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Abstract. In this paper, we study a class of non-periodic discrete Schrödinger equations with superlinear non-linearities at
infinity. Under conditions weaker than those previously assumed, we obtain the existence of ground state solutions, i.e.,
non-trivial solutions with least possible energy. In addition, an example is given to illustrate our results.
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1. Introduction and main results

Discrete nonlinear Schrödinger equations (DNLS) play an important role in describing many phenom-
ena, ranging from solid-state and condensed matter physics to biology, including nonlinear optics [1],
biomolecular chains [5], Bose–Einstein condensates [8]. Some authors have successfully applied the DNLS
equations to the modeling of localized pulse propagation in optical fibers and wave guides, to the study
of energy relaxation in solids and to the modeling of self-trapping of vibrational energy in proteins; see
[6,7,17].

In this paper, we study the following discrete nonlinear equation
⎧
⎨

⎩

−Δun + Vn − ωun = σgn(un), n ∈ Z,

lim|n|→∞ un = 0,

⎫
⎬

⎭
(1.1)

where Δun := un+1+un−1−2un is the discrete Laplacian in one spatial dimension. The discrete potential
V = (Vn)n∈Z is a sequence of real numbers, ω ∈ R, σ = ±1 and (gn)n∈Z is a function sequence. The
problem (1.1) appears when we look for standing waves of the discrete nonlinear Schrödinger (DNLS)
equation

iψ̇n = −Δψn + Vnψn − σ|ψn|2ψn, n ∈ Z. (1.2)

By the definition of standing waves, we want ψn = une−iωt and lim|n|→∞ ψn = 0, where {un} is a
real-valued sequence and ω ∈ R is the temporal frequency. Then (1.2) becomes

⎧
⎨

⎩

−Δun + Vn − ωun = σ|un|2un, n ∈ Z,

lim|n|→∞ un = 0.

⎫
⎬

⎭
(1.3)

Thus, the problem of the existence of standing waves of (1.2) has been reduced to that of the existence of
solutions of (1.3) in the space l2 of two-sided infinite sequences. Note that every element of l2 automatically
satisfies lim|n|→∞ un = 0. Clearly, (1.3) is a special case of (1.1) with gn(un) = |un|2un.
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In contrast to the periodic case of (1.1) which was studied by many authors (see [2–4,9,10,14,15,18,21–
23] and their references), we are interested in the non-periodic case of (1.1) (i.e., Vn and gn are all non-
periodic). As we know, periodic assumptions are very important in the study of DNLS equations since
periodicity is used to control the lack of compactness due to the fact that DNLS equations are set on all Z.
But non-periodic equations are quite different from the ones described in periodic cases. Recently, some
authors [11,19,20] studied non-periodic DNLS equations. The authors of [11] obtained the existence and
multiplicity of non-trivial solutions for (1.1) with gn(s) being asymptotically linear as |s| → ∞ by using
the critical point theory for smooth functionals. The authors of [19] obtained the existence of non-trivial
solutions for a special superlinear case of (1.1) with gn(s) = |s|p−2s (p > 2) by using the Nehari manifold
approach. We will give some comparisons between the results of [20] and our results below (our Theorem
1.2).

In this paper, we are mainly interested in the case where σ = 1. The other case when σ = −1 can also
be discussed if we replace � by −�, V by −V and ω by −ω, respectively. But the corresponding results
will be slightly different from the case σ = 1, see Theorem 2.3 in [20]. Next, we need the standard real
sequence spaces lq, q ∈ [1,∞), endowed with the norm

‖u‖lq :=

(
+∞∑

n=−∞
|un|q

)1/q

, ‖u‖l∞ := max
n∈Z

|un|.

We have the well-known embedding between such spaces:

lq ⊂ lp, ‖u‖lp ≤ ‖u‖lq , 1 ≤ q ≤ p ≤ ∞.

Note that the domain Z is unbounded. Thus, to overcome the loss of compactness caused by the
unboundedness of the domain Z, we will use the following assumption:
(V1) V = (Vn)n∈Z is bounded from below and satisfies lim|n|→∞ Vn = +∞.

Then condition (V1) implies that the spectrum σ(−� + V ) is discrete and consists of simple eigenvalues
accumulating to +∞ (see [19]). Now we can assume that

γ1 < γ2 < · · · < γk < · · · → +∞
are all eigenvalues of L := −� + V , which is defined by Lun = −�un + Vnun for u = (un)n∈Z ∈ l2.
Obviously, the operator L is an unbounded self-adjoint operator in l2. Let E be the forms domain of L,
i.e., the domain of L1/2. Since the operator −� is bounded in l2, it is easy to see that

E = {u ∈ l2 : V 1/2u ∈ l2},

which is a Hilbert space. Here, V 1/2u is defined by (V 1/2u)n = V
1/2
n un. The corresponding action func-

tional of (1.1) is

Φ(u) :=
1
2
((L − ω)u, u)l2 −

+∞∑

n=−∞
Gn(un), u ∈ E, (1.4)

where (·, ·)l2 is the inner product of l2 and the corresponding norm of l2 is denoted by ‖ · ‖l2 . In this
paper, we focus on the following cases:

(L1) γk0 − ω := a < 0 < b := γk0+1 − ω for some k0 ≥ 1 (the indefinite case).
(L2) ω < γ1 (the positive definite case).
(L3) ω := γk′

0
for some k′

0 ≥ 1 (ω is an eigenvalue of L).

