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Abstract. In order to design the microstructure of metamaterials showing high toughness in extension (property to be
shared with muscles), it has been recently proposed (Dell’Isola et al. in Z Angew Math Phys 66(6):3473–3498, 2015) to
consider pantographic structures. It is possible to model such structures at a suitably small length scale (resolving in detail
the interconnecting pivots/cylinders) using a standard Cauchy first gradient theory. However, the computational costs for
such modelling choice are not allowing for the study of more complex mechanical systems including for instance many
pantographic substructures. The microscopic model considered here is a quadratic isotropic Saint-Venant first gradient
continuum including geometric nonlinearities and characterized by two Lamé parameters. The introduced macroscopic
two-dimensional model for pantographic sheets is characterized by a deformation energy quadratic both in the first and
second gradient of placement. However, as underlined in Dell’Isola et al. (Proc R Soc Lond A 472(2185):20150790, 2016),
it is needed that the second gradient stiffness depends on the first gradient of placement if large deformations and large
displacements configurations must be described. The numerical identification procedure presented in this paper consists
in fitting the macro-constitutive parameters using several numerical simulations performed with the micro-model. The
parameters obtained by the best fit identification in few deformation problems fit very well also in many others, showing
that the reduced proposed model is suitable to get an effective model at relevantly lower computational effort. The presented
numerical evidences suggest that a rigorous mathematical homogenization result most likely holds.
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1. Introduction

In recent years, the new concept of conceiving tailored materials has been developed: These artificial
materials are architectured to produce exotic or adaptive behavior and are some times called metamate-
rials [28]. These last are characterized by ‘ad hoc’ microstructure whose mechanical properties could be
induced by an internal architecture which is designed in order to exhibit an unexpected behavior useful
in some specific applications. In Ref. [2,92], for instance, are introduced truss microstructures that in the
homogenized limit produces two-dimensional elastic materials with uncommon mechanical interactions
which cannot be described at a macro-scale in the classical framework of Cauchy stress theory. Following
this way of thinking, we study a mechanical system (see Fig. 1) that can be called pantographic structure
(see [34,40,53,102]) because can be regarded as a net of ‘fibers’ arranged in such a way that a small defor-
mation of each fiber could results in a large deformation of the whole sample. In Ref. [34], experimental
bias extension tests shows three specific areas under the stress–strain curve. Addition to the usual linear
elastic regime, a nonlinear elastic behavior zone can be distinguished, and thereafter, a zone, in which
begin to occur the first breaks, characterized by a further significant increase of the resultant force which
the material is capable of sustaining. As a result, this structure is characterized by a high toughness,
i.e., a sample is able to absorb a large amount of energy, beyond the elastic regime, plastically deforming
before failure. Furthermore, because the energy is concentrated in certain well-defined locations, i.e., the
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Fig. 1. Sample topology

four corners and the connecting pivots in the central area, the failure mechanism can easily predict on
the basis of the type of deformation and of the material of which the specimen is made. For instance,
in a bias extension test, more the material is brittle, the more the failure is expected into central areas;
on the contrary, more the material is ductile, the more the failure will occur in the four corners and
progressively on the clamped edges. Finally, this material shows also an advantageous strength-to-weight
ratio, making it particularly attractive in many applications both in the industrial and aerospace world.

The description of these pantographic structures could be fully addressed by means of classical con-
tinuum theories, as for instance, a Cauchy-type continuum model; however, although it is possible to
describe in detail the mechanical behavior of the system, considering such a model entails great computa-
tional efforts. Alternatively, a generalized continuum theory could be employed in which more kinematical
descriptors are introduced to capture the features induced by the microstructure at a scale sufficiently
large to neglect the geometrical details of the same microstructure. The viewpoint taken in the present
paper is to adopt a Cauchy continuum model as a reference one and compare it with a generalized model
in order to validate and to assess the range of applicability of this latter with a suitable parameter esti-
mation. As a result, the generalized model could be considered as a more nimble and flexible tool for
calculating and forecasting. This point of view is not new, in fact, the need to include in continuum
theories the description of long range interaction between the material particles, it has already been dealt
with in the pioneer works of Piola [36] who considered the possibility to postulate a deformation energy
of continua including second and possibly higher gradients of placement.

