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The formulation of dynamical contact problems with friction in the case of systems of
rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes
revisited
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Abstract. The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is
governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration
manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange’s analytical
dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent
evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution
problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power
philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral
multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally
invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific
examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is
not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in
which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox
(indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange’s
philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not
in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first
time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove
that some indeterminacy of the Painlevé paradox is fixed in this formulation.
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Introduction

A large number of engineering problems are still conveniently studied in the general framework of the
dynamics of rigid body systems. A lot of common applications, such as the computation of the dynamics
of granular media in civil engineering or the analysis of a mechanized arm grabbing an object in robotics,
require the handling of nonpenetration conditions (synonymously contact conditions) and/or friction
within the general theory of rigid body dynamics.

Until the late 1970s, the usual practice in rigid body dynamics with contact and friction was to write
a collection of ordinary differential equations. There was a differential equation governing the situation
where body 1 achieves active contact with body 2, a differential equation governing the situation where
body 1 achieves active contact with body 3, etc. One was supposed to switch from one equation to
another according to the situation which was met. This point of view is referred to as event-driven (this
terminology seems to be due to Jean Jacques Moreau) in this paper, but the denomination of hybrid
systems is also frequently encountered.

The event-driven point of view is convenient neither for theoretical investigations, nor for computa-
tional purposes (especially in situations where infinitely many impacts accumulate in a bounded time
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interval). A new strategy emerged at the end of the 1970s. It was originally developed by Schatzman [24]
who was the first to formulate a global (with respect to time) evolution problem governing the frictionless
bouncing of a point particle against some obstacle. Her formulation was the first one to encompass the
episodes of smooth motion as well as the impacts possibly encountered during the evolution of the system.
The price to pay was that the problem was no longer governed by an ordinary differential equation, but
by something more complicated involving extensive use of measure theory (in this framework, the per-
cussion, that is the instantaneous reaction force exerted by the obstacle during a collision is represented
by a Dirac measure with respect to time). As an immediate outcome of such a formulation, she was able
to implement a penalty technique to prove the existence of a solution. The setting of Schatzman [24] was
restricted to the (frictionless) dynamical motion of a point particle (or a finite collection of such points).
It was rapidly extended by Moreau [14] to the situation of the dynamic motion of a finite collection of
rigid bodies satisfying frictionless noninterpenetration conditions and possibly bouncing against finitely
many (frictionless) fixed external obstacles. The formulation of Moreau was a suitable modification of the
classical Lagrange equations governing the dynamic motion of a finite collection of rigid bodies, in which
Lagrange generalized acceleration was allowed to be a measure (with respect to time) to account for the
(generalized) velocity discontinuities occurring during collisions, in the line of the setting of Schatzman for
point particles. In particular, the reaction force involved in Moreau’s formulation of frictionless unilateral
dynamics is a generalized reaction force, consistently with the framework of Lagrange. In some sense, the
article [14] of Jean Jacques Moreau has made clear how to formulate consistently the frictionless uni-
lateral dynamics of a finite collection of rigid bodies with enough generality to encompass any practical
situation raised by engineering applications. This opened the way to numerous theoretical investigations
on frictionless multibody dynamics. Around 1985, Monteiro Marques proved the first convergence results
for the time-stepping technique introduced by Moreau for the sake of numerical computation (see the
monograph [13] and the references to the original articles therein). In Monteiro Marques’s approach,
the time-stepping was another technique, alternative to Schatzman’s penalty method, to prove the exis-
tence of a solution. It had the advantage of being directly related to a strategy to produce numerical
approximations. In [13], Monteiro Marques’s existence proof was restricted to the case of the completely
inelastic bouncing of a point particle against one smooth obstacle. Then, subsequent refinements of the
time-stepping technique were worked out by Schatzman, Manuel Monteiro Marques, Laetitia Paoli and
coworkers to prove always more general existence results applying to more general impact laws, rigid
solids instead of point particles, several unilateral constraints instead of only one. . . A recent account
of this line of research, which is also relevant from the point of view of analyzing numerical strategies,
can be found in [19,20]. In parallel to these investigations on the convergence of time-stepping schemes
and the existence of solution of the evolution problem formulated by Moreau, the question of uniqueness
of solution was also studied, motivated by a striking example contained in Schatzman’s original paper
[24], exhibiting two distinct solutions in an evolution problem with all data being of class C∞. Percivale
[22,23] was the first to suggest a possible workaround by requiring all the data to be analytic instead of
only C∞. But, he was only able to prove uniqueness of solution in very restrictive situations. This was
generalized by Ballard [1,3] who proved the existence and uniqueness of a solution for the most general
evolution problem raised by frictionless unilateral multibody dynamics, as formulated by Moreau in the
most general case (multiconstraints, arbitrary impact law, arbitrary mass matrix), but under the regu-
larity requirement of analyticity. Hence, it can be said that frictionless unilateral multibody dynamics
has reached today a certain stage of completion involving :
• a sound and consistent mathematical formulation of the general evolution problem, encompassing

most of the situations faced in engineering applications,
• a general existence and uniqueness theory for that evolution problem,
• convergence proof for the main numerical algorithms designed to compute approximate solutions.

Naturally, there is still matter for theoretical investigations in that field. A stability theory, similar to
that which is known in smooth mechanics, is still to be developed in this framework. The same is true
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of a theory of control in frictionless unilateral multibody. However, no doubt that any future theoretical
investigations in these fields will strongly rely on the general formulation of the evolution problem and
its analysis.

Meanwhile, in most uses of unilateral multibody dynamics in engineering problems, it is desirable to
account for friction. Unfortunately, frictional unilateral multibody dynamics has not reached yet the same
stage of completion as in the frictionless case. Actually, the case of a collection of point particles must be
distinguished from the case of a collection of rigid bodies.
• In the case of a collection of point particles, Moreau [15] and Monteiro Marques [13] worked out a

consistent formulation of the evolution problem that implements Coulomb friction. Monteiro Mar-
ques proved the existence of a solution (case of a single constraint and completely inelastic impact
law) by proving the convergence of a sequence of approximations built by use of an appropriate time-
stepping method. Recently, Charles and Ballard [4] proved the existence, but also the uniqueness of
a solution under the additional regularity hypothesis of analyticity of the data, for the most general
evolution problem raised by the frictional unilateral dynamics of a finite collection of point particles
(case of several constraints and an arbitrary impact law). Their evolution problem encompasses that
of Moreau and Monteiro Marques as a particular case.

• In the case of a collection of rigid bodies, the situation is rather different and surprisingly no general
formulation of the dynamics can be found in the literature. By general formulation, we simply
mean a precise set of mathematical conditions to be checked to decide whether a given motion of
the system is an admissible dynamical evolution or not, as is available for the frictionless multibody
dynamics and that will be recalled in this article (problem P2). Instead of such a precise formulation,
the general idea that prevails in the field is that the dynamics is governed by a dynamical equation
involving reaction forces, complemented by suitable contact conditions and friction law. But, the
usual laws for dry friction (such as the Coulomb law) are commonly formulated in terms of reaction
forces in the real world, that is, forces which are represented as vectors in the usual three-dimensional
space, and in terms of the velocities of the material contact points. This paradigm has not led so far
to any general formulation of frictional multibody dynamics. It has only resulted in two outcomes:
− A consistent formulation of the frictional dynamics in very specific cases, such as the Painlevé

example. Such a consistent formulation (based on the paradigm of Coulomb law applying to
reaction forces of the real world) for the case of only one material contact point (which contains
the Painlevé example) and the completely inelastic impact law can be found in Stewart [25].
The motivation of Stewart was to prove the existence of a dynamical solution for the Painlevé
example, since suspicion of nonexistence of solution had fed a one century old controversy
which could be entitled: ‘Is the (local) Coulomb law consistent with rigid body dynamics?’.

− Numerical methods to compute discrete-time solutions in more complex cases. Examples of
such methods are those of Jean [8], which were inspired by the time-stepping technique of
Monteiro Marques, and the method of Stewart in [25]. A common feature of all these methods
is that they are derived on the basis of the paradigm of the Coulomb law applying to forces of
the real world. But, they are not derived on the basis of a general continuous-time evolution
problem. This was recognized by Stewart in [26]: ‘In many ways it is easier to write down a
numerical method for rigid body dynamics than it is to say exactly what the method is trying
to compute.’

The formulation of Stewart (based on the paradigm of Coulomb law applying to reaction forces of
the real world) for the plane problem and only one material point will be discussed in section 6 of this
paper. It is the formulation that underlies the Painlevé example. Stewart proved in [25] the existence of
a solution in the restrictive case where the impact law is the completely inelastic one. In that case, it is
well known that there may be multiple solutions for this Cauchy problem. This indeterminacy is what
we address as Painlevé paradox in this paper. Stewart also proved in [25] that the particular solution he
constructs (we recall that there may exist multiple solutions in general) is dissipative; that is, the sum
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of the kinetic energy and the potential energy is not increasing with time. This is important because
Kane [9] exhibited in 1983 a striking example that falls into Stewart’s general framework (except that the
restitution coefficient is not zero in Kane’s example), and where certain situations of collision necessarily
increase the kinetic energy of the system. This possible increase in kinetic energy is what we address as
Kane paradox in this paper. Kane’s example proves that the dissipativity result in [25] cannot extend to
the situation of a restitution coefficient of 0.5.

To summarize, the paradigm of Coulomb law applying to reaction forces of the real world has not
resulted yet in any precise formulation of a general continuous-time evolution problem. In addition, in the
few specific cases where such a precise evolution problem was obtained, it turned out to show indetermi-
nacy (multiple solutions for the Cauchy problem) and energetic inconsistency (possible increase in kinetic
energy during collisions). Writing down a sound and consistent formulation of a general continuous-time
evolution problem may be felt not strictly necessary for the purpose of numerical modeling. However, it
is an indispensable preliminary step for all the theoretical investigations such as the convergence analysis
of a numerical method, or the development of a theory of stability or control. Deriving such a general
formulation of frictional multibody dynamics is what this paper is about.

Our approach will rely on the following general prerequisites.
1. Mechanical consistency. In any theory of mechanics, the representation of forces must be consistent

with the geometric modeling. For example, the Cauchy stress field is an appropriate representation
of internal forces in a classical three-dimensional deformable continua, but speaking of the stress
field inside a body which is modeled (idealized) as a rigid body is pointless. Modern mechanics has
made this consistency systematic by requiring that forces should be dual of velocities through the
principle of virtual powers (but this idea goes back to Lagrange). In a collection of rigid bodies (or,
more precisely, of bodies which are modeled as rigid bodies), the appropriate representation of forces
is the so-called Lagrange generalized force. In the case of a system of rigid bodies with contacts,
one can always calculate the Lagrange generalized reaction force from the contact forces in the real
world but, one cannot recover, in general, the contact forces distribution from a Lagrange generalized
reaction force. Except in a few particular cases, the distribution of contact forces must be considered
as indeterminate as the stress field is in each body. Here, the fact that the calculation of the contact
force from the generalized reaction force is possible in a few specific examples, such as the Painlevé
example, has maintained a confusion. In our opinion and in accordance with the modern point of
view on mechanics systematized by the principle of virtual powers, a general consistent formulation
of frictional multibody dynamics must be stated in terms of Lagrange generalized reaction force
and not in terms of contact forces in the real world. Besides, this is the usual point of view when
analyzing the frictional relative motion of two flat rigid bodies as in Coulomb’s original experiments
[5] where the friction law is naturally expressed in terms of the total force (and the total force is
precisely a component of the generalized force) and not in terms of the pointwise distribution of
local contact forces which is undetermined in a framework of rigid bodies modeling.

2. Energetic consistency. Our choice is to invoke the principle of maximal dissipation as a fundamental
axiom. This principle was already invoked in that context at least by Moreau in [17] and by Stewart
in [25]. However, in these references, it was invoked in connection with a friction law formulated in
terms of contact forces in the real world. On the opposite, we will invoke the principle of maximal
dissipation in connection with the use Lagrange generalized forces to derive the flow rule of the
friction law.

