu ∈ Nλ.

Lemma 4.5. Assume that (V), (K) and (F1)–(F4) hold. Then,

inf
u∈Nλ

Φλ(u) = cλ = inf
u∈H,u�=0

max
t≥0

Φλ(tu).

Lemma 4.6. Assume that (V), (K) and (F1)–(F4) hold. Then, there exist a constant c∗ ∈ (0, cλ] and a
sequence {un} ⊂ H satisfying

Φλ(un) → c∗, ‖Φ′
λ(un)‖(1 + ‖un‖) → 0. (4.4)

Proof. It follows from (F1), (F2) and (1.4) that there exist δ0 > 0 and ρ0 > 0 such that

Φλ(u) ≥ ρ0, ‖u‖ = δ0. (4.5)

Choose vk ∈ Nλ such that

cλ ≤ Φλ(vk) < cλ +
1
k

, k ∈ N. (4.6)

Since Φλ(0) = 0 and Φλ(tvk) < 0 for large t > 0, then according to [7], there exists a sequence {uk,n}n∈N ⊂
H satisfying

Φλ(uk,n) → ck, ‖Φ′
λ(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N, (4.7)

where ck ∈ [ρ0, supt≥0 Φλ(tvk)]. By virtue of Corollary 4.2, one has

Φλ(vk) ≥ Φλ(tvk), ∀ t ≥ 0,

which implies Φλ(vk) = supt≥0 Φλ(tvk). Hence, by (4.5) and (4.7), one has

Φλ(uk,n) → ck ∈
[
ρ0, cλ +

1
k

)
, ‖Φ′

λ(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N. (4.8)
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Now, we can choose a sequence {nk} ⊂ N such that

Φλ(uk,nk
) ∈

[
ρ0, cλ +

1
k

)
, ‖Φ′

λ(uk,nk
)‖(1 + ‖uk,nk

‖) <
1
k

, k ∈ N. (4.9)

Let uk = uk,nk
, k ∈ N. Then, going if necessary to a subsequence, we have

Φλ(un) → c∗ ∈ [ρ0, cλ], ‖Φ′
λ(un)‖(1 + ‖un‖) → 0.

�

Proof of Theorem 1.2. Lemma 4.6 implies the existence of a sequence {un} ⊂ H satisfying (4.4), which
implies that

Φλ(un) → c∗, 〈Φ′
λ(un), un〉 → 0. (4.10)

From (1.4), (1.5), (2.16) and (4.10), one has for large n ∈ N

c∗ + 1 ≥ Φλ(un) − 1
4
〈Φ′

λ(un), un〉 ≥ (1 − θ0)
4

‖un‖2.

This shows that {un} is bounded in H. By a standard argument, we can prove that there exists a
u0 ∈ H \ {0} such that Φ′

λ(u0) = 0. This shows that u0 ∈ Nλ is a nontrivial of (1.1) and Φλ(u0) ≥ cλ.
On the other hand, by using (1.4), (1.5), (2.16), the weak semicontinuity of norm and Fatou’s Lemma,
we have

cλ ≥ c∗ = lim
n→∞

[
Φλ(un) − 1

4
〈Φ′

λ(un), un〉
]

= lim
n→∞

⎧⎨
⎩

1
4
‖un‖2 +

∫
R3

K(x)
[
1
4
f(un)un − F (un)

]
dx

⎫⎬
⎭

≥ 1
4

lim inf
n→∞

⎛
⎝‖∇un‖2

2 + (1 − θ0)
∫
R3

V (x)|un|2dx

⎞
⎠

+ lim inf
n→∞

∫
R3

{
K(x)

[
1
4
f(un)un − F (un)

]
+

θ0V (x)
4

|un|2
}

dx

≥ 1
4

⎛
⎝‖∇u0‖2

2 + (1 − θ0)
∫
R3

V (x)|u0|2dx

⎞
⎠

+
∫
R3

{
K(x)

[
1
4
f(u0)u0 − F (u0)

]
+

θ0V (x)
4

|u0|2
}

dx

=
1
4
‖u0‖2 +

∫
R3

K(x)
[
1
4
f(u0)u0 − F (u0)

]
dx

= Φλ(u0) − 1
4
〈Φ′

λ(u0), u0〉 = Φλ(u0).

This shows that Φλ(u0) ≤ c∗ and so Φλ(u0) = cλ = infNλ
Φλ > 0.