We should mention that Schechter [13] obtained the existence of ground state solutions for a periodic
Schrödinger equation by using the variant weak linking theorem in [12]. In this paper, we shall adopt
the variant weak linking theorem to study the non-periodic discrete Schrödinger equation (1.1). To the



ZAMP Non-periodic discrete Schrödinger equations Page 3 of 15 72

best of our knowledge, this technique has not been used for discrete equations. In addition, our results
improve and generalize the related results. For non-linearities gn, we assume that

(G1) gn ∈ C(R,R), |gn(s)| ≤ c(1 + |s|p−1) for some c > 0 and p > 2, n ∈ Z, s ∈ R.

(G2) Gn(s) :=
s∫

0

gn(t)dt ≥ 1
2as2, here the constant a is defined in (L1), n ∈ Z, s ∈ R.

(G3) |gn(s)| ≤ γ|s| if |s| < δ for some 0 < γ < b and δ > 0, n ∈ Z, s ∈ R.
(G4) lim|s|→∞

Gn(s)
s2 = +∞ and Gn(s) ≥ −Wn for some W = (Wn)n∈Z ∈ l1, n ∈ Z, s ∈ R.

(G5) Gn(s + l) − Gn(s) − rgn(s)l + (r−1)2

2 gn(s)s ≥ −Wn, r ∈ [0, 1], n ∈ Z, s ∈ R.

Our results read as follows:

Theorem 1.1. If σ = 1, (V1), (G1)–(G5) and (L1) (or (L2), or (L3)) hold, then (1.1) has at least one
non-trivial solution u. Moreover, if

gn(s) = o(s) as s → 0, n ∈ Z, s ∈ R, (1.5)

then u decays exponentially at infinity, i.e., there are two positive constants τ, ν > 0 such that

|un| ≤ τe−ν|n|, n ∈ Z. (1.6)

Theorem 1.2. Let σ = 1 and M be the collection of solutions of (1.1). Then there is a solution that
minimizes Φ in (1.4) over M. In addition, if (1.5) holds, then (1.1) has a ground state solution, i.e.,
non-trivial solution with least possible energy of (1.1).

We mention that the authors of [20] also considered the cases ((L1)-(L3)) and obtained the existence
and multiplicity (if gn is odd) of non-trivial solutions for (1.1) with gn(s) being superlinear as |s| → ∞ by
using a linking theorem. But it is worth pointing out that the results in [20] are based on the following
assumptions

gn ∈ C1(R,R), |gn(s)| ≤ c(1 + |s|p−1) for some c > 0 and p > 2, (1.7)

lim
s→0

gn(s)
|s| = 0 (i.e., gn is superliner near 0), (1.8)

and the Ambrosetti–Rabinowitz condition

∃ν > 2, s.t. 0 < νGn(s) ≤ gn(s)s, ∀s ∈ R\{0}. (1.9)

However, we obtain the existence of ground state solutions of (1.1) by using the variant weak linking
theorem in [12] under weaker conditions (G1)–(G4) than the above conditions (1.7)–(1.9). The condi-
tion (G5) is the discrete counterpart of the Schechter condition [13], which is not comparable with the
Ambrosetti–Rabinowitz condition (1.9).

Example 1.1. Here we give an example to illustrate our Theorems 1.1 and 1.2. Let

gn(s) := an|s|p−2s, p > 2, s ∈ R, n ∈ Z,

where {an} is non-periodic and 0 < an < C for some C > 0, ∀n ∈ Z. Clearly, the function gn satisfies
conditions (G1)-(G4) with Wn = 0 for all n ∈ Z. Note that

gn(s)
|s| =

an|s|p−2s

|s| =

⎧
⎨

⎩

−an|s|p−2, s ∈ (−∞, 0),

an|s|p−2, s ∈ (0,+∞),

so it is strictly increasing on (−∞, 0) and (0,+∞). Therefore, gn satisfies the condition (G5) by the
argument in [13].

The remainder of this paper is organized as follows. In Sect. 2, we give some preliminary lemmas,
which are useful in the proofs of Theorems 1.1–1.2. In Sect. 3, we give the detailed proofs of our main
results.
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2. Variational frameworks and preliminary lemmas

In the following, we will denote generic constants by C, and we always assume that σ = 1, (V1) and
(G1)–(G5) are satisfied. As before, we let L := −� + V.

If (L1) holds, then we have l2 = (l2)− ⊕ (l2)+, where (l2)+ and (l2)− are the positive and negative
spectral subspaces of L − ω in l2, respectively. It is easy to see that the Hilbert space

E = {u ∈ l2 : V 1/2u ∈ l2} = E− ⊕ E+, (2.1)

where E± := E ∩ (l2)±.
For any u = u+ + u−, v = v+ + v− ∈ E = E+ ⊕ E−, we can define an inner product (·, ·) and the

corresponding norm ‖ · ‖ on E by

(u, v) = ((L − ω)u+, v+)l2 − ((L − ω)u−, v−)l2 and ‖u‖ = (u, u)
1
2 , (2.2)

respectively. Hence, by (L1), we have

− ‖u−‖2 = ((L − ω)u−, u−)l2 ≤ a‖u−‖2
l2 , ∀u− ∈ E− (2.3)

and

‖u+‖2 = ((L − ω)u+, u+)l2 ≥ b‖u+‖2
l2 , ∀u+ ∈ E+, (2.4)

where a and b are defined in (L1). Thus, Φ defined in (1.4) can be rewritten as

Φ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 −

+∞∑

n=−∞
Gn(un), u ∈ E.