We feel these prerequisites as basics and well accepted in the whole continuum mechanics. We are
astounded that they have not been already applied to frictional unilateral multibody dynamics and
our opinion is that this is the origin of the paradoxes of Kane and Painlevé. Once they are accepted,
the derivation of a general evolution problem is straightforward. This general evolution problem is prob-
lem P ′

4 in this paper. It encompasses the case of any discrete mechanical system with arbitrary mass
matrix, an arbitrary number of unilateral constraint and the most general impact law. The friction law
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rules both the episodes of smooth motion and the collisions. Dissipativity of solutions for problem P ′
4 is

proved (Proposition 1); that is, energetic consistency is built-in within problem P ′
4 which is therefore free

of the Kane paradox. In addition, it is proved that certain examples of indeterminacies, as in the Painlevé
example, are fixed in this new formulation. Showing that problem P ′

4 is definitively free of indeterminacy
would require a proof of existence and uniqueness of solution. Such a result is highly plausible under the
additional assumption of analyticity of the data since it was already proved for problem P4 in [4], and
that problem P ′

4 has a similar structure. The main difference is that one may have unbounded friction
sets in problem P ′

4. Proving the existence and uniqueness of solutions of problem P ′
4 along the same

line as in [4], and thus, ruling out rigorously the indeterminacy of Painlevé paradox for problem P ′
4 is

postponed to future work.
The article is organized as follows. Section 1 draws a general picture of the Lagrangian formulation of

the dynamics of a collection of rigid bodies and sketches how (perfect) bilateral constraints are handled
in this framework as well as frictionless unilateral constraints in the lines of Moreau [14] and Ballard
[3]. The general idea is that the evolution problem for the dynamics of a system of rigid bodies is the
same as that for a point particle except that the point evolves in a space of dimension d instead of the
usual three-dimensional space and that we have a mass matrix that depends on the current configuration
q, in general. In Sect. 2, the simple situation of the dynamics of a point particle in frictional contact
with one smooth obstacle is considered since this is a situation in which everybody agrees on how the
problem should be formulated. This problem is exactly the one for which Monteiro Marques [13] proved
the existence of a solution by use of a time-stepping technique. The fact that uniqueness of solution
also holds true in the analytic case is proved in [4]. In Sect. 3, we extend the previous formulation to
the situation of an arbitrary discrete system (such as a rigid body, for example) with one frictional
constraint in the spirit of Lagrange’s point of view on rigid body dynamics. The generalization of the
previous formulation to the case of several constraints is obtained first in the case of a point particle first
(Sect. 4) and in the case of an arbitrary collection of rigid bodies then (Sect. 5). This analysis results
in problem P ′

4 which is the general evolution problem governing the dynamics of an arbitrary discrete
mechanical system with several unilateral constraints. In problem P ′

4, the impact law is needed to govern
the normal component of the generalized velocity during the collisions, whereas the friction law governs
the tangential part indifferently the smooth episodes of motion as well as the collisions. The energetic
consistency of this new formulation is proved in full generality (Proposition 1 at the end of Sect. 5). It
is shown in Sect. 6.1 that the paradigm of Coulomb friction applying to real-world reaction forces offers
a heuristic but systematic means to construct the friction sets entering in problem P ′

4. This enables us
to analyze in Sect. 6 how this new formulation of the dynamics is compared with the evolution problem
based on the paradigm of Coulomb friction applying to reaction forces in the real world in the few cases
where such a formulation is available. Such formulations are known to show paradoxes of indeterminacies
(Painlevé) and energetic inconsistencies (Kane), and we discuss how these paradoxes are fixed by adopting
a formulation along the lines of problem P ′

4.

1. Background in analytical mechanics and constraints

Analytical mechanics is a refinement of Newtonian mechanics which was developed by Lagrange in the
eighteenth century. Its basics are briefly recalled in this section with the purpose of fixing the notations
for the sequel.

1.1. Equation of the dynamics and virtual powers

The object is that of discrete mechanical systems. A discrete mechanical system is a mechanical system
whose arbitrary configuration in the space can be described by a finite number d of independent real
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numbers: the generalized coordinates denoted by q1, q2, . . . , qd. Here, ‘independent’ means that it is
always possible to conceive a motion for which all generalized coordinates but an arbitrary one, remain
fixed. The number d is called the number of degrees of freedom of the discrete mechanical system. Discrete
mechanical systems generally arise when a finite collection of solids, all of them being modeled as rigid
bodies and some of them being possibly connected by so-called perfect joints, is considered. A common
application field of discrete mechanical systems is robotics.

The notation q = (q1, q2, . . . , qd) will often be used and q will be called the abstract configuration
(or sometimes simply, the configuration) of the system. A motion of the system is simply a mapping
q(t) defined on some time interval and taking abstract configuration values. As usual, its derivative with
respect to time is denoted by q̇(t) and the vector q̇(t) is called the generalized velocity at time t. The
generalized velocity is a convenient mathematical representation of the whole velocity field over the body
(or bodies). The kinetic energy K(q, q̇) is quadratic with respect to the generalized velocity and defines
the so-called kinetic matrix M(q) :

K(q, q̇) =
1
2
q̇ · M(q) · q̇.

The kinetic matrix is always symmetric and positive. It is actually positive definite, if the system does
not involve any massless components, which will always be assumed in the sequel.

More precisely, the set Q of all abstract configurations is endowed with the structure of a differentiable
manifold. This point of view makes it possible to consider an abstract configuration q with no need of a
prior definition of generalized coordinates (that is, a parametrization of the system) and is particularly
useful when it is important to distinguish intrinsic quantities, that is quantities not relying on a specific
choice of generalized coordinates on the configuration manifold. In this context, the generalized velocities
belong to tangent spaces to the configuration manifold. The kinetic matrix endows each tangent space with
a scalar product, so that the configuration manifold is actually a Riemannian manifold. When emphasis
is to be put on intrinsic quantities, the following alternative notations will be possibly encountered in the
sequel:

(
q̇1 , q̇2

)
q

= q̇1 · M(q) · q̇2,
∥
∥q̇

∥
∥
q

=
√

q̇ · M(q) · q̇.

In any case, the point of view of Riemannian manifold on the configuration space, although enlightening,
will not be strictly needed and there will be no harm in identifying in the sequel the configuration manifold
with (an open subset of) R

d and the tangent space TqQ at configuration q, with R
d. This identification

will be nothing but considering a particular choice of generalized coordinates.
The generalized force f of Lagrange is defined by means of the virtual power that the internal and

external forces develop in any virtual generalized velocity v̂. This virtual power reads as:
〈
f, v̂

〉
= fiv̂

i,

(with the usual convention of summation on repeated indices) and shows that the generalized force
belongs to the dual space T ∗

qQ of the vector space TqQ of all generalized velocities at configuration q.
In particular, the generalized force for a mechanical system with d degrees of freedom has d components.
The virtual power point of view is usually used to compute the generalized force from a given distribution
of forces f̃(x) in the real world (here x denotes the space variable in the three-dimensional space). First,
the real-world velocity ṽ(x) is computed in terms of the generalized velocity v̂:

ṽ(x) = l(q,x) · v̂,

where l(q,x) : TqQ �→ R
3 is a linear mapping depending in general on the current configuration q and

x. Then, the virtual power paradigm:

∀v̂,
〈
f, v̂

〉
=

∫
f̃(x) · ṽ(x) dx =

〈∫
tl(q,x) · f̃(x) dx , v̂

〉

=⇒ f =
∫

tl(q,x) · f̃(x),
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provides the expression of the generalized force f in terms of the real-world force distribution f̃(x) (here, in
the case where f̃(x) consists in finitely many point forces, the above integral reduces to a finite sum). Let
us point out once more than it is always possible to compute the generalized force from a real-world force
distribution but that the real-world force distribution cannot be recovered in general from the generalized
force.

The generalized acceleration γγγ of Lagrange is defined by means of the virtual power it develops in any
virtual generalized velocity v̂.

〈
γγγ, v̂

〉
=

(
Dq̇
Dt

, v̂
)

q

=
(

d
dt

∂K

∂q̇i
− ∂K

∂qi

)
v̂i,

where D/Dt stands for the covariant derivative along the motion. It satisfies:

dK

dt
=

(
Dq̇
Dt

, q̇
)

q

.

The fundamental principle of classical dynamics asserts the equation of motion γγγ = f, which is equiv-
alent to the principle of virtual power:

∀v̂ ∈ TqQ,

(
Dq̇
Dt

, v̂
)

q

=
〈
f, v̂

〉
.

Remark. The above setting is intrinsic with respect to changes of parametrization, but not with respect
to changes of frame of reference. In particular, it has been implicitly assumed that a (galilean) frame of
reference has been arbitrarily chosen prior to the formulation of the dynamics. Obtaining a formulation
which is also intrinsic with respect to changes of frame of reference requires a higher level of abstraction
[7]. Such a framework is not adopted here because the interest is driven to unilateral problems involving
impacts. In a formulation that is free of the choice of a frame of reference, it turns out that one can only
consider impacts involving bodies of the discrete system under study and one cannot consider the impact
of a body of the system onto an external obstacle. Since the latter situation is frequently encountered
in practice, we have preferred not to exclude it. Therefore, in this paper, a particular (galilean) frame of
reference is assumed to have been fixed prior to the formulation of the dynamics. For a discussion of the
formulation of impact laws that are free of the choice of a frame of reference, the reader is referred to
[21].

1.2. Perfect bilateral constraints

A bilateral constraint is a restriction on the admissible configurations which can be expressed in terms of
a smooth constraint function ϕ as:

ϕ(q) = 0.

The differential of the constraint at q will be denoted by dϕq. It is a linear form defined on TqQ,
that is, an element in the dual space T ∗

qQ. Its components in a given parametrization are the ∂ϕ/∂qi

(i = 1, . . . , d). There may exist several bilateral constraints ϕα (α = 1, 2, . . . , n). In that case, it is usual
to make the regularity assumption that the dϕα,q are linearly independent. This entails, in particular,
that there cannot be more than d bilateral constraints: n ≤ d.

Of course, the realization of some bilateral constraints requires the handling of some (generalized)
reaction force r in the equation of motion: γγγ = f + r. The constraints are said perfect or ideal if the
virtual power of the reaction force r vanishes in any virtual velocity that is consistent with the realization
of the constraints. For perfect bilateral constraints, the reaction force reads as:

r =
n∑

α=1

λα dϕα,q.
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The regularity assumption on the constraints which requires the linear independence of the dϕα,q

(α = 1, 2, . . . , n) implies that the set of all admissible configurations is a manifold of dimension d − n.
This means that it is possible to take it as the configuration manifold of the system, which is now seen
as a system with d − n instead of d degrees of freedom. This point of view is that of a so-called reduced
parametrization and does not involve any reaction force. Of course, the point of view of a constrained
d d.o.f. system with a reaction force and that of an unconstrained d − n d.o.f. system with reduced
parametrization are equivalent in the sense that the predictions of motion are the same.

1.3. Perfect unilateral constraints and the impact constitutive equation

Consider a d d.o.f. discrete mechanical system. A unilateral constraint is a restriction on the admissible
configurations which can be expressed in terms of a smooth constraint function ϕ as:

ϕ(q) ≥ 0.

There may exist several unilateral constraints ϕα (α = 1, 2, . . . , n), but they do not need to be simulta-
neously active (a unilateral constraint ϕα is said to be active in the configuration q if that configuration
fulfills the equality ϕα(q) = 0 in the constraint). The set of all the indices for which the corresponding
constraint is active in the configuration q will be denoted by J(q):

J(q) =
{
α | ϕα(q) = 0

}
.

This definition makes it possible to extend the regularity hypothesis made for bilateral constraints to
the case of unilateral constraints. The unilateral constraints ϕα are supposed to be such that, for any
admissible configuration q, the dϕα,q (α ∈ J(q)) are linearly independent.

As for bilateral constraints, the realization of the constraints involves some reaction force r. The
unilateral constraints are said perfect or frictionless, if this reaction force reads as:

r =
n∑

α=1

λα dϕα,q,

with λα ≥ 0 and λαϕα(q) ≡ 0. Unlike in the case of bilateral constraints, there remains some indetermi-
nation in the equation of motion. Classically, one has to expect that the motion exhibits some velocity
jumps that are called impacts or collisions. But, the above equations fail to predict the outcome of an
impact. This fact can easily be understood as follows. The outcome of an impact is governed by the
deformation waves propagating in the bodies. Since these bodies are modeled as rigid bodies, these waves
are not handled by the theory and an indetermination occurs. This indetermination must be fixed by an
additional equation: It is called the impact constitutive equation. Its general form is:

q̇+ = F
(
q, q̇−)

,

where q is the configuration of the system at the impact time, q̇− the left (impacting) velocity and q̇+ the
right (outcoming) velocity. The function F is a datum of the problem. In a practical situation, it has to
be identified by using either experiments or a refined theory such as the mechanics of deformable bodies.
Usual examples1 of such a function F are the Poisson law or the Moreau law. The impact constitutive
equation has exactly the same status as the material constitutive equation in continuum mechanics. It
is usual to require that the impact constitutive equation should not increase the kinetic energy during
impacts, but energy losses can be allowed (when the impact constitutive equation preserves kinetic energy,
it is said to be elastic). The function F has to fulfill some other restrictions in order to be compatible
with the equation of motion. Further restrictions also appear from the frictionless assumption. These
restrictions are systematically listed in [2].

1 A critical review of the usual impact laws can be found in [6].
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1.4. Well-posedness of the Cauchy problem

First, the case with no unilateral constraint is recalled. We consider a discrete mechanical with (reduced)
configuration manifold Q (supposed to be at least C2, as well as the mapping M(q) and locally iden-
tified with R

d). The generalized force f is supposed to be given as a function, not only of time, but
possibly depending on the current configuration and generalized velocity. Given also the arbitrary initial
configuration q0 and initial velocity v0, the Cauchy problem raised by the dynamics reads as follows.
Problem P1. Find q ∈ C2([0, T ];Q) such that:
• q(0) = q0, q̇(0) = v0.

• ∀t, M(q) · Dq̇
Dt

= f(t;q, q̇).

The following results about problem P1 are classical.
• If f is C0 (continuous), then there exists a local solution (Peano’s theorem) but this local solution

does not need to be unique.
• If f is C1, then there exists a local solution. This local solution is unique in the sense that two

arbitrary local solutions are identically equal on the time interval where they are both defined.
Hence, there exists a unique maximal solution (Cauchy theorem). But, this maximal solution may
blow up at a finite time and thus may be not defined all over [0, T ].