In this framework of generalized continuum, accounting for different microstructural features, many
elastic theories have been introduced as micromorphic [44,52], micropolar [3,4,6,42,43,51,61], higher gra-
dient [35,37,38,72,73,98] and non-local continua [30,45]. In particular, to address the problem of charac-
terizing net of fibers, we can refer to models which in different ways take into account the deformation of
the fibers; indeed, some models are formulated assuming the fibers to be inextensible [22,31,32,34,39,96],
others including the resistance to stretch, shear distortion [39,94–96], bending [23,39,89,90] and also twist
[94,95]. These kind of models can be obtained with proper homogenization procedures starting from suit-
able microstructures (see, e.g., [1,13,33,42,54,64,77]) and can be employed to describe the mechanical
behavior of a large set of material both artificial materials as membrane structures [10,56,60,71], fiber-
reinforced composites or synthetic textile materials [9,65–68,75,76,91], and fiber-reinforced biological
tissues as articular cartilage with collagen fibers [47,48,62,63,97] or trabecular bone [55,69].
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At this point, some considerations are needed concerning the macro-models which can be introduced
for pantographic structures. These models based on higher gradient continua involve more material para-
meters than the classical Cauchy medium, therefore ‘ad hoc’ tools are required to evaluate them (see,
e.g., [14,27,41,49,70,81,82,93,99]). Moreover, second gradient elasticity needs a formulation developed
to properly approximate solutions in the Sobolev space H2, and hence, a standard finite element analysis
is not optimized in this context. On the other hand, newly developed numerical tools can be profitably
employed to avoid this lack of formulation (see, e.g., [15–19,29,57–59,100,101]).

In conclusion, some challenges and future perspectives are worth noting for these macro-models based
on generalized continua as issues related to dissipation which can be caused by different sources [11,12,74]
damage evolution and detection [24,79,80,83,87,103,104], as well as contacts and soft impacts [7,8] and
unusual behavior such as strain localization related to buckling under certain critical loads [5,20,21,25,
26,46,50,78,84–86,88].

Summarizing, in this paper, we perform a micro–macro identification for planar pantographic struc-
tures. In Sect. 2, we recall the basic kinematics of the two models employed for the identification proce-
dure, following a standard Cauchy continuum theory for the micro-model and [33] for the macro-second
gradient model. The results of the parameter estimation are outlined and discussed in Sect. 3.

2. Pantographic structure modeling

Herein, a Cauchy continuum model which describes in details the considered pantographic structure is
used as reference model to test and validate the more efficient—from a computational point of view—
macro-model adopted here following the reasons exposed in [33]. In what follows, a concise description
of the two models adopted is provided.

2.1. Micro-model

In the framework of a Lagrangian description of Kinematics, let X ∈ B ⊂ R3 be the position of a
material particle in the reference configuration and let its image x through the map χ : B → R3 be its
position in the current configuration. Accordingly, with classical notation, we introduce the deformation
gradient tensor F = ∇χ and subsequently the Green–St-Venant strain tensor as follows

E =
1
2

(
F TF − I

)
. (2.1)

By introducing the displacement

u(X) = χ(X) − X (2.2)

we can recast Eq. (2.1) as

E(X) =
1
2

(∇u + ∇uT + ∇uT∇u
)

(2.3)

highlighting the geometric nonlinearity in terms of ∇u. Assuming the constitutive relation for isotropic
and homogeneous materials, the Piola stress tensor can be evaluated as

T = λ trE I + 2μE (2.4)

where λ and μ are the Lamé parameters. Furthermore, the strain energy density is defined as

Wm(E) =
1
2
T : E. (2.5)
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The governing equations are derived from Eq. (2.5) by means of a variational principle as follows

δ

∫

B

Wm(E) dB = 0 ∀ δu. (2.6)

2.2. Macro-model

To describe the samples under study at macro-level, we consider the model presented in [33]. Therein, a
micro-structured two-dimensional continuum made up of two families of orthogonal fibers, arranged as
the beams in Fig. 1, is employed. This model, suitable for plane motion, accounts for stretching, bending
and shear resistance related to the angle change between fibers belonging to different families.

