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with application to prediction of osteophyte onset
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Abstract. In this paper, a novel evolution equation for capillaries growth is proposed. An essential ingredient is given by the
consideration of nutrient supply, for which a novel constitutive equation is also proposed. The biological and mechanical
stimuli are assumed to depend in non-local way on relevant kinematical descriptors. The integro-differential equations
governing the system evolution are extremely sensitive to parameter variations. However, it was possible to perform some
meaningful numerical simulations in which osteophyte onset has been observed. While the choice of these parameters was
judiciously driven by biomechanical “a priori” knowledge, the mathematical problems concerning well-posedness, stability
and continuous dependence of solutions seem to be very challenging and will be object of future investigations. This effort
seems motivated by the fact that proposed equations are, to our knowledge, the first ones allowing for the prediction of
osteophytes onset.
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1. Motivation from biomechanical phenomenology

The osteophytes ingrowth is a part of osteoarthritis (OA) development. This disease involves mechanical
and biological factors in the domain close to the surface of cartilage and bone tissue connection. OA
is one of the most common diseases that has become social as well as health issue. It predominantly
affects the elders but also sportsmen, obese people and those with curvature of the spine. Although
the issue is not yet fully understood, mechanical aspects are crucial in the evolution of osteoarthritis.
Mechanical overloading leads to chondrocytes apoptosis which increase generation of vascular endothelial
growth factors. Consequently, capillaries are going to proliferate and bone cells arrive to invade cartilage.
Presence of nutrients from the capillaries and transported and released bone cells creates the environment
conductive to osteophytes expansion. It can be seen that presence of capillaries is an inherent part of
osteophytes expansion. A healthy working knee joint characterized by a slick surface articular cartilage
on the tip of long bone enables regular distribution of the loads and smooth motion.

Previously mentioned cartilage is a flexible connective tissue, avascular and nerveless and thanks to
its microstructure reduces friction and absorbs shock during the movement. The articular cartilage is
elastic and capable of sustaining shearing forces. On the other side, bone tissue is strong and rigid. The
articular cartilage has high tensile strength and is compression resistant (see [1] for a general biological
reference and [2,3] for biomechanical models). Long bones are highly vascularized and built with an outer
hard layer so-called compact bone and an internal porous spongy tissue with marrow. Main functions
of bone are to support a structural framework for the body, protection of internal organs and assisting
movement. The aetiology of osteoarthritis is neither uniquely determined nor completely explained. It is
not known whether the joint degeneration is a cartilage or a bone disease, but often the osteophytes growth
follows inflammation state. It is crucial that osteophytes can develop only with capillaries and nutrients
transported by them. Bone cells need nutrients to exist, and the smallest blood vessels–capillaries allow
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supply nutrients to the nearest surrounding [4]. The process of development of new blood vessels from
the existing vascular network is called angiogenesis or neovascularization. This process is very complex
and is involved with physiological and pathological conditions, for example fracture healing or during
the development of tumour growth. Angiogenesis does not appear in a state of physiological equilibrium
in healthy organisms [5]. Dysfunction of inhibiting and stimulating factors causes the development of
new capillaries. Consequently, the neovascularization stimulants are stronger [6]. During osteoarthritis
development, an imbalance of factors appears. Mechanically overloaded cartilage chondrocytes start to
die and to produce vascular endothelial growth factors (VEGF) which stimulates capillaries to grow [7].
This is happening because of some non-physiology effects. Normally, in healthy cartilage, the amount of
VEGF and other angiogenic factors is in an equilibrium state enough to keep balance between bone and
cartilage surface. Besides, the absence of capillaries allows for chondrocytes nutrition only via diffusion
process. After mechanical overloading resulting from overweight, certain jobs and sports, chondrocytes
increase production of VEGF and articular cartilage is unbalanced. As dying cells send signals calling
for nutrients, when they are overstressed capillary growth is promoted in their direction, eventually also
inside the cartilage. Presence of nutrients from the capillaries and released bone cells creates environment
favourable to osteophytes development. The growth of capillaries makes movement difficult and painful.
The disease predominantly is associated with ageing but not only. Sex, being overweight, joint injury and
its genetic defect as well as stresses in the joints are also very unfavourable and can contribute to the
cartilage degeneration [8].