• If f is C1 and globally Lipschitz-continuous with respect to (q, q̇) (in terms of the Riemannian
distance), then the maximal solution is defined for all times t.

Next, the situation where n perfect unilateral constraints are taken into account is considered. The
space in which the solution will be sought is the space MMA([0, T ];Q) (motions with measure acceleration)
of those functions whose second distributional derivative is a measure. Every function in MMA([0, T ];Q)
is a continuous function with left and right derivatives q̇−(t), q̇+(t) at each t. The functions q̇−(t) and
q̇+(t) are functions with bounded variation. They are equal for all t except for some t belonging to a
countable subset of [0, T ]. Those t at which q̇−(t) 
= q̇+(t) are the instants of impact. The systematic
reference on functions of time with bounded variation is [16]. The space of (Radon) measures on [0, T ]
being denoted by M([0, T ];R), the evolution problem associated with the dynamics reads as follows [1].
Problem P2. Find q ∈ MMA([0, T ];Q) and λα ∈ M([0, T ];R) (α = 1, . . . , n) such that:
• q(0) = q0, q̇(0) = v0 (initial condition),

• M(q) · Dq̇
Dt

= f(t;q, q̇) +
n∑

α=1

λα dϕα,q (equation of motion, in the sense of distributions),

• ∀α, ϕα(q) ≥ 0, λα ≥ 0, λα ϕα(q) ≡ 0 (contact conditions),

• ∀t, q̇+ = F
(
q, q̇−)

(impact constitutive law).
The following comments must be made about the data in problem P2.
• Naturally, the initial configuration q0 has to be compatible with the constraints: ϕα(q0) ≥ 0, for

all α. No additional restriction on the initial condition (q0,v0) is prescribed. As a consequence, the
velocity q̇(0) must be understood as a left-velocity: q̇(0) = q̇−(0). If the initial condition for the
velocity turns out to be incompatible with the unilateral constraint, then an impact will occur at
the initial instant and the value of q̇+(0) 
= v0 will be governed by the impact constitutive law.

• The term f(t;q, q̇) in problem P2 requires a comment since q̇ is not defined at the instants of impact
where q̇−(t) 
= q̇+(t). However, if the function f is continuous (which will always be assumed),
then the function t �→ f(t;q(t), q̇+(t)) admits a left and right limit at every instant and these
limits are equal except for some t belonging to a countable subset of [0, T ]. Hence, the function
t �→ f(t;q(t), q̇+(t)) is regulated (is the uniform limit of a sequence of step functions), is therefore
integrable, and equals the almost everywhere defined function f(t;q(t), q̇(t)) almost everywhere.
Hence, the equation of motion in problem P2 is meaningful.
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• The impact constitutive law is supposed to be compatible with the perfect unilateral constraints as
in [2]. That is, the function F must fulfill the following consistency requirements:
− ∀q, q̇−, ∀α ∈ J(q),

〈
dϕα,q,F(q, q̇−)

〉

q
≥ 0

(no friction: the post-impact velocity do not violate the constraint),
− ∀q, q̇−, M(q) ·

(
F(q, q̇−) − q̇−

)
∈

∑

α∈J(q)

R
+dϕα,q

(the generalized reaction force impulse is directed along the normal)
and not to increase the kinetic energy during an impact:

∥
∥F(q, q̇−)

∥
∥
q

≤
∥
∥q̇−∥

∥
q
.

In this framework, if the mappings M(q), ϕα(q) and f(t;q, q̇) are only supposed to be of class C∞,
then there may exist multiple solutions for problem P2. However, if these mappings are analytic functions,
then there exists a unique maximal solution and, furthermore, if f(t;q, q̇) is globally Lipschitz-continuous
with respect to (q, q̇), then this maximal solution is defined on [0, T ] [1,3].

Note that the frictionless nature of the unilateral constraints in problem P2 is expressed in terms of
the generalized reaction force and that no reference to the forces in the real world is made. This is the
price to pay to be able to write a systematic and consistent evolution problem. However, in any situation
where a ‘naive’ formulation in terms of the real-world reaction forces is possible, it can be proved that
this naive formulation will coincide with problem P2 above.

This consistent formulation of frictionless multibody dynamics in terms of generalized reaction force
only, strongly motivates the derivation of a formulation similar to problem P2 for the case of dry friction,
and will be the object of the following sections.

2. The case of one point particle with one frictional unilateral constraint

2.1. The Coulomb friction law for a point particle

The Coulomb law of friction is an empirical law based on experiments conducted by Amontons in France
at the end of the seventeenth century and by Coulomb at the beginning of the nineteenth century. An
account of the experiments conducted by Coulomb is to be found in [5].

The principle of the experiments was as follows. Some weights were placed on a plate lying on a
horizontal plane table. Then, a horizontal force was applied on the plate and its intensity at onset of
sliding was measured. The Coulomb law is an empirical law, designed to provide a reasonable account of
these experiments. The intensity of the total weight being denoted by rn, the exerted horizontal force by
rt and the (horizontal) sliding velocity by vt, the Coulomb law reads as:

∥
∥rt

∥
∥ ≤ μrn and

∣
∣
∣
∣

∥
∥rt

∥
∥ < μrn ⇒ vt = 0,∥

∥rt
∥
∥ = μrn ⇒ rt = −λvt with λ ≥ 0,

(2.1)

where λ is an indeterminate nonnegative real number and μ is a dimensionless physical constant measured
by Coulomb. It is called the friction coefficient. In a first approximation, it is independent of the total
weight rn and the sliding velocity (in particular, no distinction is made between a dynamical and a static
friction coefficient as can be sometimes encountered). However, it depends on the design of the experiment
and the materials involved.

In Eq. (2.1), ‖ · ‖ denotes the usual Euclidean norm in R
2. Classically, the language of convex analysis

can be used to rewrite Eq. (2.1) in a more concise form. Let ϕ : R
2 → R ∪ {+∞} be a proper (not

identically equal to +∞), lower semi-continuous, convex function. Its domain D(ϕ) is the (nonempty
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convex) subset of R2 of those x where ϕ takes a finite value. The subdifferential ∂ϕ[x] of ϕ at x is defined
by:

∂ϕ[x] =
{
y ∈ R

2
∣
∣ ∀x̂ ∈ R

2, ϕ(x̂) ≥ ϕ(x) +
〈
y, x̂ − x

〉}
,

and the (Legendre–Fenchel) conjugate function ϕ∗ of ϕ is defined by:

ϕ∗(y) = sup
x∈R2

{〈
y,x

〉
− ϕ(x)

}
.

It is a proper, lower semi-continuous, convex function. The fundamental result about the Legendre–
Fenchel transform is:

y ∈ ∂ϕ[x] ⇐⇒ x ∈ ∂ϕ∗[y] ⇐⇒
〈
x,y

〉
= ϕ(x) + ϕ∗(y).

Let C be a nonempty closed convex subset of R2. Its indicatrix function IC is defined by:

IC(x) =

∣
∣
∣
∣
∣
0 if x ∈ C
+∞ if x /∈ C

It is proper, lower semi-continuous and convex. Its conjugate function (by the Legendre–Fenchel trans-
form) is the support function SC of C:

SC(y) = sup
x∈C

〈
x,y

〉
.

Introducing the closed unit disk B of R2, it is readily checked that:

SB(y) = ‖y‖.

The Coulomb law (2.1) is therefore equivalent to anyone of the following equivalent statements:

(i) − vt ∈ ∂IμrnB
[
rt

]

(ii) rt ∈ ∂SμrnB
[
−vt

]

(iii) ∀v̂ ∈ R
2,

〈
rt, v̂ − vt

〉
+ μrn

(
‖v̂‖ − ‖vt‖

)
≥ 0.

Since ∂IC is the closed convex cone of all the outward normal vectors, statement (i) is also called the
normality rule, when μrn is assumed to be given as in Coulomb’s experiments. The equivalent statement
(ii) is often referred to as the maximum dissipation principle.

2.2. The dynamics of a point particle with one frictional unilateral constraint

We consider a point particle of unit mass whose instantaneous location is given by q(t) ∈ R
d (d equals

2 or 3). A force f(t;q, q̇) is supposed to be exerted on the particle. This particle is assumed to obey the
unilateral constraint ϕ(q) ≥ 0 where ϕ : Rd �→ R is a smooth function whose differential is supposed to
vanish nowhere2: dϕq 
= 0.

Any vector v based at location q admits a decomposition into normal and tangential parts with respect
to the function ϕ:

v = vnn + vt, with: n = ∇ϕq/‖∇ϕq‖, vn = 〈v,n〉, vt = v − vnn,

where ‖·‖ and 〈·, ·〉 stand for the usual Euclidean norm and scalar product in R
d. The tangent hyperspace

to the constraint at q is denoted by Tq:

Tq =
{
v ∈ R

d
∣
∣ 〈dϕq,v〉 = 0

}
.

The evolution problem associated with the dynamics of the particle reads as follows.

2 Actually, it only needs to vanish nowhere in a neighborhood of the hypersurface of equation ϕ(x) = 0.
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Problem P3. Find q ∈ MMA([0, T ];Rd) and r ∈ M([0, T ];Rd) such that:

• q(0) = q0, q̇(0) = v0 (initial condition),
• q̈ = f(t;q, q̇) + r (equation of motion, in the sense of distributions),
• ϕ(q) ≥ 0, rn ≥ 0, rn ϕ(q) ≡ 0 (contact conditions),

• ∀v̂ ∈ C0([0, T ]; Tq),
∫

[0,T ]

〈
rt, v̂ − q̇+

t

〉
+ μrn

(
‖v̂‖ − ‖q̇+

t ‖
)

≥ 0

(Coulomb friction),
• ϕ

(
q(t)

)
= 0 =⇒ q̇+n (t) = −e(q, q̇−) q̇−

n (t)
(impact constitutive equation).

In problem P3, μ ≥ 0 is the given friction coefficient. The weak form adopted for the Coulomb friction
law is suitable for the case where the reaction force r is a measure and makes sense for the smooth
episodes of motion as well as for the impacts (recall that the function q̇+

t has bounded variation and
is therefore integrable with respect to any measure such as rt, and the same is true of the continuous
function v̂). The modulus measure of the measure rt being denoted by ‖rt‖, the friction law entails that
‖rt‖ ≤ μrn in the sense of the real measure ordering. One consequence is that a jump in the tangential
velocity (q+

t (t) 
= q−
t (t)) entails a jump in the normal velocity (q+n (t) 
= q−

n (t)). In the impact constitutive
equation, the given restitution coefficient e(q, q̇−) is supposed to take values in [0, 1]. Note that the
friction law is written in terms of the right-velocity. As a consequence, it is an easy exercise to check that
the impact constitutive equation complemented with the Coulomb friction law completely determines the
outcome of an impact (that is, fully determines the right-velocity q̇+). It is also readily checked that the
kinetic energy always decreases during an impact, as should be expected.

Problem P3 was already considered (in the case of the completely inelastic impact law e = 0) by
Monteiro Marques in [13] where a proof of existence of solution can be found. It is proved in addition in
[4] that if ϕ and f are analytic functions and f(t;q, q̇) is globally Lipschitz-continuous with respect to
(q, q̇), then problem P3 has a unique solution.

3. The case of a discrete mechanical system with one frictional unilateral constraint

In this section, we consider a discrete mechanical system with (abstract) configuration denoted by
q = (q1, q2, . . . , qd). It is supposed to obey the unilateral constraint ϕ(q) ≥ 0. To formulate the evo-
lution problem associated with the situation where dry friction must be associated with that unilateral
constraint, it is now proposed to mimic the case of the point particle as in Sect. 2.2.

3.1. Definition of normal and tangential reaction

The first step is to obtain a decomposition of generalized velocities and generalized forces into normal
and tangential parts. There is only one scalar product for generalized velocities which is intrinsic, that is,
which does not rely on the choice of a specific parametrization: the scalar product induced by the kinetic
energy. Since the scalar product is associated with the kinetic matrix M(q), one must now carefully
distinguish between the differential dϕ and the gradient ∇ϕ:

∀v̂,
〈
dϕq, v̂

〉
=

(
∇ϕq, v̂

)
q
, =⇒ ∇ϕq = M−1(q) · dϕq.

With this definition of the gradient, the decomposition of the generalized velocity v into tangential and
normal parts with respect to the function ϕ, reads as:



ZAMP Multibody dynamics with contact and friction Page 13 of 34 99

v = vnn + vt, with:

n = ∇ϕq/‖∇ϕq‖q,

vn = (v,n)q =
〈dϕq,v〉
‖dϕq‖∗

q

=
〈dϕq,v〉

√
dϕq · M−1(q) · dϕq

,

where we recall:

〈dϕq,v〉 =
∂ϕ

∂qi
vi.

This definition gets its consistency from the fact that the normal component vn of the velocity v = q̇
vanishes identically during a motion episode where the constraint ϕ remains active:

∀t, ϕ
(
q(t)

)
= 0 ⇔

〈
dϕq,v

〉
≡ 0 ⇔ vn ≡ 0.