Let Ψ(u) :=
∑+∞

n=−∞ Gn(un). Then Φ,Ψ ∈ C1(E,R), and the derivative is given by

〈Ψ′(u), v〉 =
+∞∑

n=−∞
gn(un)vn, 〈Φ′(u), v〉 = (u+, v+) − (u−, v−) − 〈Ψ′(u), v〉, ∀u, v ∈ E,

which imply that (1.1) is the corresponding Euler–Lagrange equation for Φ. Therefore, we have reduced
the problem of finding a non-trivial solution of (1.1) to that of seeking a nonzero critical point of the
functional Φ on E.

Remark 2.1. The following facts show that the proofs of (L2)–(L3) will be similar to the proof of (L1),
so we will only give the detailed proof in the indefinite case (L1).
(1) If (L2) holds (i.e., the positive definite case), we will let E− := {0}. Then E = E− ⊕ E+, where
E+ = E. Thus, by (L2), we have

(u, v) = ((L − ω)u, v)l2 and ‖u‖2 = (u, u) ≥ (γ1 − ω)‖u‖2
l2 .

Thus,

Φ(u) =
1
2
‖u‖2 −

+∞∑

n=−∞
Gn(un), u ∈ E.

(2) If (L3) holds (i.e., ω is an eigenvalue of L), we let

W− := span{e1, ..., ek′
0−1} ∩ E, W 0 := span{ek′

0
} ∩ E, E+ := span{ek′

0+1, ..., } ∩ E,

where W− = {0} if k′
0 = 1 and {ek} are the associated normalized eigenfunctions with γk, that is,

Lek = γkek, ‖ek‖l2 = 1. Then E = W− ⊕ W 0 ⊕ E+ = E− ⊕ E+, where E− = W− ⊕ W 0. Obviously, the
quadratic part of Φ, ((L−ω)u, v)l2 is positive on E+ and negative on W− and zero on W 0. We introduce,
respectively, on E the following new inner product and norm:

(u, v) := (u0, v0)l2 + (|L|1/2u, |L|1/2v)l2 , ‖u‖ = (u, u)1/2,
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where u, v ∈ E = W−⊕W 0⊕E+ with u = u−+u0+u+ and v = v−+v0+v+. Clearly, the decomposition
E = W− ⊕ W 0 ⊕ E+ is orthogonal with respect to both inner products (·, ·) and (·, ·)l2 . Thus, by (L3),
we have

−‖u−‖2 = ((L − ω)u−, u−)l2 ≤ (γk′
0−1 − ω)‖u−‖2

l2 , ∀u− ∈ E−

and

‖u+‖2 = ((L − ω)u+, u+)l2 ≥ (γk′
0+1 − ω)‖u+‖2

l2 , ∀u+ ∈ E+.

Thus,

Φ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 −

+∞∑

n=−∞
Gn(un), u ∈ E,

where ‖u−‖ = 0 if k′
0 = 1 in (L3). For the cases (L2) and (L3), if ‖u−‖ = 0, we will replace the condition

Gn(s) ≥ 1
2as2 in (G2) by Gn(s) ≥ 0.

The following abstract critical point theorem plays an important role in proving our main results (cf.
[12]). Let E be a Hilbert space with norm ‖ · ‖ and have an orthogonal decomposition E = N ⊕ N⊥,
where N ⊂ E is a closed and separable subspace. There exists a norm |v|ω satisfying |v|ω ≤ ‖v‖ for
all v ∈ N which induces a topology equivalent to the weak topology of N on bounded subset of N .
For u = v + w ∈ E = N ⊕ N⊥ with v ∈ N, w ∈ N⊥, we define |u|2ω = |v|2ω + ‖w‖2. Particularly,

if (un = vn + wn) is ‖ · ‖-bounded and un
|·|ω→ u, then vn ⇀ v weakly in N, wn → w strongly in

N⊥, un ⇀ v + w weakly in E.
Let E = E− ⊕ E+, z0 ∈ E+ with ‖z0‖ = 1. Let N := E− ⊕ Rz0 and E+

0 := N⊥ = (E− ⊕ Rz0)⊥. For
R > 0, let

Q :=
{
u := u− + sz0 : s ∈ R

+, u− ∈ E−, ‖u‖ < R
}

with p0 = s0z0 ∈ Q, s0 > 0. We define

B :=
{
u := sz0 + w+ : s ∈ R, w+ ∈ E+

0 , ‖sz0 + w+‖ = s0

}
.

For Φ ∈ C1(E,R), define Γ := {h|h : [0, 1] × Q̄ �→ E is | · |ω-continuous , h(0, u) = u, Φ(h(s, u)) ≤
Φ(u), ∀u ∈ Q̄. For any (s0, u0) ∈ [0, 1] × Q̄, there is a | · |ω-neighborhood U(s0,u0) such that {u − h(t, u) :
(t, u) ∈ U(s0,u0) ∩ ([0, 1] × Q̄)} ⊂ Efin.}, where Efin denotes various finite-dimensional subspaces of
E, Γ �= 0 since id ∈ Γ.

The variant weak linking theorem is:

Theorem A. ([12]) The family of C1-functional {Φλ} has the form

Φλ(u) := λI(u) − J(u), ∀λ ∈ [1, λ0].

where λ0 > 1. Assume
(a) I(u) ≥ 0, ∀u ∈ E, Φ1 = Φ.
(b) I(u) + |J(u)| → +∞ as ‖u‖ → ∞.
(c) Φλ is | · |ω-upper semicontinuous, Φ′

λ is weakly sequentially continuous on E. Moreover, Φλ maps
bounded sets to bounded sets.