In the literature, a lot of experiments were proposed and reported. Some of them concentrate on
mechanical factors and conclude that they are the main reasons of osteoarthritic changes [9–11]. Numerous
studies confirmed that the periodic mechanical loading and excessive or non-standard stress [12,13] lead to
decrease in shock absorption features and chondrocytes apoptosis [14,15]. Capillaries invasion from bone
into the articular cartilage in the late state of disease was also observed [16]. Both mechanical loading and
angiogenesis expansion lead to apoptosis of chondrocytes making signals stronger and accelerating joint
degeneration [14,17]. In the literature, some theoretical models describing mathematically osteoarthritis
in joint were also presented. Some authors concentrate on mechanical aspects of loading and structure of
cartilage [18]. However, combination of biomechanical and biochemical models may also be found [19–21],
but it was not possible yet to find mathematical models taking into account capillaries ingrowth.

Degenerative joint disease is a very complex case combining biological, chemical and mechanical
aspects. Properly formulated mathematical model of cartilage degeneration and osteophytes development
including angiogenesis phenomenon can significantly help to comprehend complexity of this process. The
presented model reflects the most important aspects of the interaction between mechanical and biological
factors crucial for osteoarthritis phenomenon.

2. Mathematical model

2.1. Kinematics

The state of considered system will be characterized by a set of independent fields defined in a reference
configuration Ω. The points in Ω represent material particles constituting either bone or cartilage. In the
initial configuration which is shown in Fig. 2, the layer C (respectively B) is assumed to be occupied by
Cartilage (respectively Bone).

• The first kinematical field introduced is the one describing the evolution of Young modulus. Denoting
it by E(x, t), it has to be remarked that it is assumed it can vary in space and time, so that it is
allowed the transformation of the particular particle x from cartilage into bone, once the value of
E(x, t) changes correspondingly. Its evolution allows for the distinction of different tissues formed in a
given place. So the onset of osteophyte is detected in our model by means of the value attained by E.
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• The second considered kinematical field C(x, t) describes the actual number of bone cells which are
present the instant t at the particular x. Together with Young modulus this field describes the cartilage–
bone transition: it is necessary because

i) its value directly influences the nutrients’ supply,
ii) its value determines nutrients’ demand,
iii) it determines the capacity to built bone.

• Finally, it is introduced the novel field called B(x, t). It is a scalar field which synthetically describes,
roughly speaking, “the volume density” of capillaries present in x at instant t. The field B is assumed
to determine the volume amount of blood which the capillaries can transport through the point x.

Useless to say considered growth and diffusion phenomena are driven by mechanical deformation
(as it is commonly assumed in the literature; see e.g. [22–25]). The only coupling effect which is assumed
to be active from biological phenomena to mechanical ones is the biologically driven variation of Young
modulus.

• Therefore, the last kinematical field to be introduced will be displacement, denoted by u. It will be
considered only the linearized deformation measure ε together with only linear mechanical constitutive
equation.

2.2. Dependent fields given by constitutive equation

• Mechanical stress σ is given in terms of deformation measure, ε, as follows

σ = Eε, (1)

• The biological signal Ns, which was introduced in this work, is proportional to the difference between
optimal nutrients consumption and nutrients supply actually transported by capillaries. We postulate
the following equation:

NS = ηmC(x, t) − f

∫

Ω

B(ζ, t)e−αrdΩ, (2)

where f is a sensing parameter, which we assume to be constant. Exploration of ηm meaning is included
in the discussion of Eq. (6). Finally, the length 1/α denotes the exponential decay radius characterizing
the region which produces the biological signal.

• The mechanical signal WB(x, t) for capillaries growth released by overloaded dying chondrocytes is
assumed as the difference between the actual elastic strain energy density Ws(x, t) and some reference
value wB representing the maximal energy density value acceptable by living cartilage cells,

WB(x, t) = Ws(x, t) − wB . (3)

• The signal for Young’s modulus changes WE(x, t) refers to difference between the actual elastic strain
density Ws(x, t) and the reference value wE ,

WE(x, t) = Ws(x, t) − wE , (4)

where wE denotes the reference value associated with the equilibrium state of bone remodelling process.

Introduced above parameters wB and wE depend on the tissue which is under consideration. The
signals WB(x, t) and WE(x, t) are necessary to formulate evolution equations Eqs. (9) and (11) for
capillaries and Young modulus variations, respectively. Because of their definition, it is clear that wB is
greater than wE .
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2.3. Evolution equations

The presented model consists of a system of nonlinear integro-differential equations and a set of different
constraints represented by inequalities. The correspondent system of equations and models inequalities
interactions between cells, capillaries and nutrients and deformation depends on the tissue mechanical
properties.