Since the generalized force of Lagrange is defined by means of a virtual power, generalized forces
belong to the dual space to the space of generalized velocities. In the space of generalized forces, there is
only one intrinsic scalar product: the dual scalar product. The dual scalar product is associated with the
inverse M−1(q) of the kinetic matrix. Therefore, the decomposition into a tangential and a normal part
for the generalized force f with respect to the function ϕ, reads as:

f = fnn∗ + ft, with:

n∗ = dϕq/‖dϕq‖∗
q,

fn = (f ,n∗)∗
q =

(dϕq, f)∗
q

‖dϕq‖∗
q

=
dϕq · M−1(q) · f

√
dϕq · M−1(q) · dϕq

.

This definition gets its consistency from the fact that a generalized force f has a vanishing tangential
component if and only if its virtual power in any tangential virtual velocity vanishes:

ft = 0 ⇔ ∀v̂ such that
〈
dϕq, v̂

〉
= 0,

〈
f , v̂

〉
= 0,

⇔ ∃λ ∈ R, f = λ dϕq.

The hyperspace of all tangential generalized velocities at the current configuration q will be denoted
by Tq ⊂ TqQ, and the hyperspace of all tangential generalized forces at q by T ∗

q ⊂ T ∗
qQ. The above

equivalence shows that T ∗
q can be identified with the dual space of Tq, showing the consistency of the

notations.

3.2. Formulation of the friction law in terms of the generalized reaction

Making use of the above definitions, the Coulomb friction law (2.1) for the point particle can now be
naturally extended to the case of an arbitrary discrete mechanical system with one unilateral constraint
ϕ. The equation of motion is complemented with a generalized reaction force r: γ = f+r, and the reaction
force r is split into normal and tangential components: r = rnn∗ + rt with respect to the constraint ϕ,
according to Sect. 3.1.

The normal reaction rn is required to be nonnegative and vanishes when the constraint is not active
(that is, when ϕ(q) > 0). To generalize the Coulomb friction law (2.1) for the point particle to the case of
an arbitrary discrete mechanical system, we are naturally led to postulate the existence of a set C∗

q such
that all the admissible tangential components of the reaction force are characterized by the condition:

rt ∈ rnC∗
q.

The set C∗
q is therefore a given subset of the space T ∗

q ⊂ T ∗
qQ of all tangential generalized forces at the

current configuration q. As for the Coulomb friction law (2.1), this condition entails that whenever the
normal reaction force vanishes (for example, in motion episodes where the constraint is not active), then
the tangential reaction also vanishes.

Actually, the Coulomb friction law (2.1) for the point particle is recovered by choosing a disk for the
set C∗

q: C∗
q = μB. Note that Coulomb conducted his experiments not on point particles, but on plates of
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finite dimensions. The law was actually formulated using the normal and tangential components of the
total force and not using the whole distribution of surface forces (which are indeterminate in the case
where the plate is modeled as a rigid body). This total force is nothing but a generalized force, and the
above point of view is nothing but a natural generalization of Coulomb’s original analysis of his own
experiments. The systematic construction of the friction set C∗

q in practical examples will be discussed in
Sect. 6.

In general, the set C∗
q will not be required to be a disk (case of isotropic friction), but only to be

nonempty. It is also required to be closed and convex so that the normality rule can be adopted as a
flow rule: This is nothing but assuming that for a given value of the reaction normal component, the flow
rule should obey the maximum dissipation principle3. With this assumption, the flow rule is formally
expressed by any one of the following equivalent statements:

(i) − q̇+
t ∈ ∂IrnC∗

q

[
rt

]

(ii) rt ∈ ∂SrnC∗
q

[
−q̇+

t

]

(iii) ∀v̂ ∈ Tq,
〈
rt, v̂ − q̇+

t

〉
+ rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+

t )
]

≥ 0,

where the identity SrnC∗
q

= rnSC∗
q

has been used. Here, the subdifferentials should be understood in
the sense of the duality between the space Tq of tangential generalized velocities and the space T ∗

q of
tangential generalized forces.

Actually, the set C∗
q can be viewed either as a subset of the space T ∗

q of tangential generalized forces
or as a subset of the space T ∗

qQ of all generalized forces. In the latter case, one has:

∀v̂ ∈ TqQ, SC∗
q
(v̂) = SC∗

q
(v̂t),

since C∗
q is contained in the space T ∗

q of tangential generalized forces. Therefore, statement (iii) is equiv-
alent to:

(iii ′) ∀v̂ ∈ TqQ,
〈
rt, v̂ − q̇+

〉
+ rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

]
≥ 0,

where we recall that TqQ stands for the space of all generalized velocities at the generalized configuration
q (tangent space at q to the configuration manifold). This latter form of the (generalized) friction law is
the more appropriate one in view of deriving an expression of the friction law encompassing the episodes
of smooth motion and the impacts, that is, in situations where the reaction force is not pointwise defined
but is only a measure (with respect to time). Having these situations in mind, the friction law has to be
postulated under the form:

∀v̂ ∈ C0
(
[0, T ];TqQ

)
,

∫

[0,T ]

〈
rt, v̂ − q̇+

〉
+ rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

]
≥ 0. (3.1)

We have to check that the generalized friction law (3.1) makes sense in cases where r is an arbi-
trary vector-valued measure (with respect to time) and q̇+ is an arbitrary (vector-valued) function with
bounded variation. This discussion is going to be performed in the restrictive setting in which there is a
parametrization of the system for which C∗

q does not depend on (q1, q2, . . . , qd), as for the Coulomb law
where C∗

q is a disk of radius μ. In more general situations, some assumptions must be stated regarding
the regularity of the mapping q �→ C∗

q. In a first step, we shall first consider the case where C∗
q is bounded.

However, it will be seen in Sect. 6 that it may be desirable to admit unbounded sets C∗
q in some situations,

so that we shall discuss in a second step, the case where C∗
q is possibly unbounded.

1. In case where C∗
q is bounded, SC∗

q
is finite everywhere and continuous. Let us consider arbitrary x and

y such that: y ∈ ∂SC∗
q
[x]. This is equivalent to x ∈ ∂IC∗

q
[y] which entails that y ∈ C∗

q. By hypothesis,
there exists M ∈ R

+, independent of y, so that ‖y‖ ≤ M . By an appropriate generalization of the

3 It should be said that the adoption of the normality rule in this context is mainly a matter of convenience. A critical
discussion of this hypothesis can be found in [12].
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mean value theorem, this implies that SC∗
q

is Lipschitz-continuous of modulus M . Therefore, the
function t �→ SC∗

q
(−q̇+) has bounded variation. We recall that a function with bounded variation,

being the uniform limit of a sequence of step functions, is integrable with respect to any (Radon)
measure. The integral in the generalized friction law (3.1) is therefore defined for any (vector-valued)
measure r and any function q̇+ with bounded variation.

2. Consider the case where C∗
q is unbounded. In that case, SC∗

q
takes the value +∞, and it must be

checked that the generalized friction law (3.1) still makes sense. We shall consider only the case
where 0 ∈ C∗

q for the sake of simplicity, so that SC∗
q

≥ 0, but this hypothesis is nothing essential
and could be easily removed. The contact condition requires that the measure rn be nonnegative.
It can be proved that the function t �→ SC∗

q
(−v̂) is a measurable function with values in [0,+∞].

Therefore, the integral:
∫

[0,T ]

rn SC∗
q
(−v̂) ∈ [0,+∞],

makes sense as either a nonnegative real number or +∞, according to the theory of integrals of
measurable nonnegative functions with respect to a nonnegative Radon measure. According to that
theory, the value of the integral is the same if the integration is performed over [0, T ] or over
supp rn, which means roughly that the instants where rn vanishes do not contribute to the value of
the integral (although the function SC∗

q
(−v̂) can equal +∞ at these instants). This fact is consistent

with the fact that rnSC∗
q

arises from SrnC∗
q

and that S0C∗
q

= S{0} ≡ 0. Similarly, the integral
∫

[0,T ]

rn SC∗
q
(−q̇+) (3.2)

is well defined as an element of [0,+∞]. But, taking the zero constant function as a trial function
v̂ in the generalized friction law (3.1) shows that this integral must be finite. Since it is finite, the
whole integral in formula (3.1) is well defined for all trial functions v̂ ∈ C0

(
[0, T ];TqQ

)
. Actually,

the finiteness of the integral (3.2) is a consequence of the generalized friction law and expresses that
some values of the sliding velocity are excluded when contact is firmly achieved:

for rn-a.a. t ∈ supp rn, −v+ ∈ D(SC∗
q
).

In other terms, unbounded sets C∗
q forbid some values for the sliding right-velocity during firm

contact episodes.
To summarize, the generalized friction law (3.1) makes sense with r being an arbitrary Radon measure,

q̇+ an arbitrary function with bounded variation and for C∗
q an arbitrary nonempty closed convex subset

of T ∗
q , either bounded or unbounded.
The fact that unbounded C∗

q are admitted has some interesting consequences. To get deeper insight
into this situation, let us examine the case of a point particle moving on one side of a straight obstacle
(straight means that one can choose a linear form as the function ϕ describing its geometry). Its dynamical
evolution is governed by problem P3. But in order to analyze the consequences of having unbounded sets
C∗
q, the Coulomb friction law in problem P3 is replaced by the generalized friction law (3.1) where the set

C∗
q is supposed to be unbounded. As already mentioned above, this entails D(SC∗

q
) 
= TqQ and velocities

in TqQ\D(SC∗
q
) are excluded by the generalized friction law during firm contact episodes. Now, let us

consider a motion of the particle which is free of external forces and achieves grazing contact (rn = 0)
with the obstacle at constant velocity v0 ∈ TqQ\D(SC∗

q
). Such a motion is associated with r = 0 and

satisfies the generalized friction law. Suppose that the normal component of the external force, which is
assumed to vanish on [0, T ], starts to decrease at t = T , so that it is negative for t > T . By the impact
law q̇+n (T ) = 0 and the particle must remain in contact with the obstacle for t > T . Therefore, the normal
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component rn of the reaction force equals the opposite of the normal external force and the contact is
firm. But, since the velocity on [0, T ] has a value which is excluded by the friction law when contact is
firmly achieved, a jump in the tangential velocity must occur at t = T . It can be checked that the friction
law completely determines the value of the outcoming velocity q̇+

t (T ). Therefore, unbounded sets C∗
q allow

jumps in tangential velocity with continuous normal velocity. This phenomenon was proved in Sect. 2.2
to be excluded in the case of a bounded C∗

q and is therefore specific to the case of an unbounded C∗
q. It is

called a tangential impact and will be discussed more thoroughly in Sect. 6.2 where the reason why it is
desirable to admit unbounded sets C∗

q as well as tangential impacts will be explained. Tangential impacts
have the slightly unpleasant consequence that the value of q̇ in fn (normal component of f) influences the
outcome of the tangential impact. Therefore, it matters to choose f(t;q, q̇−) or f(t;q, q̇+) in the equation
of motion (this choice has consequences only on the tangential impacts). We therefore make arbitrarily
the choice of the former to account for possibly unbounded sets C∗

q (the latter choice generating possible
indeterminacy in tangential impacts).

The final form (3.1) of the generalized friction law makes it possible to obtain the generalization
of the evolution problem P3 that governs the dynamics of a point particle submitted to one frictional
unilateral constraint (for which, existence and uniqueness of a solution was studied in [4]), to the case of
an arbitrary discrete mechanical system subjected to one frictional unilateral constraint ϕ. This problem
reads formally as follows.
Problem P ′

3. Find q ∈ MMA([0, T ];Q) and r ∈ M([0, T ];T ∗Q) such that:
• q(0) = q0, q̇(0) = v0 (initial condition),

• M(q) · Dq̇
Dt

= f(t;q, q̇−) + r (equation of motion, in the sense of distributions),

• r = rnn∗ + rt, with: (rt,n∗)∗
q = 0

(split of the reaction force into normal and tangential components),
• ϕ(q) ≥ 0, rn ≥ 0, rn ϕ(q) ≡ 0 (contact conditions),

• ∀v̂ ∈ C0
(
[0, T ];TqQ

)
,

∫

[0,T ]

〈
rt, v̂ − q̇+

〉
+ rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

]
≥ 0

(generalized friction law),
• ϕ

(
q(t)

)
= 0 =⇒ q̇+n (t) = −e(q, q̇−) q̇−

n (t) (impact constitutive equation).
The only difference in the case of the point particle (problem P3) is that a friction set C∗

q must be given.
Problem P3 is recovered from problem P ′

3 by taking C∗
q as the closed disk of radius μ. The frictionless

situation, as formulated in [14] or [1], is recovered by taking C∗
q = {0}.

Let us point out that problem P ′
3 is only the general form of the evolution problem governing the

dynamics of a discrete system with one frictional constraint. The status of the constraint function ϕ and
that of the friction set C∗

q are identical: They are both supposed to be given as part of the modeling
process. It will be seen in Sect. 6, how Coulomb friction of coefficient μ can be used as a heuristic means
to make a systematic proposal for the friction set C∗

q, in the most general case.
Before entering that discussion in Sect. 6, we shall first derive the generalization of problem P ′

3 to the
(common) situation where several frictional unilateral constraints must be handled.