By introducing a Lagrangian basis Dα, α = {1, 2} oriented along the two families of fibers, the current
position x of a material point can be made explicit as

x = χ(X) = (Xα + uα(Xβ))Dα (2.7)

i.e., as function of the position X in the reference configuration through the map χ : Ω → R2, being Ω
a rectangular plane region. Of course, the particular expression of the map χ in Eq. (2.7) is dictated by
the fiber Kinematics. Also in this context, we set F = ∇χ. The field of unit vectors tangent to the fibers
in the current configuration can be obtained by

eα =
FDα

‖FDα‖ . (2.8)

Moreover, the auxiliary vector field cα is introduced as

cα =
∇F |Dα � Dα

‖FDα‖ (2.9)

where (∇F |Dα � Dα )β = ∂αF β
α = ∂ααχβ .

For this kind of micro-structured two-dimensional continuum, we introduce as tailored strain measures
the stretch of fibers

εα = ‖FDα‖ − 1, (2.10)

the fiber curvature

κα = ‖cα − (cα · eα) eα‖ = ‖(I − eα � eα) cα‖ , (2.11)

which considers each fiber as a beam axially deformable and shear undeformable and takes bending
deformation of the fibers into account, the shear distortion γ, i.e., the change in the angle between the
fibers defined by

sin(γ) = e1 · e2. (2.12)

A strain energy density incorporating all these contributions is assumed to be

WM (εα, κα, γ) =
∑
α

(
1
2
KIε

2
α +

1
2
KIIκ

2
α

)
+

1
2
Kpγ

2 (2.13)

where the material parameters KI , KII and Kp are positive and constant.
As done for the micro-model, also in this case, we use a variational principle to obtain the governing

equations:

δ

∫

Ω

WM (εα, κα, γ) dΩ = 0 ∀ δu. (2.14)
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Table 1. Characteristic dimensions of pantographic samples

Sample n. a (mm) b (mm) hp (mm) dp (mm) hp/dp p (mm)

1 0.9 1.6 1 0.9 1.11 4.85
2 0.9 1.6 0.5 0.9 0.56 4.85
3 0.9 1.6 1 1.2 0.83 4.85
4 0.9 1.6 0.5 1.2 0.42 4.85
5 0.9 1.6 1 1.6 0.62 4.85
6 0.9 1.6 0.5 1.6 0.31 4.85

Table 2. Mechanical properties of Polyamide PA 2200

Mechanical properties Values

Mass density 930 kg/m3

Young modulus 1600 MPa
Poisson ratio 0.3

Fig. 2. Two control angles employed in the identification procedure

Table 3. Identified stiffnesses of pantographic sheets

Sample KI (N m−1) KII (N m) Kp (N m−1)

1 6.164 × 105 1.299 × 10−2 1.076 × 103

2 6.537 × 105 1.443 × 10−2 1.600 × 103

3 5.929 × 105 1.443 × 10−2 2.582 × 103

4 6.385 × 105 1.443 × 10−2 3.556 × 103

5 6.461 × 105 2.886 × 10−2 6.197 × 103

6 7.601 × 105 3.607 × 10−2 7.229 × 103

3. Numerical macro-parameter identification

In the present section, comparing the two aforementioned models, an identification of the material para-
meters of the homogenized continuum macro-model is carried out via a best fit, employing suitable cost
functions. In detail, we perform bias extension test simulations using the two models under the same con-
ditions for six different kinds of samples and compare the overall stored energy and some representative
deformations at points chosen specifically for this purpose.

The shape of the sample is a rectangle of size 0.06987 × 0.2096 m. The microstructure is constituted
by ‘beams’, whose geometry is a rectangular cross section of size a × b, the same for all the samples and
different connector-pivots with height hp and diameter dp, as listed in Table 1. The material adopted for
the numerical simulations performed with the micro-model is the polyamide PA 2200, whose material
properties are shown in Table 2.
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Fig. 3. Sample n. 1: Comparison of the total energy between the micro-Cauchy model (points) and the macro-second
gradient model (solid line)
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Fig. 4. Sample n. 1: Comparisons between the micro-Cauchy model (points) and the regression with a macro-second gradient
model (solid line). Angle at the center ψC (blue line), angle at the corner ψV (red line) on the left; total reaction on the
right (color figure online)