In the nineteenth century, Verhulst [26] proposed a famous mathematical formula describing the
proliferation of cells and inhibition effect of excessive density of cells in culture. This formula was used
later in other publications (see eg. Shirsat et al. [27]). Following this idea, it is adopted an equation for
the variation of a number of cells C(x, t) in the form,

∂C(x, t)
∂t

= η(x, t)C(x, t)︸ ︷︷ ︸
(1)

− τC2(x, t)︸ ︷︷ ︸
(2)

, (5)

where τ denotes a constant parameter, controlling cellular overpopulation.
To specify the role of the field η, it has to be remarked that two effects contribute in the variation

of C(x, t). The first one (1), associated with the term η(x, t)C(x, t), is responsible for cells proliferation,
while negative effect of the interactions between cells is represented by the second one (2). This second
effect grows quickly with increasing density of cells. The variable η(x, t) denotes the actual consumption
of nutrients by a single cell, that is, the mass of nutrients consumed by a cell in unit time and it is defined
by the Monod’s equation [28],

η(x, t) =
ηmN(x, t)

Ks + N(x, t)
. (6)

Parameter ηm in this equation represents the maximum possible consumption of nutrients by a single
cell in the best possible environment and Ks is a positive constant determining the nutrients “scarcity”
growth corrective parameter: when N = Ks then the cellular growth rate is exactly half of the optimal
one.

In order to include the influence of angiogenesis, the standard formula for the variation N(x, t) is
extended in the present formulation and the second term (3) in the following formula representing the
supply of nutrients from capillaries is added, as follows

∂N(x, t)
∂t

= −aη(x, t)C(x, t) + f

∫

Ω

B(ζ, t)e−αrdζ1dζ2dζ3

︸ ︷︷ ︸
(3)

. (7)

The first, negative part, in Eq. (7) represents the actual consumption of nutrients by the cells at the
specific location. The second term (3) with the integral over the tissue domain Ω corresponds to nutrients
supply transported by the capillaries in the neighbourhood to the considered location. It has to be recalled
that B(ζ, t) denotes the density of capillaries defined by analogy to porosity, tentatively as the ratio of
capillaries volume to the total volume of tissue incorporating them. The exponential term approximates
decreasing density of nutrients at the distance r from the source.

r =
√

(x1 − ζ1)2 + (x2 − ζ2)2 + (x3 − ζ3)2. (8)

The integral enables summation at the certain position x of the nutrients delivered by surrounding
capillaries located at ζ. Coefficients a and f denote weight parameters.
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Consequently to the defined assumptions, a novel formula for the rate of the density of capillaries is
proposed in the following form,

∂B(x, t)
∂t

= b

(∗)︷ ︸︸ ︷∫

Ω

B(ζ, t)e−γrdζ1dζ2dζ3

∫

Ω

NS(ζ, t)e−βrdζ1dζ2dζ3

︸ ︷︷ ︸
(4)

+ d

(∗)︷ ︸︸ ︷∫

Ω

B(ζ, t)e−ϑrdζ1dζ2dζ3

∫

Ω

WB(ζ, t)e−ξrdζ1dζ2dζ3

︸ ︷︷ ︸
(5)

. (9)

Last equation is novel. It consists of two different parts representing both playing a relevant role
being related to different effects. The coefficients in negative exponents appearing in the previous Eq. (9)
characterize the exponential decay range of all considered non-local effects.

The first term (4) depending on NS defines the development of capillaries caused by the biological
signal NS from the surrounding cells which need nutrients to survive. This signals diminishes with distance
from source.

The second one (5) represents the contribution to the development of capillaries caused by the over-
loaded dying chondrocytes in the cartilage. Remembering about different bone and cartilage stiffness,
the evolution of Young’s modulus, and consequently density of elastic strain energy, plays a major role.
Mechanical signal WB(ζ, t) is more effective in the nearest area of applied force, and its range of influ-
ence decreases with distance from it. Nevertheless, with the grow of the osteophyte domain with bone
Young’s modulus, the mechanical effect is amplifying. Greater stiffness of a bone tissue and consequently
bigger density of elastic strain energy is the final cause of this phenomenon. In both terms, it appears the
additional quotient ’scaling’ quantity (∗) which is given by an integral over the domain of tissue whose
integrand depend on B. The so-defined operator reflects the fact that the capillaries’ development is only
possible in a very close neighbourhood of already existing capillaries network and this effect is non-local
in nature. Contribution of mechanical and biological effects is controlled by the parameter d plus those
appearing in the definition of the quantity b. Parameter b depends on Young’s modulus change. Following
the Monod’s equation Eq. (6), the relation between parameter b and Young modulus is proposed in the
following form

b = bE

(
Emax

Emin + E

)
. (10)

In this formula, Emin and Emax denote minimal and maximal attainable values of Young modulus,
respectively, and E represents the actual value of Young modulus.