4. The case of one point particle and several frictional unilateral constraints

The point of view of Lagrange on discrete mechanical system dynamics consists in describing it as the
dynamics of a single point on a configuration manifold endowed with a nontrivial Riemannian structure
(that induced by the kinetic scalar product on each tangent space). Therefore, the discussion of the
dynamics of a discrete mechanical system with several frictional unilateral constraints will be that of
a single point evolving on the configuration manifold and obeying several unilateral constraints. It is
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therefore natural to begin the analysis with the discussion of an academic situation: that of a point
particle of unit mass evolving in the usual three-dimensional space and obeying two unilateral constraints
described by the two functions ϕ1 and ϕ2. To lighten the writing a little bit, the functions ϕ1 and ϕ2 will
be assumed to be linear:

ϕα(q) =
〈
n∗

α,q
〉
, with: ‖n∗

α‖ = 1,

but this is no restriction of generality. To make the two unilateral constraints distinct, one must assume
that n∗

1 and n∗
2 are linearly independent, and this is nothing but the usual linear independence of the

constraints which was already invoked in Sect. 1.3. Coulomb friction with coefficient μα is supposed to be
associated with the obstacle described by the function ϕα, and the objective is now to design a consistent
formulation of the dynamical evolution problem, encompassing the episodes of smooth motion and the
impacts. The issue is naturally that of adapting the expression of the friction law and that of the impact
law to cases where both unilateral constraints are simultaneously active.

The very first remark is that the definition of the normal and tangential reaction force has to be refined.
Indeed, in view of the formulation of the friction law in Sect. 2.2, it would be natural, in the case where
the particle is located at some point of the line ϕ1(q) = ϕ2(q) = 0, to define the tangential component of
the reaction force as its component along that line and the normal component as the component in the
orthogonal plane. However, considering the equilibrium of the particle at some point of the line under
given external forces, there may exist a force due to friction which is not necessarily directed along the
line (think of an equilibrium located on the line, involving friction and an external force which is not
directed along the line). This remark leads to define the tangential component of the reaction force as
the projection of the reaction force onto the opposite of the tangential cone to the admissible region (that
is, the set of vectors −v where v belongs to the tangential cone). This projection will be denoted by rτ .
The definition will make use of the set J(q) of all the active constraints at the location q:

J(q) =
{
α | ϕα(q) = 0

}
,

and runs as follows. Any vector r based at the location q can be uniquely split into the form:

r = rτ +
∑

α∈J(q)

λαn∗
α,

with: 〈
∑

α∈J(q)

λαn∗
α, rτ

〉

= 0, and ∀α ∈ J(q), λα ∈ R
+,

〈
n∗

α, rτ

〉
≤ 0. (4.1)

The second part of that decomposition will be called ‘the normal part’ and the following notation:

rν =
∑

α∈J(q)

λαn∗
α. (4.2)

will sometimes be used. It is nothing but the projection of r onto the opposite of the normal cone at
location q to the admissible region defined by the unilateral constraints. With this definition, one can
satisfactorily account for all equilibria of the particle at some point of the line ϕ1(q) = ϕ2(q) = 0, under
a given external force, by taking the reaction force in the friction cone defined by:

Kfrict
def=

{
r = rτ +

∑

α∈J(q)

λαn∗
α

∣
∣
∣ ∀v̂ ∈ R

3,
〈
rτ , v̂

〉
+

∑

α∈J(q)

λαSμαB∗
α
(−v̂) ≥ 0

}
,

where B∗
α denotes the closed unit disk on the plane ϕα(q) = 0. Since the functions SμαB∗

α
take only

nonnegative values, note that:

rτ +
∑

α∈J(q)

λαn∗
α = r ∈ Kfrict =⇒ ∀α ∈ J(q), λα ∈ R

+.
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Let us point out that we introduced a single generalized reaction force to account for several constraints,
in accordance with what was done in the frictionless case (Sect. 1.3).

In view of the friction law written in Sect. 2.2 for one unilateral constraint, one now would naturally
postulate the friction law for several unilateral constraints in the form:

∀v̂ ∈ C0
(
[0, T ];R3

)
,

∫

[0,T ]

〈
rτ , v̂ − q̇+

〉
+

∑

α∈J(q)

λα

[
SμαB∗

α
(−v̂) − SμαB∗

α
(−q̇+)

]
≥ 0,

which is driven by the principle of adding the dissipations associated with each constraint. But, this last
form turns out to be inappropriate for impacts. Indeed, consider an impact within the plane orthogonal
to the line ϕ1(q) = ϕ2(q) = 0, with the particle arriving along the median line between the two lines
defined by the obstacles and bouncing along this median line. The reaction force q̇+ − q̇− is along the
median line. Therefore, the tangential component rτ of the reaction force vanishes. Making the choice
v̂ ≡ 0 as a test function in the above proposal for the friction law yields a contradiction. Hence, we are
led to postulate the friction law under the form:

∀v̂ ∈ C0
(
[0, T ];R3

)
,

∫

[0,T ]

〈
rτ , v̂ − q̇+

t

〉
+

∑

α∈J(q)

λα

[
SμαB∗

α
(−v̂) − SμαB∗

α
(−q̇+

t )
]

≥ 0, (4.3)

where q̇+
t is the component of the right-velocity along the line ϕ1(q) = ϕ2(q) = 0. Therefore, the

normal/tangential components for velocities should be defined as follows. Any vector v based at the
location q can be uniquely split into the form:

v = vt + vn,

with:

vn ∈
∑

α∈J(q)

Rn∗
α, and ∀α ∈ J(q),

〈
n∗

α,vt

〉
= 0.

Note that the replacement of q̇+ by q̇+
t in the friction law (4.3) makes no difference during a smooth

episode of motion. Note also that implementing this replacement in the friction law in problem P ′
3 would

make no difference either. Finally, the test functions are still allowed to take values in the whole space in
consistency with the definition of Kfrict.

For motion with nonvanishing velocity along the line ϕ1(q) = ϕ2(q) = 0, the friction law (4.3)
implements the idea that the frictional dissipation is the sum of the dissipations associated with the
friction with each obstacle. For an equilibrium on that line involving the friction force, it is crucial to
admit a tangential reaction force which is not necessarily directed along the line, but possibly along
anyone of the two hyperplanes. This is the reason why it is necessary to define the normal and tangential
parts of the reaction force as a decomposition with respect to the opposite of the normal and tangential
cones [formula (4.1)] and not as a decomposition with respect to the normal and tangential vector spaces.
For a smooth motion leaving the line but remaining on one of the two obstacles, one recovers the usual
Coulomb friction.

The generalized friction law (4.3) is also able to deal with occurrences of impact, that is, instants
where the measure r has a Dirac mass. However, the generalized friction law (4.3) applied during an
isolated impact handles only a frictional part and is unable alone to predict the outcome of an impact (as
is seen in the frictionless case). It must therefore be complemented with an appropriate impact law. This
impact law should be designed to be always compatible with the friction law (4.3) and to deliver exactly
the lacking information so that, for any given impacting velocity q̇−, the outcoming velocity is uniquely



ZAMP Multibody dynamics with contact and friction Page 19 of 34 99

determined. It is sufficient to ask that the impact law should deliver only the normal component of the
right-velocity:

q̇+
n = F(q, q̇−),

where the given function F should fulfill the four following requirements:

• ∀q, q̇−, F(q, q̇−) ∈
∑

α∈J(q)

Rn∗
α,

(F delivers normal velocities only),
• ∀q, q̇−, ∀α ∈ J(q),

〈
n∗

α,F(q, q̇−)
〉

≥ 0,
(F delivers velocities which are compatible with the unilateral constraints only),

• ∀q, q̇−, F(q, q̇−) − q̇−
n ∈ Kfrict,

(the percussion associated with the normal parts of the left and right-velocities must belong to
the friction cone). It should be mentioned here, that, if the angle between the two plane obstacles
is acute, then this percussion has zero tangential component and the condition is automatically
fulfilled. But, if the angle is obtuse, then the tangential component of the percussion in the plane
orthogonal to the line ϕ1(q) = ϕ2(q) = 0 can be nonzero and this compatibility condition of the
impact law with the friction law must be prescribed.

• ∀q, q̇−,
∥
∥F(q, q̇−)

∥
∥
q

≤
∥
∥q̇−

n

∥
∥
q
,

(there is no increase in kinetic energy due to the impact law).
Note that these requirement are satisfied, in particular, by all the impact laws used in the frictionless
case (they can therefore be used in the frictional case). Then, it is an easy exercise to check that for
an arbitrary impact, the normal right-velocity being prescribed by the above impact law, the tangential
right-velocity is uniquely determined by the friction law (4.3), and that the total right-velocity has a
kinetic energy which is never larger than that of the total left-velocity.

Putting all together, we can now write the evolution problem that governs the dynamics of a point
particle with several unilateral frictional constraints.
Problem P4. Find q ∈ MMA([0, T ];Rd), r ∈ M([0, T ];Rd), λα ∈ M([0, T ];R) such that:
• q(0) = q0, q̇(0) = v0 (initial condition),
• q̈ = f(t;q, q̇) + r (equation of motion, in the sense of distributions),
• q̇+ = q̇+

n + q̇+
t , with: q̇+

n ∈
∑

α∈J(q)

R∇ϕα,q, and ∀α ∈ J(q),
〈
dϕα,q, q̇+

t

〉
= 0,

(split of the right-velocity into normal and tangential components),

• r = rτ +
∑

α∈J(q)

λαdϕα,q, with:

〈
∑

α∈J(q)

λα∇ϕα,q, rτ

〉

= 0,

and ∀α ∈ J(q), λα ≥ 0,
〈
∇ϕα,q, rτ

〉
≤ 0,

(split of the reaction force into normal and tangential components),
• ∀α, ϕα(q) ≥ 0, λα ϕα(q) ≡ 0 (contact conditions),
• ∀v̂ ∈ C0([0, T ];R3),∫

[0,T ]

〈
rτ , v̂ − q̇+

t

〉
+

∑

α∈J(q)

λα

[
SμαB∗

α
(−v̂) − SμαB∗

α
(−q̇+

t )
]

≥ 0,

(Coulomb friction),
• q̇+

n = F(q, q̇−), (impact constitutive equation),
where F is a given function satisfying the above four consistency requirements. These requirements ensure
the consistency of the formulation and, in particular, the fact that the outcome of any impact is uniquely
determined and energetically consistent. However, it should be mentioned that within this framework, the
percussion reaction force r is allowed to be such that 〈rτ , q̇+〉 > 0, which should probably be precluded
in a practical proposal of an impact law F .
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5. The case of a discrete mechanical system with several frictional unilateral constraints

It is now an easy matter to combine the results of Sect. 3 and 4 to reach the objective of the article:
stating the general evolution problem governing the dynamics of discrete mechanical systems with several
frictional unilateral constraints in a mathematically consistent way. The only differences in the situation
analyzed in the previous section is that the mass matrix M(q) no longer needs to be proportional to the
identity (which implies that dϕα and ∇ϕα must be carefully distinguished) and that the C∗

α,q no longer
need to be disks and, in particular, they may be unbounded sets.

To sum up, we are given a discrete mechanical system with configuration manifold Q of finite dimension
d. We are also given the kinetic matrix M(q) supposed to be symmetric and positive definite so that
it defines an (intrinsic) scalar product on each tangent space TqQ to the configuration manifold (which
is nothing but the d-dimensional space of all the virtual generalized velocities in the configuration q).
Some generalized forces f(t;q, q̇) are also given depending on the time t, but also possibly on the current
configuration and velocity of the system. In addition, n unilateral constraints are described by a given
collection of smooth functions ϕα : Q → R, supposed to satisfy the following independence condition:

the dϕα,q (α ∈ J(q)) are linearly independent, where we recall the notation J(q) =
{
α

∣
∣

ϕα(q) = 0
}
.

With each of these constraints is associated a set C∗
α,q describing the dry friction attached to the unilateral

constraint. The set C∗
α,q is supposed to be a nonempty closed convex subset of T ∗

qQ, which is contained
in the hyperplane:

T ∗
α,q =

{
f ∈ T ∗

qQ
∣
∣ f · M−1(q) · dϕα,q = 0

}
.