In view of Theorem 1.1, there exists a uλ ∈ Mλ such that Φλ(uλ) = mλ. Thus, from (1.4), Lemma 2.1,
Corollary 2.3 and Lemma 4.5, we have
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mλ = Φλ(uλ) = sup
s,t≥0

Φλ(su+
λ + tu−

λ )

= sup
s,t≥0

⎧⎨
⎩Φλ(su+

λ ) + Φλ(tu−
λ ) +

λs2t2

4

∫
R3

[
φu+

λ
(u−

λ )2 + φu−
λ
(u+

λ )2
]
dx

⎫⎬
⎭

> sup
s≥0

Φλ(su+
λ ) + sup

t≥0
Φλ(tu−

λ ) ≥ 2cλ. (4.11)

�

5. The convergence property

In this section, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. In the arguments of Sect. 2, λ = 0 is allowed. Therefore, under the assumptions
of Theorem 1.3, there exists a v0 ∈ M0 such that Φ′

0(v0) = 0 and Φ0(v0) = m0, i.e., (1.6) has the least
energy sign-changing solution, which changes sign only once.

For any λ > 0, let uλ ∈ Mλ be a sign-changing solution of (1.1) obtained in Theorem 1.1, which
changes sign only once and satisfies Φλ(uλ) = mλ.

Choose w0 ∈ C∞
0 (R3) such that w±

0 �= 0. By (K) and (F1)–(F3), there exist β1 > 0 and β2 ≥
1
2

∫
R3

φw0(w0)2dx such that∫
R3

K(x)F (sw+
0 )dx ≥ β2|s|4 − β1,

∫
R3

K(x)F (tw−
0 )dx ≥ β2|t|4 − β1, ∀ s, t ∈ R. (5.1)

For any λ ∈ [0, 1], by (1.4), (1.19), (2.3), (5.1) and Lemma 2.4 we have

Φλ(uλ) = mλ ≤ max
s,t≥0

Φλ(sw+
0 + tw−

0 )

= max
s,t≥0

⎧⎨
⎩

s2

2
‖w+

0 ‖2 +
λs4

4

∫
R3

φw+
0
(w+

0 )2dx −
∫
R3

K(x)F (sw+
0 )dx

+
t2

2
‖w−

0 ‖2 +
λt4

4

∫
R3

φw−
0
(w−

0 )2dx −
∫
R3

K(x)F (tw−
0 )dx

+
λs2t2

4

∫
R3

[
φw+

0
(w−

0 )2 + φw−
0
(w+

0 )2
]
dx

⎫⎬
⎭

≤ max
s,t≥0

⎡
⎣s2

2
‖w+

0 ‖2 +
λs4

4

∫
R3

φw+
0
(w+

0 )2dx + 2β1 − β2s
4

+
t2

2
‖w−

0 ‖2 +
λt4

4

∫
R3

φw−
0
(w−

0 )2dx − β2t
4

+
λs4

4

∫
R3

φw−
0
(w+

0 )2dx +
λt4

4

∫
R3

φw+
0
(w−

0 )2dx

⎤
⎦

= max
s,t≥0

⎡
⎣s2

2
‖w+

0 ‖2 +
λs4

4

∫
R3

φw0(w
+
0 )2dx + 2β1 − β2s

4
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+
t2

2
‖w−

0 ‖2 +
λt4

4

∫
R3

φw0(w
−
0 )2dx − β2t

4

⎤
⎦

≤ max
s≥0

⎡
⎣s2

2
‖w+

0 ‖2 − s4

4

∫
R3

φw0(w0)2dx

⎤
⎦

+ max
t≥0

⎡
⎣ t2

2
‖w−

0 ‖2 − t4

4

∫
R3

φw0(w0)2dx

⎤
⎦+ 2β1

:= Λ0 > 0.

From this, (1.4), (1.5) and (2.16), we get

Λ0 + 1 ≥ Φλn
(uλn

) − 1
4
〈Φ′

λn
(uλn

), uλn
〉 ≥ (1 − θ0)

4
‖uλn

‖2.