In the identification procedure, we estimate the material parameters of the macro-model KI, KII and
Kp using deformations of the detailed micro-model for comparison. More precisely, we perform three
regressions for each sample. The key idea is to minimize the squared error of the total elastic stored
energy and of the two control angles ψ at probe points, evaluated with the previously mentioned models.
The probe points are the center of the specimen C and the corner of the ‘quasi-rigid’ triangle near a base
of the specimen V (see Fig. 2). These two angles are chosen because each of them is mainly related to one
of the energy terms of the macro-model. Indeed, the energy involved in the distortion angle at the center
is mostly governed by the parameter Kp, while the distortion angle at the triangle vertex depends for the



ZAMP Numerical identification procedure Page 7 of 17 95

Fig. 5. Overlap between simulation with micro-Cauchy model (gray) and with macro-second gradient model (colors, which
indicate the shear distortion γ) for the sample n. 1. Bias extension test with imposed displacement u0 = {2, 4, 6} cm (color
figure online)

most part on the bending energy characterized by KII. Finally, the last parameter KI can be derived by
considering the whole stored energy.

Table 3 shows the fitting results obtained through a numerical investigation conducted by the FEM
environment COMSOL Multiphysics for the considered samples. Specifically, we use a standard finite
element formulation for the micro-model, while a Hellinger–Reissner variational principle is employed to
adapt standard FE tools developed for first gradient continuum to a second gradient continuum as the
one considered for the macro-model. In detail, we introduce two auxiliary fields M and Λ and recast
only second gradient terms of the energy density (2.13), i.e.,
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Fig. 6. 3D deformation details for the sample n. 1; the colors in the zooms indicate the stored elastic energy density (color
figure online)
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Fig. 7. Sample n. 2: Comparison of the total energy between the micro-Cauchy model (points) and a macro-second gradient
model (solid line)

W
(κα)
M (∇u,∇∇u) =

1
2
KIIκ

2
α(∇u,∇∇u) (3.1)

considering the extended energy density, which involves only first gradient contributions, as follows

Ŵ
(κα)
M (∇u,M ,∇M) =

1
2
KIIκ̂

2
α(M ,∇M) + Λ (M − ∇u) (3.2)

where Λ could be interpreted as a field of Lagrange multipliers.
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Fig. 8. Sample n. 2: Comparisons between the micro-Cauchy model (points) and a macro-second gradient model (solid
line). Angle at center (blue line), angle at corner (red line) on the left; total reaction on the right (color figure online)
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Fig. 9. Sample n. 3: Comparison of the total energy between the micro-Cauchy model (points) and a macro-second gradient
model (solid line)

The results of Table 3 clearly show the presence of a coupling between the different energy contri-
butions of the macro-model. Indeed, by changing the aspect ratio hp/dp of the pivot, a change in the
extensional and flexural rigidity of the fibers is also observed notwithstanding they retain the same cross
section.

In Figs. 3 and 4(left), the total energy and the angles ψC and ψV used for fitting the macro-model
are shown as the imposed displacement relative to the bias test is varying. In Fig. 4(right), in order to
get a better insight into the regression results, a comparison between the total reaction of the micro-
model and the one evaluated with the macro-model is plotted versus the imposed displacement. As far as
relatively small displacement are concerned, the accordance between the two models is quite satisfactory
while at u0 = 6 cm a discrepancy is observed (see also Fig. 5). This phenomenon can be explained by
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Fig. 10. Sample n. 3: Comparisons between the micro-Cauchy model (points) and a macro-second gradient model (solid
line). Angle at center (blue line), angle at corner (red line) on the left; total reaction on the right (color figure online)
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Fig. 11. Sample n. 4: Comparison of the total energy between the micro-Cauchy model (points) and a macro-second gradient
model (solid line) (color figure online)