Finally, the general evolution problem that governs the dynamics of the discrete mechanical system
with these n unilateral frictional constraints reads as:
Problem P ′

4. Find q ∈ MMA([0, T ];Q), r ∈ M([0, T ];T ∗Q), λα ∈ M([0, T ];R) such that:
• q(0) = q0, q̇(0) = v0 (initial condition),

• M(q) · Dq̇
Dt

= f(t;q, q̇−) + r (equation of motion, in the sense of distributions),

• q̇+ = q̇+
n + q̇+

t , with: q̇+
n ∈

∑

α∈J(q)

R∇ϕα,q, and ∀α ∈ J(q),
〈
dϕα,q, q̇+

t

〉
= 0,

(split of the right-velocity into normal and tangential components),

• r = rτ +
∑

α∈J(q)

λαdϕα,q, with:

〈
∑

α∈J(q)

λα∇ϕα,q, rτ

〉

= 0,

and ∀α ∈ J(q), λα ≥ 0,
〈
∇ϕα,q, rτ

〉
≤ 0,

(split of the reaction force into normal and tangential components),
• ∀α, ϕα(q) ≥ 0, λα ϕα(q) ≡ 0 (contact conditions),
• ∀v̂ ∈ C0([0, T ];TqQ),∫

[0,T ]

〈
rτ , v̂ − q̇+

t

〉
+

∑

α∈J(q)

λα

[
SC∗

α,q
(−v̂) − SC∗

α,q
(−q̇+

t )
]

≥ 0,

(generalized friction law),
• q̇+

n = F(q, q̇−), (impact constitutive equation),
where the given function F is required to fulfill the four following consistency conditions:

• ∀q, q̇−, F(q, q̇−) ∈
∑

α∈J(q)

Rn∗
α,

(F delivers normal velocities only),
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• ∀q, q̇−, ∀α ∈ J(q),
〈
n∗

α,F(q, q̇−)
〉

≥ 0,〈
n∗

α,F(q, q̇−)
〉

= 0 =⇒ F(q, q̇−) ∈ D(SC∗
α,q

),
(F delivers velocities which are compatible with the unilateral constraints only and with the possible
unbounded C∗

α,q which forbid certain values of right-velocities),

• ∀q, q̇−, M(q) ·
(
F(q, q̇−) − q̇−

n

)
∈ Kfrict,

where the friction cone at location q is defined as:

Kfrict
def=

{
r = rτ +

∑

α∈J(q)

λαn∗
α

∣
∣
∣ ∀v̂ ∈ TqQ,

〈
rτ , v̂

〉
+

∑

α∈J(q)

λαSC∗
α,q

(−v̂) ≥ 0
}

,

(the percussion associated with the normal components of the left and right-velocities must belong
to the friction cone).

• ∀q, q̇−,
∥
∥F(q, q̇−)

∥
∥
q

≤
∥
∥q̇−

n

∥
∥
q
, (there is no increase in kinetic energy due to the impact law).

We claim that problem P ′
4 above is the first consistent general formulation of the dynamics of discrete

mechanical systems with several frictional unilateral constraints. We now enumerate some comments
about problem P ′

4.

1. The impact law supplies only the normal component q̇+
n of the outcoming velocity. It has the same

form as in the frictionless case. The consistency requirements render the impact law compatible with
the unilateral constraints and the friction law. In the case where J(q) reduces to a single element
(only one active constraint), these requirements entail that the impact law reduces to:

q̇+n = −e(q, q̇−) q̇−
n ,

where the restitution coefficient e(q, q̇−) ∈ [0, 1].
2. The tangential component of the velocity is handled by the friction law which governs friction

indifferently during the smooth phases of the motion and the impacts. In the particular case where
the system is a collection of point particles and the data are analytic functions, it was proved in [4]
that the corresponding evolution problem has a unique solution. This entails in particular that the
tangential component q̇+

t of the outcoming velocity at an impact instant is uniquely determined by
the incoming velocity q̇−.

3. In addition, proposition 1 below shows that the dissipativity (energetic consistency) of any solution of
problem P ′

4 is automatically ensured; that is, energetic consistency is built-in within the formulation.

Proposition 1. Let q ∈ MMA([0, T ];Q), r ∈ M([0, T ];T ∗Q) be a solution of problem P ′
4. Then, it is

dissipative in the sense that for all t1, t2 ∈ [0, T ], such that t1 ≤ t2, one has:

1
2
q̇+(t2) · M

(
q(t2)

)
· q̇+(t2) ≤ 1

2
q̇−(t1) · M

(
q(t1)

)
· q̇−(t1) +

t2∫

t1

〈
f
(
t;q(t), q̇−(t)

)
, q̇−(t)

〉

q
dt.

Proof. We multiply the equation of motion by
(
q̇+(t) + q̇−(t)

)
/2 and integrate over [t1, t2] (the function(

q̇+(t) + q̇−(t)
)
/2), having bounded variation, is universally integrable). We get:

1
2
q̇+(t2) · M

(
q(t2)

)
· q̇+(t2) − 1

2
q̇−(t1) · M

(
q(t1)

)
· q̇−(t1)

=
∫

[t1,t2]

q̇+ + q̇−

2
· M(q) · Dq̇

Dt

=

t2∫

t1

〈
f
(
t;q(t), q̇−(t)

)
, q̇−(t)

〉

q
dt +

∫

[t1,t2]

〈
r,

q̇+ + q̇−

2

〉

q

.
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Hence, the proof of proposition 1 amounts to proving:
∫

[t1,t2]

〈
r,

q̇+ + q̇−

2

〉

q

≤ 0.

Let I denote the set of all the instants of impact (that is, those t such that q̇+(t) 
= q̇−(t)). Since
q ∈ MMA([0, T ];Q), q̇+(t) and q̇−(t) are both functions with bounded variation and the set I is at most
countable. We have:

∫

[t1,t2]

〈
r,

q̇+ + q̇−

2

〉

q

=
∫

I

〈
r,

q̇+ + q̇−

2

〉

q

+
∫

[t1,t2]\I

〈 ∑

α∈J(q)

λαdϕα,q,
q̇+ + q̇−

2

〉

q

+
∫

[t1,t2]\I

〈
rτ ,

q̇+ + q̇−

2

〉

q

. (5.1)

Note that:

∀t ∈ [t1, t2], ∀α ∈ J
(
q(t)

)
,

〈
dϕα,q, q̇+

〉
q

≥ 0,
〈
dϕα,q, q̇−〉

q
≤ 0.

Since q̇+ = q̇− on [t1, t2]\I, q̇+ and q̇− reduce to their tangential component and the third integral in
the right-hand side of (5.1) must vanish. Also, the friction law implies:

∀v̂ ∈ C0([t1, t2];TqQ),
∫

[t1,t2]

〈
rτ , v̂ − q̇+

t

〉
q

+
∑

α∈J(q)

λα

[
SC∗

α,q
(−v̂) − SC∗

α,q
(−q̇+

t )
]

≥ 0.

Choosing the identically vanishing function v̂ and using the fact that each function SC∗
α,q

is nonnegative
(because 0 ∈ C∗

α,q), we get:
∫

[t1,t2]

〈
rτ , q̇+

t

〉
q

≤ 0.

Since this is true for all t1 ≤ t2, this entails that
〈
rτ , q̇+

t

〉
q

is a nonpositive measure and:
∫

[t1,t2]\I

〈
rτ ,

q̇+ + q̇−

2

〉

q

=
∫

[t1,t2]\I

〈
rτ , q̇+

t

〉
q

≤ 0.

Hence, (5.1) reduces to:
∫

[t1,t2]

〈
r,

q̇+ + q̇−

2

〉

q

≤
∫

I

〈
r,

q̇+ + q̇−

2

〉

q

.

But, by the equation of motion, the generalized reaction force measure r has an atom of amplitude
M

(
q(t)

)
·
(
q̇+t) − q̇−(t)

)
at each t ∈ I. Therefore, using the fact that I is countable:

∫

[t1,t2]

〈
r,

q̇+ + q̇−

2

〉

q

≤
∫

I

〈
r,

q̇+ + q̇−

2

〉

q

=
∑

t∈I

‖q̇+
n ‖2q − ‖q̇−

n ‖2q
2

+
∑

t∈I

‖q̇+
t ‖2q − ‖q̇−

t ‖2q
2

.

Here, the first sum is nonpositive, thanks to the energetic consistency requirement on the impact law:
∥
∥q̇+

n

∥
∥2

q
=

∥
∥F(q, q̇−)

∥
∥2

q
≤

∥
∥q̇−

n

∥
∥2

q
.

So, it is now sufficient to prove that the second sum is also nonpositive to achieve the proof of the
proposition. Since the measure

〈
rτ , q̇+

t

〉
q

is nonpositive, we get:

∀t ∈ I,
(
q̇+
t − q̇−

t , q̇+
t

)

q
≤ 0.
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But, by Cauchy-Schwarz inequality, this entails:
∥
∥q̇+

t

∥
∥
q

≤
∥
∥q̇−

t

∥
∥
q
,

and, therefore, the desired conclusion. �

6. Discussion

Problem P ′
4 is the general form that takes the evolution problem raised by frictional unilateral multibody

dynamics when rationally inserted into Lagrange’s general framework for the dynamics of systems of rigid
bodies. The former formulations that can be found in the literature were all based on the paradigm of
Coulomb friction applying on reaction forces of the real world and were actually only available for:

• systems of point particles (see for example [4] or [13])
• very simple systems of rigid bodies with most often only one contact point, because in that case

reaction in the real world can be expressed in terms of the generalized reaction force (see for example
[25]).

In this section, the status of the data in problem P ′
4 will be discussed, and it will be shown how

the paradigm of pointwise Coulomb friction can be used as a heuristic method to propose a systematic
construction of the friction sets C∗

α,q (Sect. 6.1). Then, simple examples will be considered in order to
discuss how problem P ′

4 compares with usual approaches in the field, when applicable.

6.1. A general method of construction of the friction sets C∗
α,q

The general form of the evolution problem raised by frictional unilateral multibody dynamics (problem P ′
4)

implements some data namely:

• The initial condition (q0,v0).
• The force mapping f(t;q, q̇).
• The constraint functions ϕα.
• The friction sets C∗

α,q.
• The function F that implements the impact constitutive equation.

The modeling process consists in translating a practical situation in terms of these data, so that studying
that practical situation reduces hereafter in studying the corresponding mathematical evolution prob-
lem P ′

4. Identifying the initial condition (q0,v0) and the force mapping f(t;q, q̇) is something usual in
smooth (that is, without any unilateral restriction) dynamics, so no further comment will be made on
this.

The constraint functions ϕα and the inequalities they define are the way the conditions like noninter-
penetration are expressed mathematically. In frictionless unilateral multibody dynamics, their use is now
common. They are needed for theoretical investigations (based on problem P2), such as existence and
uniqueness analysis of solution for the evolution problem, convergence of numerical methods, stability,
control. . . Yet, their consideration is of poor interest for the purpose of practical computations. For very
simple systems, it is generally an easy matter to identify them. But, in the case of a complicated system
for which numerical solving is unavoidable, the constraint functions ϕα will never be expressed at first.
An algorithm for detection of collisions will be used instead and the functions ϕα will be only evaluated
(approximated) in the neighborhood of the current configuration of the system.

The status of the friction sets C∗
α,q is the same as that of the constraint functions ϕα: They are a

mathematical expression of the cone of admissible generalized reaction forces, associated with a given
activated constraint ϕα. They have to be postulated, but the paradigm of Coulomb’s law applying on
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forces of the real world can be used conveniently in a systematic way to build a proposal for the C∗
α,q as

follows.
Sticking to the notations of Sect. 1, the real-world velocity ṽ of the material point located at x is

expressed in terms of the generalized velocity v under the form:

ṽ(x) = l(q,x) · v,

where l(q,x) is a linear mapping which depends on the configuration q. Now, consider the configuration
q supposed to render active the constraint ϕα: ϕα(q) = 0. Suppose in addition that active contact is
only fulfilled in finitely many material points xi (in practice, the xi realizing the contact are provided by
the collision detection algorithm which evaluates the constraint function locally). Then, given fictitious
real-world reaction forces r̃i based at xi, the generalized reaction force r reads as:

r =
∑

i

tl(q,xi) · r̃i,

where the finite sum has to be replaced by the appropriate integral with respect to the measure r̃ in the
case where the contact material points do not reduce to a finite set (case of conforming material surfaces).
In the case where at least one of the bodies in contact has smooth geometry near the contact points, it
is usual to postulate that the real-world reaction forces r̃i must belong to the Coulomb cone Ci, that is
a cone in the three-dimensional space, pointed at {0} and whose axis of revolution is directed along the
normal to the solids in contact. In that case, the generalized reaction force r must belong to the set:

∑

i

tl(q,x) · Ci,

which is a closed convex cone, pointed at {0}, in the space T ∗
qQ of all generalized forces. Hence, the

paradigm of Coulomb law applying on real-world forces offers a systematic heuristic means to make a
proposal for the friction set C∗

α,q by taking a section of the above cone:

C∗
α,q =

{
rt ∈ T ∗

q

∣
∣
∣ rt + n∗ ∈

∑

i

tl(q,x) · Ci

}
,

where the notations n∗ and T ∗
q are those introduced in Sect. 3.1. The set C∗

α,q, constructed in such a way,
will always be a closed convex subset of T ∗

q , containing 0. It may, however, be unbounded in some cases
(an example will be displayed in the next section), as the cone

∑

i

tl(q,x) · Ci

may contain elements r such that rn = r · M−1(q) · n∗ < 0.
Once again, the status of the friction sets is exactly the same as that of the constraint functions

ϕα: Their existence is postulated in order to perform theoretical investigations of wide significance on
frictional unilateral multibody dynamics. The preceding technique provides a systematic way to build a
proposal based on the paradigm of Coulomb friction applying on the real-world reactions forces. This
general technique will be used to form an explicit proposal for the analysis of very simple system, as seen
in the example in the next subsection. In case of numerical computation of a complex system, it will
only be needed to evaluate the friction sets C∗

α,q at the configurations q that are encountered during the
computation.

Finally, the impact constitutive equation has the same status as the constitutive equation in continuum
mechanics. The function F must be postulated. Most often, it will be sufficient to consider only impacts
where one constraint ϕα is active (such impacts are often said simple), and only a restitution coefficient
for the normal components of generalized velocities will be needed. In the case of impacts that are not
necessarily simple, the consistency conditions are meant to guide the proposal of the impact constitutive
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equation to guarantee its consistency (for example, the impact constitutive equation that produce a
velocity after impact which is not compatible with the unilateral constraint should not be allowed.)