In the presented equations, signals decrease exponentially with the distance. Parameters α, β, γ, ξ, ϑ
assign the range of selected signals [22]. The parameters are different from each other and depend on
considered effect. It is expected that via the development of presented theory a deeper understanding
of the role of these parameters will be gained, so that their experimental determination will become
possible. However, the complexity of considered phenomena requires such a modelling complexity. Clearly,
approximating with a continuum model systems of such complexity and displaying elaborated internal
hierarchies is only possible if a suitably rich model is employed, as it is proved by the great amount
of literature on homogenization of microstructures often leading to generalized continuum models (see
e.g. [29–35]). Moreover, an even richer model has to be taken into account if one wants to model the
presence of synthetic prostheses, in particular for describing the interaction between bone, cartilage and
artificial graft (possibly) made of suitable metamaterials (which are indeed increasingly in biomedical
applications [36–40]). In this direction, it is clear that a more realistic description can be attained by
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means of a microstructure describing the matrix hosting the growth of the capillaries having a suitably
rich geometry (useful examples are [41–45]).

The following equation Eq. (11) defines the postulated dependence of Young’s modulus evolution on
cells density and elastic strain energy density,

∂E(x, t)
∂t

= C(x, t)WE(x, t). (11)

This equation can be interpreted as follows. The living tissue increases (or decreases) its Young’s
modulus depending on the level of the deformation energy in a neighbourhood of considered material
point: if deformation energy is greater than a threshold then the biological response reinforces the tissue,
while if the deformation energy is below of the same threshold then the tissue was weakened. Some
constraints for E should be introduced namely,

E ≥ Emin, (12)
E ≤ Emax. (13)

In conclusion, it should be mentioned that the “influence” weighting functions appearing in all intro-
duced integral operators and in particular in Eq. (7) are similar to Green function for diffusion effect
adapted to capillaries expansion and signals propagation. Various models have also been proposed includ-
ing the effects of damage on bone growth [46], a direction that can be very interesting to pursue especially
including more refined damage model developed in the meanwhile (see e.g. [47–54]).

3. Predictive numerical simulations

Figure 1 shows the flow chart of the numerical code which is based on a procedure consisting of the
following steps:
1. Determination of the initial fields;
2. Mechanical analysis, calculation of actual kinematical descriptors and dependent fields;
3. Calculation of relevant signals;
4. Using the evolution equations with the constraints and the actual values of kinematical descriptors,

dependent fields and signals calculation of variations of B(x, t), C(x, t), N(x, t), E(x, t) in the actual
time step;

Fig. 1. A scheme of iterative numerical procedure used in an analysis of osteophytes development and considered capillaries

expansion
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Fig. 2. Schematic geometry considered in numerical examinations

Table 1. Dimensionless value of parameters

Symbol α β γ ϑ ξ τ ηm Ks a f d wB wE Emin Emax bE
Value 17 35 67 17 225 1.5 1.5 2 0.01 1 104 5 0.5 0.2 80 5 × 10−4

5. Calculation of the updated values of B(x, t), C(x, t), N(x, t), E(x, t);
6. Convergence test and possibly jump to the step (2) if necessary.

A two-dimensional numerical example has been calculated to examine the proposed model and to
illustrate some of the effects included in the formulation. Of course less academical, three-dimensional
problems need to be studied, possibly exploiting suitable forms of finite element methods able to support
the complex constitutive relations needed by the proposed model. Some examples among the huge relevant
literature are [55–66]. To follow the changes in capillaries distribution, bone tissue formation and cartilage
deterioration triggered by non-uniform mechanical load caused by imperfections of joint external shape,
the simple model of an interface between a bone tissue and a cartilage in a joint has been analysed. Let
us introduce a rectangle composed of two parts, see Fig. 2. The thick layer represents a domain occupied
by a bone tissue. The thinner one represents a cartilage. Due to some imperfections in a joint in addition
to the uniform pressure q, this cartilage is loaded by two horizontally oriented forces P applied over two
small sub-domains of the external surface. Bone and cartilage tissues are perfectly connected to each
other and the domain occupied by a bone tissue as displayed in Fig. 2. The verification if the proposed
theoretical model is able to reflect the fundamental effects following clinical observations was the main
aim of the presented numerical study. In addition, an examination of influence of selected parameters on
osteoarthritic changes was carried out and the basic relations between introduced factors and kinematical
descriptors were tested and verified. However, in the future many of the parameters in the model should
be estimated experimentally. The values of assumed for the calculations parameters are given in Table 1.