(d) sup∂Q Φλ < infB Φλ, ∀λ ∈ [1, λ0].
Then for almost all λ ∈ [1, λ0], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, Φ′
λ(un) → 0, Φλ(un) → cλ,

where cλ := infh∈Γ supu∈Q̄ Φλ(h(t, u)) ∈ [infB Φλ, supQ̄ Φλ].
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In order to apply Theorem A, we shall prove a few lemmas. We pick λ0 such that 1 < λ0 < min[2, b/γ].
For 1 ≤ λ ≤ λ0, we consider

Φλ(u) :=
λ

2
‖u+‖2 −

(
1
2
‖u−‖2 +

+∞∑

n=−∞
Gn(un)

)

:= λI(u) − J(u).

It is easy to see that Φλ satisfies conditions (a) in Theorem A. Conditions (b) and (d) will be proved

later. To see (c), if uj |·|ω→ u and Φλ(uj) ≥ c, then there is a renamed subsequence satisfying (uj)+ → u+

and (uj)− ⇀ u− in E, uj
n → un for all n ∈ Z. It follows from the weak lower semicontinuity of the norm,

Fatou’s lemma and the fact Gn(s) ≥ −Wn for all n ∈ Z and s ∈ R in (G4) that

c ≤ lim sup
j→∞

Φλ(uj)

= lim sup
j→∞

[
λ
2 ‖(uj)+‖2 −

(
1
2‖(uj)−‖2 +

+∞∑

n=−∞

(
Gn(uj

n) + Wn

)
)

+
+∞∑

n=−∞
Wn

]

≤ λ
2 ‖u+‖2 − lim inf

j→∞

[
1
2‖(uj)−‖2 +

+∞∑

n=−∞

(
Gn(uj

n) + Wn

)
]

+
+∞∑

n=−∞
Wn

≤ λ
2 ‖u+‖2 −

(
1
2‖u−‖2 +

+∞∑

n=−∞
Gn(un)

)

= Φλ(u).

Hence, Φλ(u) ≥ c, which means that Φλ is | · |ω-upper semicontinuous. Next, we prove Φ′
λ is weakly

sequentially continuous. If uj ⇀ u in E, then there is renamed subsequence satisfying (uj)+ ⇀ u+,
(uj)− ⇀ u− in E and uj

n → un for all n ∈ Z. Thus,

((uj)+, ϕ) → ((u)+, ϕ), ((uj)−, ϕ) → ((u)−, ϕ), ∀ϕ ∈ E.

Note that

〈Φ′
λ(uj), ϕ〉 = λ((uj)+, ϕ) − ((uj)−, ϕ) −

+∞∑

n=−∞
gn(uj

n)ϕn, ∀ϕ ∈ E.

Hence, we only need to prove

+∞∑

n=−∞

(
gn(uj

n) − gn(un)
)
ϕn → 0 as j → ∞.

If this is so, then

〈Φ′
λ(uj), ϕ〉 → λ((u)+, ϕ) − ((u)−, ϕ) −

+∞∑

n=−∞
gn(un)ϕn = 〈Φ′

λ(u), ϕ〉 as j → ∞,

that is, Φ′
λ is weakly sequentially continuous. Note that if ϕ ∈ l2 ⊂ lp for p ≥ 2, then for any ε > 0 there

exists a positive constant N0 ∈ Z such that

⎛

⎝
∑

{n∈Z: |n|>N0}
ϕ2

n

⎞

⎠

1/2

≤ ε,

⎛

⎝
∑

{n∈Z: |n|>N0}
|ϕn|p

⎞

⎠

1/p

≤ ε.
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It follows from (G1), (G3), Hölder’s inequality, ‖uj‖lp ≤ ‖uj‖l2 ≤ C ′‖uj‖ ≤ C, ‖u‖lp ≤ ‖u‖l2 ≤ C ′‖u‖ ≤
C (which is due to E ⊂ l2 ⊂ lp and uj ⇀ u in E), that

∑

{n∈Z: |n|>N0}

∣
∣
(
gn(uj

n) − gn(un)
)
ϕn

∣
∣

≤ C

[
∑

{n∈Z: |n|>N0}

(|uj
n| + |uj

n|p−1
) |ϕn| +

∑

{n∈Z: |n|>N0}

(|un| + |un|p−1
) |ϕn|

]

≤ Cε,

where C ′, C are generic constants. It follows from uj
n → un for all n ∈ Z that

∣
∣
∣
∑+∞

n=−∞
(
gn(uj

n) − gn(un)
)
ϕn

∣
∣
∣ ≤ ∑

{n∈Z: |n|≤N0}
∣
∣
(
gn(uj

n) − gn(un)
)
ϕn

∣
∣

+
∑

{n∈Z: |n|>N0}
∣
∣
(
gn(uj

n) − gn(un)
)
ϕn

∣
∣

→ 0 as j → ∞,

that is,
∑+∞

n=−∞
(
gn(uj

n) − gn(un)
)
ϕn → 0 as j → ∞. It remains to verify conditions (b) and (d). We do

this by means of the following three lemmas:

Lemma 2.1. J(u) + I(u) → +∞ as ‖u‖ → ∞.

Proof. By the definition of Φ(u) and (G4), we have

J(u) + I(u) = 1
2‖u+‖2 + 1

2‖u−‖2 +
∑+∞

n=−∞ Gn(un)

≥ 1
2‖u‖2 − ∑+∞

n=−∞ |Wn| → +∞ as ‖u‖ → +∞,

which is due to
∑+∞

n=−∞ |Wn| < +∞. �

Therefore, Lemma 2.1 implies that condition (b) holds. We proceed to verify condition (d) by means
of the following two lemmas:

Lemma 2.2. There are two positive constants ε, s0 > 0 such that

Φλ(u) ≥ ε, u ∈ E+, ‖u‖ = s0, λ ∈ [1, λ0].

