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Abstract. This paper is mainly concerned with the polynomial stability of a thermoelastic Timoshenko system recently
introduced by Almeida Júnior et al. (Z Angew Math Phys 65(6):1233–1249, 2014) that proved, in the general case when

equal wave speeds are not assumed, different polynomial decay rates depending on the boundary conditions, namely, optimal

rate t−1/2 for mixed Dirichlet–Neumann boundary condition and rate t−1/4 for full Dirichlet boundary condition. Here,
our main achievement is to prove the same polynomial decay rate t−1/2 (corresponding to the optimal one) independently
of the boundary conditions, which improves the existing literature on the subject. As a complementary result, we also prove
that the system is exponentially stable under equal wave speeds assumption. The technique employed here can probably be
applied to other kind of thermoelastic systems.
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1. Introduction

Thermoelastic model and main goal. This paper addresses results on stability to the following ther-
moelastic Timoshenko system

ρ1ϕtt − k(ϕx + ψ)x + m θx = 0 in (0, l) × R
+, (1.1)

ρ2ψtt − b ψxx + k(ϕx + ψ) − m θ = 0 in (0, l) × R
+, (1.2)

ρ3θt − c θxx + m(ϕxt + ψt) = 0 in (0, l) × R
+, (1.3)

with initial conditions

ϕ(·, 0) = ϕ0(·), ϕt(·, 0) = ϕ1(·), ψ(·, 0) = ψ0(·), ψt(·, 0) = ψ1(·), θ(·, 0) = θ0(·), (1.4)

and either the full Dirichlet or mixed Dirichlet–Neumann boundary conditions
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) ϕ(0, t) = ϕ(l, t) = ψ(0, t) = ψ(l, t) = θ(0, t) = θ(l, t) = 0,

(b) ϕx(0, t) = ϕx(l, t) = ψ(0, t) = ψ(l, t) = θ(0, t) = θ(l, t) = 0,

(c) ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = θ(0, t) = θ(l, t) = 0,

(d) ϕ(0, t) = ϕ(l, t) = ψ(0, t) = ψ(l, t) = θx(0, t) = θx(l, t) = 0,

(e) ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = θx(0, t) = θx(l, t) = 0,

(1.5)

where the functions ϕ,ψ and θ stand for the transversal displacement, the rotation angle and the difference
of temperature of a beam with length l > 0, respectively, and ρ1, ρ2, ρ3, k, b, c, m > 0. The model (1.1)–
(1.3) was recently proposed by Almeida Júnior et al. [1] by considering the classical Timoshenko model
(see Timoshenko [27,28])

ρ1ϕtt = Sx and ρ2ψtt = Mx − S, (1.6)
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with constitutive thermal law acting on the shear stress

S = k(ϕx + ψ) − m θ and M = b ψx. (1.7)

More precisely, in [1] the authors only studied the system (1.1)–(1.4) with boundary conditions (1.5)a or
(1.5)e. They proved that the stability of the system depends of the boundary conditions and the difference
of wave speeds

χ :=
ρ1
k

− ρ2
b

. (1.8)

Indeed, following [1, Theorems 3.2 and 4.4] one can see that problem (1.1)–(1.5)e is exponentially stable
if and only if χ = 0. In the case χ �= 0, it is reached in [1, Theorem 5.1] that the system decays
polynomially with decay rate depending on the boundary conditions, namely, with optimal rate t−1/2 for
(1.5)e and rate t−1/4 for (1.5)a. It is worth mentioning that different polynomial decay rates depending
on the boundary conditions also appear in other models such as thermoelastic Bresse systems, see e.g.,
[9,14]. The key point in these three later works in achieving different decay rates for different boundary
conditions appears when it is necessary to estimate boundary point-wise terms with respect to the thermal
component. However, as remarked in [14] (see Remark 4.1 therein), there is no physical explanation why
such polynomial rates are different depending on their respective boundary conditions.

Therefore, motivated by the above works and the “problem” of different polynomial decay rates, the
main goal in this paper is to show that, in general, the system (1.1)–(1.5) decays polynomially with the
same rate independent of the boundary conditions. Concerning to thermoelastic Timoshenko systems,
this seems to be the first work which unifies the same polynomial decay rate no matter what boundary
condition is taken into account. In addition, the exponential stability (also independent of the boundary
conditions) is achieved by requiring the equal wave speeds. The main contribution of this work is twofold:

1. In general, when equal wave speeds are not assumed, it is proved that the system (1.1)–(1.5) is
polynomially stable with the same decay rate (corresponding to the optimal case) independent
of boundary conditions, which improves the result on polynomial decay provided by [1]. This is
presented in Theorem 4.1.