This shows that {uλn
} is bounded in H. Hence, there exists a subsequence of {λn}, still denoted by {λn}

and u0 ∈ H such that uλn
⇀ u0 in H. Proceeding as in Lemma 2.6, we conclude that u±

λn
→ u±

0 �= 0 in
H. Moreover,

〈Φ′
0(u0), ϕ〉 =

∫
R3

(∇u0 · ∇ϕ + V (x)u0ϕ) dx −
∫
R3

K(x)f(u0)ϕdx

= lim
n→∞

⎡
⎣∫
R3

(∇uλn
· ∇ϕ + V (x)uλn

ϕ) dx +
λn

4

∫
R3

φuλn
uλn

ϕdx

−
∫
R3

K(x)f(uλn
)ϕdx

⎤
⎦

= lim
n→∞〈Φ′

λn
(uλn

), ϕ〉 = 0.

This shows Φ′
0(u0) = 0, and so, u0 ∈ M0 and Φ0(u0) ≥ m0. Next, we prove that Φ0(u0) = m0. Let

λn ∈ [0, 1]. Then, it follows from (K) and (F3) that there exists a K0 > 0 such that for all s ≥ K0 or
t ≥ K0,

Φλn
(sv+

0 + tv−
0 ) =

s2

2
‖v+

0 ‖2 +
λns4

4

∫
R3

φv+
0
(v+

0 )2dx −
∫
R3

K(x)F (sv+
0 )dx

+
t2

2
‖v−

0 ‖2 +
λnt4

4

∫
R3

φv−
0

(v−
0 )2dx −

∫
R3

K(x)F (tv−
0 )dx

+
λns2t2

4

∫
R3

[
φv−

0
(v+

0 )2 + φv+
0
(v−

0 )2
]
dx

≤ s2

2
‖v+

0 ‖2 +
s4

4

∫
R3

φv0(v
+
0 )2dx −

∫
R3

K(x)F (sv+
0 )dx

+
t2

2
‖v−

0 ‖2 +
t4

4

∫
R3

φv0(v
−
0 )2dx −

∫
R3

K(x)F (tv−
0 )dx < 0. (5.2)
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In view of Lemma 2.4, there exists (sn, tn) such that snv+
0 + tnv−

0 ∈ Mλn
, which, together with (5.2),

implies 0 < sn, tn < K0. Hence, from (1.4), (1.5), (1.9) and (2.1), we have

m0 = Φ0(v0)

= Φλn
(v0) − λn

4

∫
R3

φv0(v0)2dx

≥ Φλn
(snv+

0 + tnv−
0 ) +

1 − s4
n

4
〈Φ′

λn
(v0), v+

0 〉 +
1 − t4n

4
〈Φ′

λn
(v0), v−

0 〉 − λn

4

∫
R3

φv0(v0)2dx

≥ mλn
+

1 − s4
n

4
λn

∫
R3

φv0(v
+
0 )2dx +

1 − t4n
4

λn

∫
R3

φv0(v
−
0 )2dx − λn

4

∫
R3

φv0(v0)2dx

≥ mλn
− K4

0λn

4

∫
R3

φv0(v0)2dx,

which yields
lim sup

n→∞
mλn

≤ m0. (5.3)

From (1.4), (1.9) and (5.3), we have

m0 ≤ Φ0(u0) = lim sup
n→∞

Φλn
(uλn

) = lim sup
n→∞

mλn
≤ m0.

This shows that Φ0(u0) = m0. �

6. Proof of Corollary 1.4

When (V,K) ∈ K, for readers’ convenience, we first state the following important consequence to recover
compactness.

Proposition 6.1. ([1, Proposition 2.1]) Assume that (V,K) ∈ K. If (V2) holds, then E is compactly
embedded in Lq

K(R3) for every q ∈ (2, 6); if (V3) holds, then E is compactly embedded in Lp
K(R3).

Proof of Corollary 1.4. Due to Proposition 6.1 and [21, Lemmas 2.4–2.6], under the assumptions of Corol-
lary 1.4, it is easy to verify that Φλ satisfies the similar geometry structure as the case where (V) and
(K) hold. Thus, Corollary 1.4 follows by slightly modifying the arguments of Sects. 2–5. �

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions and comments.

References

1. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing
at infinity. J. Differ. Equ. 254(4), 1977–1991 (2013)

2. Alves, C.O., Souto, M.A.S., Soares, S.M.: A sign-changing solution for the Schrödinger–Poisson equation (2014).
arXiv:1408.3021

3. Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ.
Equ. 29, 25–42 (2004)

4. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann.
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