6.2. An example of Painlevé type

In the case of a system of point particles, the components of the generalized reaction force are also
components of the real-world reaction forces, and our point of view reduces to the usual one. Differences
arise only in the case of a system involving rigid bodies that are not point particles. So, from now on, we
focus on such systems involving, in particular, a rigid bar.

The first example that will be considered is similar to the historical example raised by Painlevé [18]
and which was the basis of a decades long controversy, about the question ‘is Coulomb’s friction law
inconsistent with rigid body dynamics?’. This example is actually very specific, since it is a case where
the real-world reaction forces can be recovered from the generalized reaction forces. We point out again
that, though the generalized reaction forces can always be calculated from the real-world reaction forces,
the reverse calculation is in general not possible. The following example is an example where this reverse
calculation is possible, resulting in a strong incentive to use the real-world reaction forces to formulate the
friction law. This fact gives poor generality to the example that provokes implicitly the general idea that
the friction law could be formulated as easily in terms of the real-world reaction forces in more general
situations. Subsequent examples will be provided in order to refute this idea.

We consider the simplest two degrees of freedom (d.o.f.) discrete mechanical system with nontrivial
mass matrix. An example of such a system is provided by a rigid bar evolving in a plane and whose center
of mass is constrained to remain on a line. In the sequel, G will stand for the center of mass and A for
one of the two end points of the bar. A convenient parametrization for that system is the pair (x, θ) = q
where x is the abscissa of G and θ the angle from Gx to the direction of the bar (see Fig. 1).

The kinetic matrix reads as:

M(q) =
(

m 0
0 J

)
,

where m is the total mass of the bar and J is the inertia momentum of the bar around the center of
mass. Generalized forces f have two components fx and fθ. Because the considered system is so simple,
the two components of the generalized forces can be given a simple mechanical interpretation: They are,
respectively, the x component of the total force and the torque evaluated at the center of mass. Dynamics

y

x

x
θ

A

G

Fig. 1. A simple discrete mechanical system with two d.o.f.
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of this system subjected to external forces f obeys the equation of motion:

M(q) · Dq̇
Dt

= f ⇐⇒
∣
∣
∣
∣
∣

mẍ = fx,

Jθ̈ = fθ.

Now, it is assumed that the x-axis is a rigid obstacle so that the extremity A of the bar must evolve in
the half-plane y ≥ 0. The value of θ, when A lies on the x-axis, being denoted by θ0, it is readily checked
that this unilateral constraint can be described by:

ϕ(q) ≥ 0, ϕ(x, θ) def= θ − θ0.

We assume −π/2 < θ0 < 0 as on Fig. 1 and we restrict our attention to situations where θ will never
exceed θ0 + π so that it is not necessary to consider the second unilateral constraint π − θ0 − θ ≥ 0.

The generalized reaction force is denoted by r = (rx, rθ), and can be expressed in terms of a real-world
force r̃ = (r̃x, r̃y) as follows.

r = tl(q,x) · r̃ ⇐⇒
∣
∣
∣
∣
∣
rx = r̃x,

rθ = l cos θ0 r̃y − l sin θ0 r̃x.
(6.1)

where the fact that θ = θ0 in any configuration fulfilling the contact condition, has been used. The
example under consideration has the exceptional property that the equations (6.1) can be inverted:

r̃ = tl−1(q,x) · r ⇐⇒

∣
∣
∣
∣
∣
∣

r̃x = rx,

r̃y = tan θ0 rx +
rθ

l cos θ0
.

This fact has been an incentive to formulate the evolution problem in terms of the Coulomb friction law
applying on the real-world reaction force r̃ since Painlevé. Such a formulation can be found in Stewart
[25], in the case of the completely inelastic impact law and a conservative external force (f = dV (q)/dq),
in modern language. Using the notations of the present article, it reads as follows.
Problem P5. Find q ∈ MMA([0, T ];R2) and r, r̃ ∈ M([0, T ];R2) such that:

• q(0) = q0, q̇(0) = v0 (initial condition),

• M(q) · Dq̇
Dt

= f(q) + r (equation of motion, in the sense of distributions),

• r̃ = tl−1(q,x) · r (expression of real-world reaction force)
• θ − θ0 ≥ 0, r̃y ≥ 0, (θ − θ0) r̃y ≡ 0 (unilateral contact)

• ∀v̂ ∈ C0([0, T ];R),
∫

[0,T ]

r̃x

(
v̂ − ẋ + l sin θ0 θ̇

)
+ μr̃y

(
|v̂| − |ẋ − l sin θ0 θ̇|

)
≥ 0

(Coulomb friction)
• θ = θ0 ⇒ θ̇+ = 0 (completely inelastic impact law)

In [25], Stewart proved the existence of a solution for problem P5 (and more generally for any such
problem in the plane with one contact point and the completely inelastic impact law). He also proved that
there exists a dissipative solution (one for which the sum of kinetic and potential energy decreases with
time). This article was intended as a contribution to a recurring controversy during the whole twentieth
century about the frictional unilateral rigid body dynamics as formulated in problem P5. Indeed, the
formulation of problem P5 was charged to raise many inconsistencies. Among them, there were Painlevé’s
paradoxes (nonuniqueness and even suspicion of nonexistence of solution) and Kane’s paradox (the friction
law can be responsible for the kinetic energy to increase during an impact).
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1. Painlevé’s paradox.
• Nonexistence of solution. We consider the following initial conditions at t = 0:

x(0) = 0, ẋ(0) = V0 > 0,

θ(0) = θ0, θ̇(0) = 0,

and the following loading conditions for t ≥ 0:

fx(q) = 0, fθ = C0 < 0.

Any smooth solution satisfies

Jθ̈ = C0 + lr̃y

(
cos θ0 + μ sin θ0

)
,

in a right-neighborhood of the initial instant. Since μ > −1/ tan θ0 and r̃y ≥ 0, one necessarily
has θ̈ < 0 which is incompatible with the contact condition. Therefore, no smooth solution exists
for the dynamical evolution problem. Painlevé had considered this fact as possible nonexistence
of solution for the frictional unilateral dynamics. Lecornu [11] then pointed out that existence
of solution could be recovered by allowing an impact (velocity jump and associated Dirac mass
of the reaction measure) at initial instant t = 0. This impact, called ‘tangential impact’ or
‘frictional catastrophe’ by Moreau [17], must have vanishing right-velocity ẋ+(0) = 0, θ̇+(0) = 0
and the subsequent motion is immobility. In the case of a system where the y-coordinate of point
G is not constrained to have a constant value, an example where such a ‘frictional catastrophe’
must occur after a phase of smooth sliding can easily be designed. Therefore, the existence
result of Stewart in [25] was validating the suggestion of Moreau that ‘frictional catastrophes’
were a possible way to recover existence of solution in a systematic manner, invalidating the
original objection of Painlevé. Let us point out, once again, that the existence result of Stewart
was restricted to the situation of a plane problem, with only one material contact point, and
the completely inelastic impact law.

• Nonuniqueness of solution. We consider the following initial conditions at t = 0 in problem P5:

x(0) = 0, ẋ(0) = V0 > 0,

θ(0) = θ0, θ̇(0) = 0,

and the following loading conditions for t ≥ 0:

fx(q) ≡ 0, fθ ≡ 0.

Then, picking an arbitrary t0 ≥ 0, the motion with grazing contact for t ∈ [0, t0] and immobility
for t ≥ t0:

(
x(t), θ(t)

)
= (V0t, θ0), for t ∈ [0, t0],

(
x(t), θ(t)

)
= (V0t0, θ0), for t > t0,

are all a solution for problem P5 in the case where μ > −1/ tan θ0. This nonuniqueness was
judged as paradoxical by Painlevé and acceptable by Moreau (in a context of numerical mod-
eling of granular materials).

2. Kane’s paradox. When using the paradigm of Coulomb’s friction law applying to reaction forces
of the real world as in problem P5, there is no ‘built-in’ guarantee of dissipativity of the friction
law, especially during collisions. In [9], Kane gave a striking example for the dynamics of a double
pendulum where a frictional collision leads to an increase in energy in the system (this example
can also be found in [10], problem 14.6). For the particular situation he considered (plane problem,
one contact point, and completely inelastic impact law situation), Stewart showed that there always
exists a solution that does not exhibit this pathology. The example of Kane shows that Stewart’s
dissipativity result could not be extended to the case of a restitution coefficient of 0.5.
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Now, let us formulate the frictional unilateral dynamic of this rigid bar along the principle advocated
in this paper. Since the unilateral constraint reads as:

ϕ(θ) = θ − θ0 ≥ 0,

the normal component of the (generalized) reaction force is rθ and the tangential component is rx (accord-
ing to the definition given in Sect. 3.1), so that the contact condition should be written as: parametrization
read as:

θ − θ0 ≥ 0, rθ ≥ 0, (θ − θ0) rθ ≡ 0,

and the friction cone should be postulated under the form:

rx ∈ rθ C∗
q,

where C∗
q is a nonempty closed interval, according to the content of Sect. 3.2. Implementing the procedure

described in Sect. 6.1 to construct C∗
q based on the paradigm of Coulomb friction applying on real-word

reaction forces, we obtain:

C∗
q =

[
− μ

l(cos θ0 + μ sin θ0)
,

μ

l(cos θ0 − μ sin θ0)

]
, if μ < −1/ tan θ0,

C∗
q =

]
−∞,

μ

l(cos θ0 − μ sin θ0)

]
, if μ ≥ −1/ tan θ0.

Note that the procedure described in Sect. 6.1 produces a bounded friction set C∗
q for small friction

coefficient (μ < −1/ tan θ0), whereas C∗
q turns out to be unbounded in the case of a larger friction

coefficient.
Making that choice for the friction set C∗

q, our formulation of the dynamics (problem P ′
3) reduces, in

case of the completely inelastic impact law to the following.
Problem P ′

3. Find q ∈ MMA([0, T ];R2) and r ∈ M([0, T ];R2) such that:
• q(0) = q0, q̇(0) = v0 (initial condition),

• M(q) · Dq̇
Dt

= f(q) + r (equation of motion, in the sense of distributions),

• θ − θ0 ≥ 0, rθ ≥ 0, (θ − θ0) rθ ≡ 0 (unilateral contact)

• ∀v̂x ∈ C0
(
[0, T ];R

)
,

T∫

0

rx

(
v̂x − ẋ+

)
+ rθ

[
SC∗

q
(−v̂x) − SC∗

q
(−ẋ+)

]
≥ 0

(generalized friction law),
• θ = θ0 ⇒ θ̇+ = 0 (completely inelastic impact law).

Let us recall that in the case where C∗ = [a, b] with a ≤ 0 and b ≥ 0, then D(SC∗) = R and:

SC∗(v̂) = b max{v̂, 0} − amax{−v̂, 0}.

In the case where C∗ = ]−∞, b] with b ≥ 0, then D(SC∗) = R
+ and:

∀v̂ ∈ R
+, SC∗(v̂) = bv̂.

Based on this, the following facts are readily checked.
• If μ < −1/ tan θ0, then (q, r) ∈ MMA([0, T ];R2) × M([0, T ];R2) is a solution of problem P ′

3 if and
only if it is a solution of problem P5.

• If μ < −1/ tan θ0 and the function f is an analytic function of t,q, q̇, then the analysis in [4] can
readily be transposed to yield the existence of a unique solution of problem P ′

3. The same is therefore
true for problem P5 in that case. This is an improvement of Stewart’s result in that case, since he
had obtained the existence of a solution with no information on its uniqueness.

• If μ ≥ −1/ tan θ0, then any solution (q, r) ∈ MMA([0, T ];R2) × M([0, T ];R2) of problem P ′
3 is a

solution of problem P5. In addition, we can make the following remarks.
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− Considering problem P ′
3 with the initial condition:

x(0) = 0, ẋ(0) = V0 > 0,

θ(0) = θ0, θ̇(0) = 0,

and the following loading conditions for t ≥ 0:

fx(q) = 0, fθ = C0 < 0,

it is readily checked that the motion with ‘tangential impact’ at initial time followed by immo-
bility provides a solution for problem P ′

3 in this case. So, the ‘frictional catastrophe’ of Moreau
[17] can also happen in our setting. But, they can only happen in the case of an unbounded
friction set. Hence, a qualitative conclusion about the dynamics can be drawn, based on the
static analysis described in Sect. 6.1 to construct the friction sets based on the paradigm of
Coulomb law applying to real-world reaction force: if all the friction sets are bounded, no
‘frictional catastrophe’ is to be expected.

− Consider now problem P ′
3 with the initial condition:

x(0) = 0, ẋ(0) = V0 > 0,

θ(0) = θ0, θ̇(0) = 0,

and the following loading conditions for t ≥ 0:

fx(q) = 0, fθ = 0.