2. Under equal wave speeds it is proved that the system (1.1)–(1.5) is exponentially stable, which
complements the result on exponential stability given by authors in [1]. This is stated in Theorem
4.3.

A short literature overview. In what follows we consider a short literature on Timoshenko systems and
main results on the subject. In the isothermal case, say taking m = 0 in (1.7), then from relations
(1.6)–(1.7) we obtain the conservative Timoshenko system

ρ1ϕtt − k(ϕx + ψ)x = 0, (1.9)
ρ2ψtt − b ψxx + k(ϕx + ψ) = 0. (1.10)

In Soufyane [24] it is shown that (1.9)–(1.10) with a damping βψt, β > 0, added in the equation (1.10)
is exponentially stable if and only if χ = 0 in (1.8). Ever since, the assumption χ = 0 has been widely
used in the stabilization of elastic, viscoelastic and thermoelastic Timoshenko systems. See e.g. [2–4,7,
12,13,16,17,19,25,26] and references therein. In the non-isothermal case, following [11,18], we can also
consider the thermal effect acting only on the bending moment

S = k(ϕx + ψ) and M = b ψx − m ϑ, (1.11)

instead of (1.7). Then, from (1.6) and (1.11) we obtain the following thermoelastic Timoshenko system

ρ1ϕtt − k(ϕx + ψ)x = 0, (1.12)

ρ2ψtt − b ψxx + k(ϕx + ψ) + σ ϑx = 0, (1.13)

ρ3ϑt − c ϑxx + σψxt = 0, (1.14)
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where (1.14) is now the coupling heat equation with temperature ϑ and coefficient σ > 0. The sys-
tem (1.12)–(1.14) with mixed Dirichlet–Neumann boundary conditions (see condition (1.5)b,c,d) was first
studied by Muñoz Rivera and Racke [18] that proved the system is exponentially stable when χ = 0 is
regarded. Moreover, the authors proved that the system (1.12)–(1.14) with boundary condition (1.5)c

is exponentially stable if and only if χ = 0. The same result is also obtained by Fernández Sare and
Racke [11] with ϕx = ψ = θx = 0 on x = 0, l. As observed at the end of this paper, see Remark 4.5,
our main results on stability (Theorems 4.1 and 4.3) can be extended to problem (1.12)–(1.14) under
a lot of modifications on the local estimates provided in Sect. 3. For systems which take into account
other thermal laws acting on the bending moment we refer to [8,10,11,22,23] and references therein. We
finally note that assumption χ = 0 is only given from mathematical viewpoint since it is not satisfied
from elasticity theory, see e.g., [14,20]. Therefore, our main result concerns the case where χ �= 0.

The remaining paper is organized as follows. In Sect. 2 we consider the well-posedness result with
respect to problem (1.1)–(1.5). In Sect. 3 we provide some a priori estimates which consist the main
tool used in the proof of the results on stability. Finally, in Sect. 4 we state and prove our main results
concerning polynomial and exponential decay rates.

2. Well-posedness

Let us start this section by defining the phase space of solutions

H =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1
0 (0, l) × L2(0, l) × H1

0 (0, l) × L2(0, l) × L2(0, l) for (1.5)a,
H1

∗ (0, l) × L2
∗(0, l) × H1

0 (0, l) × L2(0, l) × L2(0, l) for (1.5)b,
H1

0 (0, l) × L2(0, l) × H1
∗ (0, l) × L2

∗(0, l) × L2(0, l) for (1.5)c,
H1

0 (0, l) × L2(0, l) × H1
0 (0, l) × L2(0, l) × L2

∗(0, l) for (1.5)d,
H1

0 (0, l) × L2(0, l) × H1
∗ (0, l) × L2

∗(0, l) × L2
∗(0, l) for (1.5)e,

where H1
∗ (0, l) = H1(0, l)∩L2

∗(0, l) and L2
∗(0, l) =

{

u ∈ L2(0, l); 1
l

l∫

0

u(x) dx = 0

}

. It is well-known that

H is a Hilbert space with respect to the norm

‖U‖2H =

l∫

0

[
ρ1|Φ|2 + ρ2|Ψ|2 + b|ψx|2 + k|ϕx + ψ|2 + ρ3|θ|2

]
dx,

for U = (ϕ,Φ, ψ,Ψ, θ)T ∈ H, associated with the inner-product (·, ·)H induced by system on H. Under
above notations the system (1.1)–(1.5) can be rewritten as