Proof. For u ∈ E+, by (G1), (G3), (2.4) and the fact that ‖u‖lp ≤ ‖u‖l2 ≤ ‖u‖, we have

Φλ(u) ≥ 1
2‖u‖2 −

+∞∑

n=−∞
Gn(un)

= 1
2‖u‖2 − ∑

{n∈Z: |un|<δ}
Gn(un) − ∑

{n∈Z: |un|≥δ}
Gn(un)

≥ 1
2‖u‖2 − 1

2γ
∑

{n∈Z: |un|<δ}
|un|2 − c

∑

{n∈Z: |un|≥δ}
(|un|p + |un|)

≥ 1
2‖u‖2 − γ

b
1
2‖u‖2 − C‖u‖p

= 1
2‖u‖2(1 − γ

b − 2C‖u‖p−2), 0 < γ < b,
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where the inequality marked by underlining is due to the following facts. Note that |un| ≥ δ. if we pick
a constant C1 such that C1 ≥ 1

δp−1 , then |un| ≤ C1|un|p, which together with the Sobolev imbedding
theorem implies

c
∑

{n∈Z: |un|≥δ}
(|un|p + |un|) ≤ c(1 + C1)

∑

{n∈Z: |un|≥δ}
|un|p ≤ C‖u‖p.

This implies the conclusion if we take ‖u‖ sufficiently small. �

It is not hard to check that Lemma 2.2 implies that infB Φλ > 0. We shall prove that sup∂Q Φλ ≤ 0,
that is, the following Lemma:

Lemma 2.3. There is an R > 0 such that

Φλ(u) ≤ 0, u ∈ ∂QR, λ ∈ [1, λ0],

where QR := {u := v + sz0 : s ≥ 0, v ∈ E−, z0 ∈ E+ with ‖z0‖ = 1, ‖u‖ ≤ R}.
Proof. If not, then there exist Rj → +∞, λj ∈ [1, λ0] and uj = vj + sjz0 ∈ ∂QRj

(vj ∈ E−) such that
Φλj

(uj) > 0. If sj = 0, then by (G2) and (2.3), we have

Φλj
(uj) = Φλj

(vj) = −1
2
‖vj‖2 −

+∞∑

n=−∞
Gn(vj

n) ≤ −1
2
‖vj‖2 − 1

2
a‖vj‖2

l2 ≤ 0.

This produces a contradiction. Therefore, sj �= 0 and ‖uj‖2 = ‖vj‖2+s2
j = R2

j . Let ũj = uj

‖uj‖ = s̃jz0+ ṽj ,
then

‖ũj‖2 = ‖ṽj‖2 + s̃2
j = 1.

It follows from Φλj
(uj) > 0 and the definition of Φλj

that

0 <
Φλj

(uj)

‖uj‖2 = 1
2

(
λj s̃

2
j − ‖ṽj‖2

) −
+∞∑

n=−∞
Gn(uj

n)

|uj
n|2 |ũj

n|2

= 1
2

[
(λj + 1)s̃2

j − 1
] −

+∞∑

n=−∞
Gn(uj

n)

|uj
n|2 |ũj

n|2.
(2.5)

Obviously, {s̃j} and {λj} are bounded. Thus, there are renamed subsequences such that s̃j → s̃ and
λj → λ as j → ∞, and there is a renamed subsequence such that ũj = uj

‖uj‖ = s̃jz0 + ṽj ⇀ ũ = s̃z0 + ṽ

in E and ũj
n → ũn for all n ∈ Z as j → ∞.

Case 1 If ũ �= 0. Without loss of generality, we let Ω0 be the subset of Z where ũn �= 0. Then for all
n ∈ Ω0, we have |uj

n| = |ũj
n| · ‖uj‖ → +∞ since ‖uj‖ = Rj → +∞ as j → ∞. It follows from (G4) and

the facts
∑+∞

n=−∞ |Wn| < +∞ and ‖uj‖ = Rj → +∞ as j → ∞ that
+∞∑

n=−∞
Gn(uj

n)

|uj
n|2 |ũj

n|2 =
∑

n∈Ω0

Gn(uj
n)

|uj
n|2 |ũj

n|2 +
∑

n∈Z\Ω0

Gn(uj
n)

|uj
n|2 |ũj

n|2

≥ ∑

n∈Ω0

Gn(uj
n)

|uj
n|2 |ũj

n|2 − 1
‖uj‖2

∑

n∈Z\Ω0

|Wn| → +∞ as j → ∞,

which contradicts (2.5).
Case 2 If ũ = 0. By (G4) and the facts

∑+∞
n=−∞ |Wn| < +∞ and ‖uj‖ = Rj → +∞ as j → ∞,

+∞∑

n=−∞

Gn(uj
n)

|uj
n|2 |ũj

n|2 =
1

‖uj‖2

+∞∑

n=−∞
Gn(uj

n) ≥ − 1
‖uj‖2

+∞∑

n=−∞
|Wn| → 0 as j → ∞.
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Thus,

lim inf
n→∞

+∞∑

n=−∞

Gn(uj
n)

|uj
n|2 |ũj

n|2 ≥ 0. (2.6)

Therefore, by (2.5) and (2.6), we get

(λ + 1)s̃2 − 1 ≥ 0,

that is, s̃2 ≥ 1
1+λ ≥ 1

1+λ0
> 0. Thus, ũ = s̃z0 + ṽ �= 0. We also get a contradiction.