The formulas introduced in the previous section were implemented in the software COMSOL [67] in
order to examine the process present at the interface between the bone and the cartilage after applica-
tion of the non-uniform mechanical load acting on the external surface of the cartilage. Several crucial
effects and associated parameters affect the changes in the tissues. The non-uniform mechanical load-
ing applied to the external surface of the cartilage causes concentrations of strain, stress and associated
density of strain energy. Excessive loading leads of some of the chondrocytes in the cartilage to death.
This phenomenon activates a complex chain of signalling which among the others promotes ingrowth
of capillaries into the cartilage domain. Among numerous factors that control this effect some appear
to play a crucial role: (a) the extent of the sub-domain surrounding dying cells where the signals are
strong enough to activate biochemical reaction of the tissue and capillaries development; (b) the domain
of the surroundings capillaries where the system of capillaries can grow from; (c) the level of mechanical
load (represented by density of strain energy) which can be accepted by living chondrocytes; (d) the
reference value of stimulus regulating bone tissue remodelling. Since the present paper represents the
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theoretical study, numerical tests have been performed to get an idea how each of this parameters affect
the process. In addition to the already mentioned effects, there are some other which regulate activity
and quantity of bone cells involved in osteophytes development. Among them, the parameters defining
the consumption of nutrients by cells and factors regulating the distribution of nutrients in the tissue
play the most important role. Changes in bone–cartilage composite stiffness following the osteophytes
development affect the distribution of strain energy. The stiffnesses of osteophytes and cartilage differ
very much from each other. It results in energy concentration in the region surrounding osteophytes. This
effect promotes further development of osteophytes. According to the proposed model, this variable in
time and space distribution of strain energy has contribution in both biological and mechanical signals
in regulation of angiogenesis and osteophytes growth.

In the numerical calculations, dimensionless values were considered and only mutual relations between
densities of cells, capillaries and mechanical loading have been examined. In the presented figures, the
changes associated with ingrowth of bone tissue into cartilage domain close to the concentrated mechanical
loading are displayed. The left-hand side area of the geometry abundant in bone cells represents a healthy
bone tissue. The right-hand side poorly populated by bone cells and capillaries represents a cartilage tissue
(Fig. 3).

Many numerical calculations were necessary to perform parameter study and to adjust values of
parameters. Consequently, some distribution of cells and capillaries at the initial state in the bone and
cartilage domains was assumed. It was presumed that the concentration of cells in bone domain is much
greater than the cells concentration in the cartilage area CB(0) � CC(0). Similar assumption was done
for concentration of capillaries BB(0) � BC(0).

In the cartilage domain, tissue degeneration can be observed. Some osteophytes are growing after
capillaries expansion. This effect is caused by the angiogenic signals sent from mechanically loaded chon-
drocytes. Thereafter, growth of bone tissue accompanied by development of capillaries and evolving
nutrients concentration takes place.

In addition, an analysis of involvement of selected parameters in angiogenesis and osteophytes devel-
opment in the aftermath was performed. The examination of time evolution of cell concentration for
selected combinations of values of parameters β and ξ in four test points located in the cartilage domain
was performed (see Fig. 4). All of this four points are located in the cartilage close to the interface with
bone. First point (A) is placed at the action line of concentrated force. The most distant from the sym-
metry axis point (D) is located sufficiently far from the border of the sample to avoid effect of boundary
condition (see Fig. 2).

Figure 4a reflects the variation of density of cells C for ξ = 225, β = 35. Next three figures represent
the situations for ξ = 247.5, β = 35 (4b), ξ = 225, β = 38.5 (4c), ξ = 247.5, β = 38.5 (4d). It follows from
the analysis of this results that the farther from concentrated force the value of C is smaller. It can be
observed that with growing distance of the test points from the force action line the effects of mechanical
and biological signals wane. It follows from the numerical analysis that the effect of ξ is greater compared
to the effect of β.