{
Ut = A U, t > 0,
U(0) := U0 = (ϕ0, ϕ1, ψ0, ψ1, θ0)T ,

(2.1)

where A : D(A) ⊂ H → H is given by

AU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ
k

ρ1
(ϕx + ψ)x − m

ρ1
θx

Ψ
b

ρ2
ψxx − k

ρ2
(ϕx + ψ) +

m

ρ2
θ

c

ρ3
θxx − m

ρ3
(Φx + Ψ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.2)



70 Page 4 of 16 M. S. Alves et al. ZAMP

for any U = (ϕ,Φ, ψ,Ψ, θ)T ∈ D(A), with domain

D(A) =
{
U ∈ H | ϕ,ψ, θ ∈ H2(0, l) and (D) is satified

}
,

where

(D)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ,Ψ, θ ∈ H1
0 (0, l) for (1.5)a,

Ψ, ϕx, θ ∈ H1
0 (0, l), Φ ∈ H1

∗ (0, l) for (1.5)b,
Φ, ψx, θ ∈ H1

0 (0, l), Ψ ∈ H1
∗ (0, l) for (1.5)c,

Φ,Ψ, θx ∈ H1
0 (0, l) for (1.5)d,

Φ, ψx, θx ∈ H1
0 (0, l),Ψ ∈ H1

∗ (0, l) for (1.5)e.

(2.3)

The result on existence and uniqueness of solution to the abstract Cauchy problem (2.1), and therefore
to the equivalent system (1.1)–(1.5), is stated as follows.

Theorem 2.1. Under above notations we have:
(i) If U0 ∈ H, then problem (2.1) has a unique mild solution U ∈ C0([0,∞),H).
(ii) If U0 ∈ D(A), then the above weak solution is strong one with

U ∈ C0 ([0,∞),D(A)) ∩ C1 ([0,∞),H) .

(iii) If U0 ∈ D(An), n ≥ 2 integer, then the above strong solution is more regular

U ∈
n⋂

j=0

Cn−j
(
[0,+∞),D(Aj)

)
.

Proof. The proof of existence is analogous to the one given by authors in [1]. Indeed, it is not so difficult
to check that A is the infinitesimal generator of a C0-semigroup of contractions T (t) = eAt on H, namely,
as shown in [1, Theorem 2.1] we have that Id − A : D(A) ⊂ H → H is onto and A is dissipative on H
with

Re (AU,U)H = −c

l∫

0

|θx(x)|2 dx ≤ 0, U ∈ D(A), (2.4)

for all boundary conditions taken in (1.5). Hence, the proof follows from the standard theory of linear
semigroups, see Pazy [21].

3. A priori estimates

In this section we consider some results which provide local estimates independently of the boundary
conditions. Our starting point is to consider the resolvent equation

iβU − AU = F, (3.1)

with U = (ϕ,Φ, ψ,Ψ, θ)T , F = (f1, f2, f3, f4, f5)T and A defined in (2.2), which can be rewritten in terms
of its components

iβϕ − Φ = f1, (3.2)
iβρ1Φ − k(ϕx + ψ)x + m θx = ρ1f2, (3.3)

iβψ − Ψ = f3, (3.4)
iβρ2Ψ − b ψxx + k(ϕx + ψ) − m θ = ρ2f4, (3.5)

iβρ3θ − c θxx + m(Φx + Ψ) = ρ3f5. (3.6)

Hereafter, we shall denote by C > 0 different constants and by ‖·‖Lp the norm in Lp(0, l). Besides, the
well-known Hölder and Poincaré inequalities, and |β| > 1 large enough, shall be used in most estimates
without being mentioned.
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Lemma 3.1. Under above notations there exists a constant C > 0 such that

‖θx‖2L2 ≤ C‖U‖H‖F‖H. (3.7)

Proof. From (2.4) and (3.1) we obtain

c

l∫

0

|θx|2 dx = Re (U,F )H,

from which (3.7) follows.

Lemma 3.2. Under above notations we have iR ⊆ ρ(A), where ρ(A) is resolvent set of A.

Proof. Let us suppose that there exists iβ ∈ σ(A), β �= 0, with corresponding eigenvector U =
(ϕ,Φ, ψ,Ψ, θ)T �= 0. From (3.7) with F = 0, we obtain θ ≡ 0. Returning to equations (3.2)–(3.6) with
F = 0, we get Φ, ϕ ≡ 0 and then Ψ, ψ ≡ 0. This implies that U ≡ 0 which is a contradiction. Thus,
there are no purely imaginary eigenvalues in the spectrum σ(A) = C\ρ(A), which in turn is made by
eigenvalues only. Therefore, iR ⊆ ρ(A).