Therefore, the proof is finished by Cases 1 and 2. �

Therefore, Lemmas 2.2 and 2.3 imply condition (d) of Theorem A holds. Applying Theorem A, we
soon obtain the following fact:

Lemma 2.4. For almost all λ ∈ [1, λ0], there exists a sequence {uj} such that

sup
j

‖uj‖ < ∞, Φ′
λ(uj) → 0 and Φλ(uj) → cλ as j → ∞,

where the definition of cλ is given in Theorem A.

Lemma 2.5. ([19]) If (V1) holds, then the embedding map from E into lp is compact for all p ∈ [2,∞].

Lemma 2.6. For almost all λ ∈ [1, λ0], there exists a uλ ∈ E such that

Φ′
λ(uλ) = 0, Φλ(uλ) = cλ.

Proof. Let {uj} be the sequence obtained in Lemma 2.4. Since {uj} is bounded, we can assume uj ⇀ uλ

in E and uj
n → uλ,n for all n ∈ Z. By Lemma 2.4 and the fact that Φ′

λ is weakly sequentially continuous,
we have

〈Φ′
λ(uλ), ϕ〉 = lim

j→∞
〈Φ′

λ(uj), ϕ〉 = 0, ∀ϕ ∈ E.

That is, Φ′
λ(uλ) = 0.

Note that (G1) and (G3) imply that there exists a constant C such that

|gn(s)s| ≤ C(|s|2 + |s|p), |Gn(s)| ≤ C(|s|2 + |s|p), n ∈ Z, s ∈ R.

It follows from uj ⇀ uλ in E, uj
n → uλ,n and gn(uj

n)uj
n → gn(uλ,n)uλ,n for all n ∈ Z, Lemma 2.5 and the

Lebesgue’s dominated convergence theorem that
+∞∑

n=−∞

1
2
gn(uj

n)uj
n →

+∞∑

n=−∞

1
2
gn(uλ,n)uλ,n (2.7)

and
+∞∑

n=−∞
Gn(uj

n) →
+∞∑

n=−∞
Gn(uλ,n) (2.8)

as j → ∞. By Lemma 2.4, we have

Φλ(uj) − 1
2
〈Φ′

λ(uj), uj〉 =
+∞∑

n=−∞

(
1
2
gn(uj

n)uj
n − Gn(uj

n)
)

→ cλ, j → ∞.

It follows from Φ′
λ(uλ) = 0 and (2.7)–(2.8) that

Φλ(uλ) = Φλ(uλ) − 1
2
〈Φ′

λ(uλ), uλ〉 =
+∞∑

n=−∞

(
1
2
gn(uλ,n)uλ,n − Gn(uλ,n)

)

= cλ.

This completes the proof. �
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Applying Lemma 2.6, we obtain the following fact:

Lemma 2.7. For every λ ∈ [1, λ0], there are sequences {uj} ⊂ E and {λj} ⊂ [1, λ0] with λj → λ such that

Φ′
λj

(uj) = 0, Φλj
(uj) = cλj

.

Lemma 2.8. Let u = (un)n∈Z ∈ E, w = (wn)n∈Z ∈ E+ and 0 ≤ r ≤ 1, then
+∞∑

n=−∞

(

Gn(un) − Gn(rwn) + r2gn(un)wn − 1 + r2

2
gn(un)un

)

≤ C,

where the constant C :=
∑+∞

n=−∞ |Wn| does not depend on u, w and r.

Proof. This follows from (G5) if we take s = un and l = rwn − un. �
Lemma 2.9. The sequence {uj} given in Lemma 2.7 is bounded.

Proof. Suppose by contradiction that

‖uj‖ → ∞ as j → ∞.

We write uj = (uj)+ + (uj)−, (uj)± ∈ E±. Let vj := uj

‖uj‖ , then (vj)+ = (uj)+

‖uj‖ , (vj)− = (uj)−

‖uj‖ and
‖vj‖2 = ‖(vj)+‖2 + ‖(vj)−‖2 = 1. Thus, we can assume that (vj)± ⇀ v± in E and (vj)±

n → v±
n for all

n ∈ Z, after passing to a subsequence.
Case 1 If v+ �= 0, then v �= 0. Let Ω1 be the subset of Z where vn �= 0, then we have |uj

n| = |vj
n|·‖uj‖ →

+∞ on Ω1. It follows from (G4) and
∑+∞

n=−∞ |Wn| < +∞ that
+∞∑

n=−∞

Gn(uj
n)

|uj
n|2 |vj

n|2 ≥
∑

n∈Ω1

Gn(uj
n)

|uj
n|2 |vj

n|2 −
∑

n∈Z\Ω1

|Wn|
‖uj‖2

→ +∞ as j → ∞,

which together with the fact that the ‖(vj)±‖ are bounded and Lemmas 2.2 and 2.7 hold implies that

0 ≤ cλj

‖uj‖2
=

Φλj
(uj)

‖uj‖2
=

λj

2
‖(vj)+‖2 − 1

2
‖(vj)−‖2 −

+∞∑

n=−∞

Gn(uj
n)

|uj
n|2 |vj

n|2 → −∞ as j → ∞.

This creates a contradiction.
Case 2 If v+ = 0. We claim that there is a constant C > 0 independent of uj and λj such that

Φλj
(r(uj)+) − Φλj

(uj) ≤ C, ∀r ∈ [0, 1]. (2.9)

Note that Lemma 2.7 and the definition of Φλj
imply that

1
2
〈Φ′

λj
(uj), ϕ〉 =

1
2
λj((uj)+, ϕ+) − 1

2
((uj)−, ϕ−) − 1

2

+∞∑

n=−∞
gn(uj

n)ϕn = 0, ∀ϕ ∈ E.