considering that the micro-model has a richer kinematics than the macro one. Indeed, the former model
allows twist and possibly out-of-plane bending of fibers to occur as well as shear distortion, bending and
possibly extension of pivots, while the latter model does not. We observe (see Fig. 6) that for the more
refined micro-model a non-negligible amount of energy is stored as deformation energy for configurations
which are not accounted for in the coarser macro-model. Therefore, equating the two total energies of the
examined models and evaluating the constraint reactions—which can be computed as the first derivatives
of the energies with respect to the imposed displacement—we expect a discrepancy between the two
reactions. Looking at Fig. 4(right), we can confirm this last statement at the largest displacement, which
is likely to be the one where deformation energies due to the richer kinematics of the refined model start
to acquire significance.
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Fig. 12. Sample n. 4: Comparisons between the micro-Cauchy model (points) and a macro-second gradient model (solid
line). Angle at center (blue line), angle at corner (red line) on the left; total reaction on the right (color figure online)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

imposed displacement, m

0

10

20

30

40

50

60

70

80

en
er

gy
, J

macro model
micro model

Fig. 13. Sample n. 5: Comparison of the total energy between the micro-Cauchy model (points) and a macro-second gradient
model (solid line)

For all the samples under study, we perform the same identification procedure and the results are
shown in Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. Similar considerations can be made for all samples as
those already made for the first one. Moreover, we note that different slenderness of the pivots results in
a different discrepancy of the reaction force between the two models at the largest displacement. Indeed,
for samples n. 1, 2 and 3, the macro-model exhibits a greater reaction force than the micro-model, while
the opposite occurs for samples n. 5 and 6. This effect may be due to the fact that the energy associated
with the richer micro kinematics could contribute to the overall reaction, and therefore, we might either
overestimate or underestimate this reaction; sometimes also a compensation of this effect might happen
as in the case of sample n. 4.
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Fig. 14. Sample n. 5: Comparisons between the micro-Cauchy model (points) and a macro-second gradient model (solid
line). Angle at center (blue line), angle at corner (red line) on the left; total reaction on the right (color figure online)
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Fig. 15. Sample n. 6: Comparison of the total energy between the micro-Cauchy model (points) and a macro-second gradient
model (solid line)

In order to test the degree of predictivity of the macro-model proposed, we also compare the two
models in a different test in which a relative rotation and elongation of short sides are imposed (see,
for instance, the test carried out on the sample n. 5 in Fig. 17). We see a good agreement between
the models, as remarked above, if the three-dimensional equilibrium shape remains in plane without
twist and out-of-plane bending of fibers as well as shear distortion, bending and extension of piv-
ots.
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Fig. 16. Sample n. 6: Comparisons between the micro-Cauchy model (points) and a macro-second gradient model (solid
line). Angle at center (blue line), angle at corner (red line) on the left; total reaction on the right (color figure online)

Fig. 17. Overlap between simulation with micro-Cauchy model (gray) and with macro-second gradient model (colors, which
indicate the shear distortion γ) for the sample n. 5. Generalized bias test with imposed displacement u0 = 3 cm and rotation
θ = 20 degrees (color figure online)

4. Conclusions

In this paper, we consider two models aimed at describing the behavior of pantographic structures.
At a relatively small length scale, a micro-model based on Cauchy first gradient continuum theories is
adopted in order to provide an accurate description of the geometry, and the deformation of the elastic
pivots which represent a crucial point in modeling these structures. This choice unluckily requires a
heavy computational load with the finite element method because a high number of degrees of freedom
is involved, even if one considers a small specimen as done experimentally in [34].

On the other hand, we consider a higher gradient reduced-order model characterized by a length scale
in which the elastic pivots have negligible dimensions. Such a macro-model has predictive performances
absolutely compatible with the more refined micro-model but a lower computational cost. For this macro-
model, the significant amount of elastic energy stored in the pivots is taken into account by means of a
suitable elastic potential related to the shear distortion, i.e., the change in the angle between the fibers
‘intersecting’ at the same pivot.

Herein, we compare the two models and perform a numerical identification of the material parameters
characterizing the macro-model having assumed fixed and known those of the micro-model, considered
as a reference model.



95 Page 14 of 17 I. Giorgio ZAMP

We, finally, observe that when the more detailed micro-model exhibits a significant three-dimensional
deformation, the agreement between the two models is lost. Of course, this is an expected result because
the macro-model is characterized by planar motion and therefore is not able to describe such a 3D
deformation.
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