In what follows we shall obtain local estimates by using auxiliary cut-off functions. The main aim
is to avoid different estimates provided by boundary point-wise terms. In this way, let us first consider
l0 ∈ (0, l) and δ > 0 arbitrary numbers such that (l0 − δ, l0 + δ) ⊂ (0, l), and a function s ∈ C2(0, l)
satisfying

supp s ⊂ (l0 − δ, l0 + δ), 0 ≤ s(x) ≤ 1, x ∈ (0, l), (3.8)
and

s(x) = 1 for x ∈ [l0 − δ/2, l0 + δ/2] . (3.9)

Proposition 3.3. Under above notations there exists a constant C > 0 such that
l0+δ/2∫

l0−δ/2

(|ϕx + ψ|2 + |Φ|2) dx ≤ C

|β|3/2

(
‖θx‖1/2

L2 ‖U‖1/2
H + ‖U‖1/2

H ‖F‖1/2
H
)

‖U‖H

+
C

|β| ‖θx‖L2‖U‖H +
C

|β|4/3
‖θx‖2/3

L2 ‖U‖4/3
H (3.10)

+ C‖U‖H‖F‖H + C‖F‖2H.

In particular, given ε > 0 there exists a constant Cε > 0 such that
l0+δ/2∫

l0−δ/2

(|ϕx + ψ|2 + |Φ|2) dx ≤ ε‖U‖2H + Cε‖F‖2H. (3.11)

Proof. On the one hand, from expressions (3.2), (3.4) and (3.6), we obtain

iβρ3θ − c θxx + iβm(ϕx + ψ) = ρ3f5 + m(f1,x + f3). (3.12)

Taking the multiplier sk[ϕx + ψ] in (3.12) and performing integration by parts, we have

iβkm

l∫

0

s|ϕx + ψ|2 dx = −c

l∫

0

s θx[k(ϕx + ψ)x] dx

︸ ︷︷ ︸
:=I1

+ kρ3

l∫

0

sθ[iβ(ϕx + ψ)] dx

︸ ︷︷ ︸
:=I2

(3.13)

− kc

l∫

0

s′ θx[ϕx + ψ] dx + k

l∫

0

s [ρ3f5 + m(f1,x + f3)] [ϕx + ψ] dx.
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Using (3.3) one has

I1 = iβcρ1

l∫

0

s θxΦ dx − cm

l∫

0

s |θx|2 dx + cρ1

l∫

0

sθxf2 dx.

In addition, applying (3.2), (3.4), and integration by parts, then

I2 = −kρ3

l∫

0

[s θ]xΦ dx + kρ3

l∫

0

s θΨ dx + kρ3

l∫

0

s θ[f1,x + f3] dx.

Replacing these two last identities in (3.13) we deduce

iβkm

l∫

0

s|ϕx + ψ|2 dx = iβcρ1

l∫

0

sθxΦ dx + I3, (3.14)

where

I3 = − cm

l∫

0

s |θx|2 dx − kc

l∫

0

s′ θx[ϕx + ψ] dx − kρ3

l∫

0

[s θ]xΦ dx + kρ3

l∫

0

s θΨ dx

+ kρ3

l∫

0

s θ[f1,x + f3] dx + cρ1

l∫

0

sθxf2 dx + k

l∫

0

s [ρ3f5 + m(f1,x + f3)] [ϕx + ψ] dx.

From estimate (3.7) and keeping in mind the definition of H-norm, we infer

|I3| ≤ C‖U‖H‖F‖H + C‖θx‖L2‖U‖H + C‖θx‖L2‖F‖H,

for some constant C > 0. Going back to (3.14) and using condition (3.8) on s, we conclude

|β|
l0+δ∫

l0−δ

s|ϕx + ψ|2 dx ≤ C|β|‖θx‖L2

⎛

⎝

l0+δ∫

l0−δ

s|Φ|2 dx

⎞

⎠

1/2

+ C‖U‖H‖F‖H

+ C‖θx‖L2‖U‖H + C‖θx‖L2‖F‖H.