It follows from the definition of Φλj
that

Φλj
(r(uj)+) − Φλj

(uj)

= 1
2λj(r2 − 1)‖(uj)+‖2 + 1

2‖(uj)−‖2 +
+∞∑

n=−∞

[
Gn(uj

n) − Gn(r(uj)+n )
]

+ 1
2λj((uj)+, ϕ+) − 1

2 ((uj)−, ϕ−) − 1
2

+∞∑

n=−∞
gn(uj

n)ϕn.

(2.10)

Take

ϕ = (r2 + 1)(uj)− − (r2 − 1)(uj)+ = (r2 + 1)uj − 2r2(uj)+,
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which together with Lemma 2.8 and (2.10) implies that

Φλj
(r(uj)+) − Φλj

(uj)

= − r2

2 ‖(uj)−‖2 +
+∞∑

n=−∞

[
Gn(uj

n) − Gn(r(uj)+n ) + r2gn(uj
n)(uj)+n − 1+r2

2 gn(uj
n)uj

n

]

≤
+∞∑

n=−∞

[
Gn(uj

n) − Gn(r(uj)+n ) + r2gn(uj
n)(uj)+n − 1+r2

2 gn(uj
n)uj

n

]

≤ C.

Thus, (2.9) holds.
Let C0 > 0 be fixed constant. Then ‖uj‖ → ∞ as j → ∞ implies that

rj :=
C0

‖uj‖ → 0 as j → ∞.

Therefore, (2.9) implies that

Φλj
(rj(uj)+) − Φλj

(uj) ≤ C

for all sufficiently large j. It follows from (vj)+ = (uj)+

‖uj‖ and Lemma 2.7 that for all sufficiently large j

we have

Φλj
(C0(vj)+) ≤ C ′ (2.11)

for some constant C ′. Note that Lemmas 2.2 and 2.7 and (G4) imply that

0 ≤ cλj

‖uj‖2 =
Φλj

(uj)

‖uj‖2 = λj

2 ‖(vj)+‖2 − 1
2‖(vj)−‖2 −

∑+∞
n=−∞ Gn(uj

n)

‖uj‖2

≤ λ0
2 ‖(vj)+‖2 − 1

2‖(vj)−‖2 +
∑+∞

n=−∞ |Wn|
‖uj‖2 .

It follows from
∑+∞

n=−∞ |Wn|
‖uj‖2 → 0 as j → ∞ (since W ∈ l1 and ‖uj‖ → ∞) that

λ0

2
‖(vj)+‖2 − 1

2
‖(vj)−‖2 + ε ≥ 0, ∀ε > 0 (2.12)

for all sufficiently large j. We take ε = 1
4 , by (2.12) and ‖vj‖2 = ‖(vj)+‖2 + ‖(vj)−‖2 = 1, we have

‖(vj)+‖2 ≥ 1
2(1 + λ0)

(2.13)

for all sufficiently large j. By (G1) and (G3), we have
+∞∑

n=−∞
Gn(C0(vj)+n )

≤ 1
2γC2

0

∑

{n∈Z: |C0(vj)+n |<δ}
|(vj)+n |2 + 1

2c
∑

{n∈Z: |C0(vj)+n |≥δ}

(
C0|(vj)+n | + Cp

0 |(vj)+n |p)

≤ 1
2γC2

0

∑

{n∈Z: |C0(vj)+n |<δ}
|(vj)+n |2 + C1

∑

{n∈Z: |C0(vj)+n |≥δ}
|(vj)+n |p

≤ 1
2γC2

0‖(vj)+‖2
l2 + C1‖(vj)+‖p

lp

(2.14)
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for some constant C1, where the inequality marked by underlining is similar to the expression in Lemma
2.2. For all sufficiently large j, (2.13) and (2.14) follow from Lemma 2.5 and the fact that v+ = 0 and

Φλj
(C0(vj)+) = 1

2λjC
2
0‖(vj)+‖2 −

+∞∑

n=−∞
Gn(C0(vj)+n )

≥ 1
2λjC

2
0

1
2(1+λ0)

− 1
2γC2

0‖(vj)+‖2
l2 − C1‖(vj)+‖p

lp

→ λC2
0

4(1+λ0)
as j → ∞.

This implies that Φλj
(C0(vj)+) → +∞ as C0 → +∞, contrary to (2.11).

Therefore, the sequence {uj} is bounded. The proof is finished. �

3. Proofs of main results

Proof of Theorem 1.1. From Lemma 2.7, there are sequences 1 ≤ λj → 1 and {uj} ⊂ E such that
Φ′

λj
(uj) = 0 and Φλj

(uj) = cλj
. Lemma 2.9 implies {uj} is bounded; thus, we can assume uj ⇀ u in E,

uj
n → un for all n ∈ Z. By the fact Φ′

λj
is weakly sequentially continuous on E (it is similar to the fact

Φ′
λ is weakly sequentially continuous on E, which is below Theorem A) and Φ′

λj
(uj) = 0, we have

0 = lim
j→∞

〈Φ′
λj

(uj), ϕ〉 = 〈Φ′(u), ϕ〉, ∀ϕ ∈ E.

Therefore, Φ′(u) = 0.
The facts Φ′

λj
(uj) = 0 and Φλj

(uj) = cλj
imply that

Φλj
(uj) − 1

2
〈Φ′

λj
(uj), uj〉 =

+∞∑

n=−∞

(
1
2
gn(uj

n)uj
n − Gn(uj

n)
)

= cλj
≥ c1. (3.1)

Similar to (2.7) and (2.8), we know
+∞∑

n=−∞

(
1
2
gn(uj

n)uj
n − Gn(uj

n)
)

→
+∞∑

n=−∞

(
1
2
gn(un)un − Gn(un)

)

as j → ∞.