4. Conclusions and future developments

In this paper, a set of coupled integro-differential equations and inequalities is proposed to describe the
process of the osteophytes ingrowth for instance during the degenerative joint disease driven by mechanical
loading. Particular focus is placed on the role played in this phenomenon by capillaries’ growth. Presented
novel equations complement already generally accepted mathematical model for describing angiogenesis
expansion and osteophytes development. Using formulated model in numerical simulations allowed for
the determination of some basic information about relations and connections between selected factors
in the process of osteoarthritic degeneration. The results are associated with clinical observations which
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Fig. 3. Comparison of the changes in a elastic strain energy density, b Young’s modulus, c capillaries density and d bone
cells density distribution in time
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Fig. 4. Evolution in time and change of bone cells density with distance from concentrated force

confirm neovascularization inseparability from osteogenesis. Additionally, both mechanical and biological
effects counted in the formulation influence the OA process. Complicated nature of equations and a large
number of parameters causes sensitivity of results on small variation of the parameters and numerical
instability.

The mathematical model presented here shows some features which render the solution of related
problems rather difficult. The reader should not be surprised by this circumstance, as the complexity of
described physical phenomena (using the etymological Greek meaning of physics we consider biological
phenomena as part of physics) cannot be modelled by means of simple models. The contrary should be
considered a weakness of modelling procedure.
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The set of novel integro-differential equation put forward here cannot be easily framed into the scope of
already available theorems of existence and uniqueness. Even more difficult seems to us the possibility to
prove continuum dependence on initial and boundary data or on constitutive parameters. It was possible,
by using the robust numerical codes supplied by COMSOL, however, to find the described predictions
which support the validity of the proposed model. On the other hand, it was possible to detect the
signs characteristic of bifurcation of the solutions (and therefore the corresponding buckling phenomena).
Indeed, varying some parameters it was possible for instance to allow for or vice versa to stop the growth
of osteophytes.

The stability relative to the system of equations made the development of the code very laborious as
well as its application to applicable cases.

The relative problems were overcome by patient calibration of the numerical tool but require for sure
the development and application of suitable mathematical tools and results specifically intended to treat
complex stability issues (see e.g. [68–74]).

The main features of the model are: (i) its strong (maybe formidable) nonlinearity and (ii) its unre-
movable non-local structure. These features reflect the physics whose description is attempted and open
in our opinion fields of novel mathematical research.

Seen the interesting results presented here, it seems of interest to continue the modelling activity
by describing in a more accurate way the related deformation phenomena, by including: (i) geometrical
and material nonlinearities [75], (ii) non-isotropic constitutive equations, (iii) varying loads situations in
quasi-static or dynamical regimes, (iv) possible presence of prestress, (v) second and higher gradient or
microstructured continuum models [76]. In particular, we are aware of the extreme simplification involved
in the assumption assuming that the introduced continuum is a standard first gradient one and that the
stress–strain relationship is linear: indeed, it is well known that such simplification does not allow for
the description of important phenomena involving living tissues. However, the aim of the present paper
was to prove that complex non-local biological phenomena involved in tissue growth can be successfully
described.

Even richer are the possible developments concerning the modelling of biological phenomena. It is
possible to guess that it will be relatively simple to include in the model: (i) a more general directional
description of capillaries growth, (ii) a more detailed description of nutrient supply diffusion and (iii) a
more complex non-local description of evolution of mechanical properties (see e.g. peridynamic models
discussed in [77–79]).
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Sciences, Des Lettres Et Des Beaux-Arts de Belgique 20, 1–32 (1847)

27. Shirsat, N., Mohd, A., Whelan, J., English, N.J., Glennon, B., Al-Rubeai, M.: Revisiting Verhulst and Monod models:
analysis of batch and fed-batch cultures. Cytotechnology 67, 515–530 (2014)

28. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949)
29. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inho-

mogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arc. Ration. Mech.
Anal. 218(3), 1239–1262 (2015)

30. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displace-
ment gradients. Math. Mech. Solids 8(1), 51–73 (2003)

31. Alibert, J.-J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates:
a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

32. Cecchi, A., Rizzi, N.L.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids
Struct. 38(1), 29–36 (2001)

33. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and panto-
graphic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. London
A 472, 20150790 (2016)

34. AminPour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation
analysis. Math. Mech. Solids 21(2), 168–181 (2016)

35. Aminpour, H., Rizzi, N.: On the modelling of carbon nano tubes as generalized continua. Adv. Struct. Mater. 42, 15–
35 (2016)

36. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further
research. Int. J. Eng. Sci. 80, 153–172 (2014)

37. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: Designing microstructure to
deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

38. Altenbach H., Eremeyev, V.A.: Mechanics of viscoelastic plates made of FGMs. In: Muŕın, J., Kompǐs, V., Kutǐs, V.
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