Moreover, applying Young inequality and estimate (3.7), we obtain

l0+δ∫

l0−δ

s|ϕx + ψ|2 dx ≤C ‖θx‖L2

⎛

⎝

l0+δ∫

l0−δ

s|Φ|2 dx

⎞

⎠

1/2

+
C

|β| ‖θx‖L2‖U‖H

+
C

|β| ‖U‖H‖F‖H +
C

|β| ‖F‖2H. (3.15)

On the other hand, taking the multiplier −sϕ in (3.3), performing integration by parts and applying
(3.2), we get

ρ1

l∫

0

s|Φ|2 dx = k

l∫

0

s|ϕx + ψ|2 dx − k

l∫

0

s(ϕx + ψ)ψ dx + I4 + I5, (3.16)

where

I4 =
i

β
m

l∫

0

s θx[Φ + f1] dx − ρ1

l∫

0

s[Φf1 + f2ϕ] dx and I5 = k

l∫

0

s′(ϕx + ψ)ϕ dx.
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From (3.7) it is easy to see that

|I4| ≤ C

|β| ‖θx‖L2‖U‖H +
C

|β| ‖θx‖L2‖F‖H + C‖U‖H‖F‖H,

for some constant C > 0. In addition, from equations (3.2) and (3.4), it follows that

|Re I5| ≤ C

|β|2 ‖U‖2H +
C

|β|2 ‖F‖2H,

for some constant C > 0. Thus, taking the real part in (3.16) and observing that supp s ⊂ (l0 − δ, l0 + δ),
we have

l0+δ∫

l0−δ

s|Φ|2 dx ≤ C

l0+δ∫

l0−δ

s|ϕx + ψ|2 dx + C

l0+δ∫

l0−δ

s|ϕx + ψ||ψ| dx +
C

|β| ‖θx‖L2‖U‖H

+
C

|β| ‖θx‖L2‖F‖H + C‖U‖H‖F‖H +
C

|β|2 ‖U‖2H +
C

|β|2 ‖F‖2H

≤ C

l0+δ∫

l0−δ

s|ϕx + ψ|2 dx + C

⎛

⎝

l0+δ∫

l0−δ

s|ϕx + ψ|2 dx

⎞

⎠

1/2

‖ψ‖L2 +
C

|β| ‖θx‖L2‖U‖H

+
C

|β| ‖θx‖L2‖F‖H + C‖U‖H‖F‖H +
C

|β|2 ‖U‖2H +
C

|β|2 ‖F‖2H.

From estimate (3.15), Young inequality and (3.7), results

l0+δ∫

l0−δ

s|Φ|2 dx ≤ C ‖θx‖L2

⎛

⎝

l0+δ∫

l0−δ

s|Φ|2 dx

⎞

⎠

1/2

+ C ‖θx‖1/2
L2

⎛

⎝

l0+δ∫

l0−δ

s|Φ|2 dx

⎞

⎠

1/4

‖ψ‖L2

+
C

|β|1/2

(
‖θx‖1/2

L2 ‖U‖1/2
H + ‖U‖1/2

H ‖F‖1/2
H + ‖F‖H

)
‖ψ‖L2

+
C

|β| ‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H +
C

|β|2 ‖U‖2H.

Using again Young inequality and (3.7), and then equation (3.4), it follows that

l0+δ∫

l0−δ

s|Φ|2 dx ≤ C

|β|3/2

(
‖θx‖1/2

L2 ‖U‖1/2
H + ‖U‖1/2

H ‖F‖1/2
H + ‖F‖H

) (‖U‖H + ‖F‖H
)

+
C

|β|4/3
‖θx‖2/3

L2

(‖U‖4/3
H + ‖F‖4/3

H
)

+
C

|β| ‖θx‖L2‖U‖H

+ C‖U‖H‖F‖H + C‖F‖2H +
C

|β|2 ‖U‖2H.

Applying once more Young inequality and estimate (3.7), we conclude

l0+δ∫

l0−δ

s|Φ|2 dx ≤ C

|β|3/2

(
‖θx‖1/2

L2 ‖U‖1/2
H + ‖U‖1/2

H ‖F‖1/2
H
)

‖U‖H +
C

|β|4/3
‖θx‖2/3

L2 ‖U‖4/3
H

+
C

|β| ‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H +
C

|β|2 ‖U‖2H. (3.17)
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Finally, combining (3.15) and (3.17) we obtain
l0+δ∫

l0−δ

s
(|ϕx + ψ|2 + |Φ|2) dx ≤ C

|β|3/2

(
‖θx‖1/2

L2 ‖U‖1/2
H + ‖U‖1/2

H ‖F‖1/2
H
)

‖U‖H

+
C

|β| ‖θx‖L2‖U‖H +
C

|β|4/3
‖θx‖2/3

L2 ‖U‖4/3
H

+ C‖U‖H‖F‖H + C‖F‖2H,

where we use Young inequality and estimate (3.7) over again, and from definition of s in (3.8)–(3.9),
the estimate (3.10) holds true. In particular, using Young inequality and (3.7) repeatedly, and observing
conditions (3.8)–(3.9) on s, the estimate (3.11) is also achieved.