It follows from (3.1), Lemma 2.2 and Φ′(u) = 0 that

Φ(u) = Φ(u) − 1
2 〈Φ′(u), u〉 =

+∞∑

n=−∞

(
1
2gn(un)un − Gn(un)

)

= lim
j→∞

+∞∑

n=−∞

(
1
2gn(uj

n)uj
n − Gn(uj

n)
) ≥ c1 ≥ ε > 0.

It implies that u �= 0. Therefore, (1.1) has a non-trivial solution u.
By using the argument borrowed from [20], we will show that u satisfies (1.6). In fact, let

zn = −σ
gn(un)

un
if un �= 0 and zn = 0 if un = 0, n ∈ Z,

then

L̃un = ωun, (3.2)

where L̃un = Lun + znun. Note that

gn(s) = o(s) as s → 0 for all n ∈ Z, s ∈ R
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and lim|n|→∞ un = 0 imply that lim|n|→∞ zn = 0. Thus, the multiplication by zn is a compact operator in
l2, which implies that σe(L̃) = σe(L), where σe stands for the essential spectrum. Equation (3.2) means
that u = {un} is an eigenfunction that corresponds to the eigenvalue of finite multiplicity ω �∈ σe(L̃)
of the operator L̃. Equation (1.6) follows from the standard theorem on exponential decay for such
eigenfunctions [16]. �

Proof of Theorem 1.2. By Theorem 1.1, M �= ∅, where M is the collection of solutions of (1.1). Let

α := inf
u∈M

Φ(u).

If u is a solution of (1.1), then by Lemma 2.8 (take r = 0),

Φ(u) = Φ(u) − 1
2
〈Φ′(u), u〉 =

+∞∑

n=−∞

(
1
2
gn(un)n − Gn(un)

)

≥ −C = −
+∞∑

n=−∞
|Wn|.

Thus, α > −∞. Let {uj} be a sequence in M such that

Φ(uj) → α. (3.3)

Similar to the proof of Lemma 2.9, we conclude that the sequence {uj} is bounded in E. Thus, uj ⇀ u
in E and uj

n → un for all n ∈ Z, after passing to a subsequence. Therefore, by the facts that Φ′ is weakly
sequentially continuous on E and Φ′(uj) = 0, we have

〈Φ′(u), ϕ〉 = lim
j→∞

〈Φ′(uj), ϕ〉 = 0, ∀ϕ ∈ E.

That is, Φ′(u) = 0.
Note that Φ′(uj) = 0, similar to (2.7) and (2.8), we have

Φ(uj) = Φ(uj) − 1
2 〈Φ′(uj), uj〉

=
+∞∑

n=−∞

(
1
2gn(uj

n)uj
n − Gn(uj

n)
) →

+∞∑

n=−∞

(
1
2gn(un)un − Gn(un)

)
as j → ∞.

It follows from Φ′(u) = 0 and (3.3) that

Φ(u) = Φ(u) − 1
2 〈Φ′(u), u〉 =

+∞∑

n=−∞

[
1
2gn(un)un − Gn(un)

]

= limj→∞ Φ(uj) = α.

Now, we suppose that

gn(s) = o(s) as s → 0 for all n ∈ Z, s ∈ R.

It follows form (G1) that for any ε > 0 there is a constant Cε > 0 such that

|gn(s)| ≤ ε|s| + Cε|s|p−1 for all n ∈ Z and s ∈ R. (3.4)

Let

β := inf
u∈M ′

Φ(u),

where M ′ := M\{0}. Let {uj} be a sequence in M\{0} such that

Φ(uj) → β. (3.5)
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Similar to the proof of Lemma 2.9, we conclude that the sequence {uj} is bounded in E. Thus, uj ⇀ u
in E, after passing to a subsequence. Note that

0 = 〈Φ′(uj), (uj)+〉 = ‖(uj)+‖2 −
+∞∑

n=−∞
gn(uj

n)(uj)+n ,

which together with (3.4), the Hölder’s inequality and the fact ‖u‖lp ≤ ‖u‖l2 ≤ C‖u‖ for u ∈ E implies

‖(uj)+‖2 =
+∞∑

n=−∞
gn(uj

n)(uj)+n

≤ ε
+∞∑

n=−∞
|uj

n| · |(uj)+n | + Cε

+∞∑

n=−∞
|uj

n|p−1|(uj)+n |

≤ εC‖uj‖ · ‖(uj)+‖ + C ′
ε‖uj‖p−1

lp ‖(uj)+‖

≤ εC‖uj‖ · ‖(uj)+‖ + C ′′
ε ‖uj‖p−2

lp ‖uj‖ · ‖(uj)+‖

≤ εC‖uj‖2 + C ′′
ε ‖uj‖p−2

lp ‖uj‖2.

(3.6)

Similarly, we have

‖(uj)−‖2 ≤ εC‖uj‖2 + C ′′
ε ‖uj‖p−2

lp ‖uj‖2. (3.7)

From (3.6) and (3.7), we get

‖uj‖2 = ‖(uj)+‖2 + ‖(uj)−‖2 ≤ 2εC‖uj‖2 + 2C ′′
ε ‖uj‖p−2

lp ‖uj‖2,

which means ‖uj‖lp ≥ C for some constant C > 0. Since Lemma 2.5 implies uj → u in lp, we know
u �= 0. As before, we can easily get Φ(uj) → Φ(u) = β as j → ∞. Therefore, (1.1) has a ground state
solution. �
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