Multiplying the first component of the equation of motion θ̈ = rθ by θ̇++θ̇−, and integrating, it
is readily seen that (θ̇+)2 is nonincreasing. Therefore, one obtains that θ̇ ≡ 0 and therefore rθ ≡
0. But, by the friction law, we also have rx ≡ 0. Hence, grazing contact

(
x(t), θ(t)

)
= (V0t, θ0)

is the unique solution of problem P ′
3. We recall that problem P5 had infinitely many solutions

in that case, with immobility possibly arising after a ‘frictional catastrophe’ at any instant
t0. Hence, the formulation as problem P ′

3 fixes the indeterminacy of the Painlevé example
by ‘choosing’ one solution among all. Of course, a definitive proof that the new formulation
fixes the Painlevé paradox requires the proof that there exists a unique solution in general for
analytic data, even in the case of unbounded friction set C∗

q (μ ≥ −1/ tan θ0), but the proof is
postpone to future work. However, the example under scrutiny makes plausible the validity of
such a result.

Summing up, we have compared in the case of this simple example, the evolution problems obtained
by, respectively:
• writing the Coulomb friction law applying on real-world reaction forces (problem P5),
• writing a friction law in terms of the generalized reaction forces with a friction set postulated

on the basis of the paradigm of the Coulomb friction law applying on real-world reaction forces
(problem P ′

3).
Although this simple example is embodied in the particular circumstance where the real-world reaction
forces and the generalized reaction force are linked through an invertible relation, the two evolution prob-
lems P5 and P ′

3 are not equivalent. The reason is that the normal component rn = rθ of the generalized
reaction is required to be nonnegative in problem P5, whereas generalized reaction forces with negative
normal component can arise in problem P ′

3 whenever μ > −1/ tan θ0.
The two evolution problems were found equivalent in the case where μ < −1/ tan θ0. In the case where

μ ≥ −1/ tan θ0, the first approach leads to an evolution problem which may have multiple solutions,
whereas the indeterminacy is broken in the second approach which selects one of the multiple solutions.
Nonetheless, the first approach is the one which is usually considered and is often stated as more physical,
as it is easier to get a physical intuition of real-world reaction forces than of generalized reaction forces.
In this philosophy, it is claimed that the indeterminacy observed in the case μ ≥ −1/ tan θ0 is part of the
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physics and should be accepted. This indeterminacy is fixed when the formulation is made in terms of
generalized reaction force (problem P ′

3). Our opinion is that the origin of the indeterminacy in problem P5

is that the formulation has not been made on the basis of the Lagrange’s philosophy of virtual power
principle which requires that the friction law should be expressed in terms of generalized reaction force
and not in terms of real-world reaction force. Sticking to this principle inevitably leads to a formulation
along the lines of problem P ′

3 which seems to fix the indeterminacy (a definitive proof of that will be a
proof of existence and uniqueness for problem P ′

4 which will be tackled in future work).
More importantly, the example of Kane is very similar to this one (plane dynamical problem for a

double pendulum with only one material contact point), and the problem can be given a formulation
along problem P5 here (except that the impact law involves a coefficient of restitution of 0.5 instead
of 0). Then, the analysis of Kane shows that there are pre-collision velocity conditions that necessarily
produce a collision during which there is an increase in the kinetic energy of the system. This is an
important drawback of the formulation in terms of Coulomb friction law applying on real-world reaction
forces: Energetic consistency is not guaranteed. The analysis of Stewart in [25] shows that this pathology
is precluded, at least for the solution built by means of his numerical method, for the plane problem
with only one contact material point and the completely inelastic impact law. There is no guarantee of
energetic consistency otherwise when the problem is formulated in terms of the Coulomb friction law
applying on real-world reaction forces. On the contrary, energetic consistency is guaranteed in the most
general case when the problem is formulated along the lines of problem P ′

4, thanks to proposition 1.
In any case, it should be pointed out that this example (and all the one material contact point problems

that are often considered in such a discussion) is very specific because the mapping l(q,x) that allows
to compute the generalized reaction force in terms of the real-world reaction force is one-to-one in this
type of example, whereas the mapping l(q,x) is not invertible in general. In the next section, we shall
consider examples in which the mapping l(q,x) is not invertible. We shall see that the approach based
on the paradigm of Coulomb friction applying on reaction forces of the real world (along problem P5) is
much less amenable than in the simple situation that was examined in this subsection.

6.3. Further examples

In this section, two simple systems will be considered. They have in common that the mapping
(
r̃i

)
�→ r =

∑

i

tl(q,xi) · r̃i

is not invertible, unlike the example considered in the previous section. The objective is to compare the
evolution problem obtained using the paradigm of Coulomb friction applying on the real-world reaction
forces with problem P ′

4.
Let AB be a rigid bar with center of mass G evolving in the plane. The situation where the location

of B is prescribed and invariable, the bar being only able to rotate around B is called ‘system 1’ in
the sequel. The situation where B can move freely is called ‘system 2’ in the sequel. System 2 can be
parameterized by using the coordinates (x, y) of G and the angle θ from the initial direction of the bar to
the current direction. System 2 has therefore three degrees of freedom. System 1 can be parameterized by
θ only and has therefore one degree of freedom. Generalized forces in system 1 have only one component,
and generalized forces in system 2 have three components: the x and y components of the total force and
the torque evaluated at G.

We also consider a concave nonstraight rigid obstacle as represented in Fig. 2 and wish to analyze a
motion of the bar (system 1 or 2) above the obstacle with dry friction taken into account when contact
is active.

We first examine system 1. This system is naturally parameterized by use of the angle θ made by the
bar with its own direction when it is in contact with the obstacle. The generalized reaction rθ force has
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A

B

A

B

G

Fig. 2. Two simple discrete mechanical systems with one (system 1, left) and three (system 2, right) d.o.f.

only one component and is to be interpreted in terms of a torque at point B exerted by the reaction
force. The corresponding evolution problem P ′

3 is trivial. It involves no friction set since system 1, having
only one degree of freedom, is formally identical to the case of a point particle moving along a line on
one side of a given obstacle. It reads as follows.
Problem P ′

3. Find θ ∈ MMA([0, T ];R) and rθ ∈ M([0, T ];R) such that:
• θ(0) = θ0, θ̇(0) = ω0 (initial condition),
• Jθ̈ = fθ + rθ (equation of motion, in the sense of distributions),
• θ ≥ 0, rθ ≥ 0, θ rθ ≡ 0 (unilateral contact)
• θ = 0 ⇒ θ̇+ = −eθ̇− (impact law).

Here, J denotes inertia momentum of the bar around point B, fθ (which may depend on (t; θ, θ̇))
the given external force, and e ∈ [0, 1] a given restitution coefficient. With the usual paradigm of the
Coulomb law applying to real-world reaction forces, one would get the following evolution problem. If fθ

is an analytic function of t only (to simplify), then problem P ′
3 admits a unique solution, thanks to [1].

Problem P6. Find θ ∈ MMA([0, T ];R), rθ ∈ M([0, T ];R) and (r̃n, r̃t) ∈ M([0, T ];R2) such that:
• θ(0) = θ0, θ̇(0) = ω0 (initial condition),
• Jθ̈ = fθ + rθ (equation of motion, in the sense of distributions),
• rθ = r̃t cos θ̃0 + r̃n sin θ̃0.
• θ ≥ 0, r̃n ≥ 0, θ r̃n ≡ 0 (unilateral contact)

• ∀v̂ ∈ C0([0, T ];R),
∫

[0,T ]

r̃t
(
v̂ − l sin θ̃0 θ̇

)
+ μr̃n

(
|v̂| − |l sin θ̃0 θ̇|

)
≥ 0

(Coulomb friction)
• θ = 0 ⇒ θ̇+ = −eθ̇− (impact law).

Here, θ̃0 denotes the angle between the tangent to the obstacle and the direction of the bar when
contact is active, and r̃n and r̃t, respectively, the normal and tangential components of the real-world
reaction force. In the case where μ > tan θ̃0 > 0, θ0 = 0, ω0 = 0 and fθ ≡ C0 > 0, then the following
motion:

θ(t) = 0, r̃n(t) =
C0

μ cos θ̃0 − sin θ̃0
, r̃t(t) = − μC0

μ cos θ̃0 − sin θ̃0
, if t ∈ [0, t0[ ,

θ(t) = C0(t − t0)2/(2J), r̃n(t) = 0, r̃t(t) = 0, if t ∈ ]t0, T ] ,

defines a solution of problem P6, for all t0 ∈ [0, T ]. In this example, the bar is initially at rest in contact
with the obstacle and a constant positive external torque is applied on the bar. Any solution such that
the bar is stuck against the obstacle during an arbitrary time t0 and then is accelerating away is possible.

The analysis of system 2 leads to similar conclusions. When points A and B are in contact with
the obstacle, the real-world reaction forces have four independent components, whereas system 2 has
only three degrees of freedom. Therefore, the real-world forces cannot be recovered from the generalized
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reaction force. When the evolution problems that governs the dynamics is written using the paradigm of
the Coulomb law applying to real-world reaction forces, one gets the same kind of indetermination with
possible wedged equilibrium under constant forces, that suddenly breaks at an arbitrary instant. On the
contrary, if a formulation along the lines of problem P ′

4 is adopted, with a constant external force pulling
away the bar from the obstacle, then it is possible to follow the same line of reasoning as in Sect. 6.2 to
prove that the generalized reaction force must vanish identically and no episode of wedged equilibrium is
therefore possible.

6.4. Discussion and conclusion

The supporters of the use of the paradigm of Coulomb friction applying on real-world reaction forces
sometimes argue that the multiple solutions displayed in the previous section should be accepted since it
is observed that real bars can either be wedged or not in experiments. However, it can be retorted that
solutions displaying a broken wedged equilibrium at an arbitrary instant are not so physical. Moreover,
solutions displaying increase in kinetic energy during an impact as in Kane’s example are very questionable
from a physical point of view. Finally, from a practical point of view, to show that a given motion q(t)
solves the evolution problem based on the real-world reaction forces, one has to construct some associated
real-world reaction forces r̃, and, likewise, to discard a motion as a possible solution, one has to prove that
an associated real-world reaction forces r̃ does not exist. This is not amenable in practice and is going
to preclude almost all further theoretical investigations of the evolution problem based on real-world
reaction forces, except for very simple systems. The only case where such a theoretical investigation is
actually possible is the very specific case of one material contact point since in this case the real-world
reaction force can be calculated in terms of the generalized reaction force. This is precisely the case in
which Stewart [25] performed his analysis.

Our opinion is that all these difficulties originate in the use of reaction forces (the real-world reaction
forces) that are inadequate to the geometric modeling of the mechanical system under scrutiny. It has
been known since Lagrange that the appropriate representation of forces in any mechanical theory is the
one that arises from duality with velocities in the virtual power approach. This point of view has been
progressively adopted in the mechanics of continua during the twentieth century. For example, it is now
fully recognized that the representation of internal forces in a continuum in terms of the Cauchy stress
field is appropriate for a classical deformable continuum, but it is not appropriate for a rigid body (in
which it is indeterminate), and it is not appropriate either in a Cosserat medium. For a collection of rigid
bodies, the appropriate representation of forces are generalized forces and not real-world forces. One has
to accept that real-world reaction forces remain generally indeterminate and that the friction law must be
written in terms of the generalized reaction forces. Sticking to real-world reaction forces is at the origin of
both indeterminacies and energy inconsistencies (Painlevé and Kane paradoxes) in multibody frictional
unilateral dynamics. Besides, the original Coulomb law based on his own experiments was formulated in
terms of total tangential force and total normal force, which are generalized forces and not real-world
forces.

For systems of point particles, generalized forces and real-world force coincide and the two points of
view are identical. This is not true for arbitrary rigid bodies. In the case of the bar in systems 1 and
2 represented in Fig. 2, with friction set C∗

q postulated by use of the systematic method described in
Sect. 6.1, both points of view will give the same prediction of motion for small friction coefficient (more
precisely for friction coefficient that are sufficiently small to render wedging impossible). For larger friction
coefficients, the real-world forces point of view has an indeterminacy (wedging or nonwedging are both
possible). The point of view of generalized forces discards wedging and thus breaks the indeterminacy.
Supporters of the point of view of real-world forces may feel frustrated since wedging can be encountered
in practice. This is only an inadequacy of the rigid bar model to discuss the wedging phenomenon which is
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fundamentally governed by the necessary deformability of a real bar. A refined model must be introduced,
for example a model in which the two end points are connected by a spring. In this refined model, the
real-world forces and the generalized forces coincide and it is now possible to discuss the eventuality of
the wedging phenomenon.

In the context of numerical modeling where the objective is to produce realistic examples of motion
of a system of rigid bodies, the paradigm of Coulomb friction applying on real-world reaction forces has
been successfully used to design numerical methods. However, this point of view contradicts the basic
principles of modern mechanics and does not enable one to write down a consistent evolution problem.
This is the origin of the paradoxes of Painlevé and Kane. Our opinion is that the evolution problem
has to be formulated from the beginning in terms of the generalized reaction force (this is problem P ′

4

in this paper), and that the paradigm of Coulomb friction applying on real-world reaction forces can
only be invoked in a second step as a heuristic (but systematic) way to identify the friction sets entering
problem P ′

4. We have proved that dissipativity of solution is built-in within this new formulation which
fixes the paradox of Kane. We also have proved that this new formulation fixes some indeterminacies
of the Painlevé paradox, making it very plausible that this new formulation is free of Painlevé paradox.
A definitive answer would be a proof of existence and uniqueness of solutions for problem P ′

4 under
analyticity hypotheses of the data as it has already been proved for frictionless unilateral multibody
dynamics in [1].
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