Now we consider another auxiliary cut-off function s1 ∈ C2(0, l) such that

supp s1 ⊂ (l0 − δ/2, l0 + δ/2), 0 ≤ s1(x) ≤ 1, x ∈ (0, l), (3.18)

and
s1(x) = 1 for x ∈ [l0 − δ/3, l0 + δ/3]. (3.19)

Proposition 3.4. Under above notations there exists a constant C > 0 such that
l0+δ/2∫

l0−δ/2

s1|ψx|2 dx ≤ C|β| |bρ1 − kρ2|
l0+δ/2∫

l0−δ/2

s1|ϕx + ψ||Ψ|dx

+ C

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx + C‖U‖H

⎛

⎜
⎝

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx

⎞

⎟
⎠

1/2

(3.20)

+ C‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H +
C

|β|2 ‖U‖2H.

Proof. Multiplying (3.5) by s1
b
ρ2

ψ and performing integration by parts on (0, l) we get

b2

ρ2

l∫

0

s1|ψx|2 dx = − iβb

l∫

0

s1Ψψ dx − bk

ρ2

l∫

0

s1(ϕx + ψ)ψ dx (3.21)

+
bm

ρ2

l∫

0

s1θψ dx + b

l∫

0

s1f4ψ dx − b2

ρ2

l∫

0

s′
1 ψxψ dx.

On the other hand, deriving (3.3), taking the multiplier s1b ψ in the resulting expression and then inte-
grating by parts, we infer

iβb

l∫

0

s1 Φxψ dx +
b

ρ1

l∫

0

s1[k(ϕx + ψ)x]ψx dx

︸ ︷︷ ︸
:=I6

+
b

ρ1

l∫

0

s′
1[k(ϕx + ψ)x]ψ dx

︸ ︷︷ ︸
:=I7

(3.22)

− mb

ρ1

l∫

0

θx[s1ψ]x dx = −b

l∫

0

f2[s1ψ]x dx.
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Using integration by parts and equation (3.5) we rewrite I6 and I7 as follows

I6 = iβ
kρ2
ρ1

l∫

0

s1(ϕx + ψ)Ψ dx − k2

ρ1

l∫

0

s1|ϕx + ψ|2 dx

+
km

ρ1

l∫

0

s1(ϕx + ψ)θ dx +
kρ2
ρ1

l∫

0

s1(ϕx + ψ)f4 dx − bk

ρ1

l∫

0

s′
1(ϕx + ψ)ψx dx,

and

I7 = −bk

ρ1

l∫

0

s′′
1(ϕx + ψ)ψ dx − bk

ρ1

l∫

0

s′
1(ϕx + ψ)ψx dx.

Replacing these two last identities in (3.22), adding the resulting expression with (3.21), using again
equations (3.2) and (3.4), and integration by parts, results

b2

ρ2

l∫

0

s1|ψx|2 dx = iβ

[
bρ1 − kρ2

ρ1

] l∫

0

s1(ϕx + ψ)Ψ dx +
k2

ρ1

l∫

0

s1|ϕx + ψ|2 dx

+ k

l∫

0

{
b

ρ1
s′′
1 − b

ρ2
s1

}

(ϕx + ψ)ψ dx (3.23)

+ 2
bk

ρ1

l∫

0

s′
1(ϕx + ψ)ψx dx + I8 + I9,

where

I8 = b

l∫

0

s1Ψf3 dx − b

l∫

0

s1(f1,x + f3)Ψ dx − b

l∫

0

Φ[s1f3]x dx + b

l∫

0

s1f4ψ dx

− kρ2
ρ1

l∫

0

s1(ϕx + ψ)f4 dx +
bm

ρ2

l∫

0

s1θψ dx − km

ρ1

l∫

0

s1(ϕx + ψ)θ dx

+ b

l∫

0

(
m

ρ1
θx − f2

)

[s1 ψ]x dx,

I9 = − b2

ρ2

l∫

0

s′
1 ψxψ dx.

Applying (3.7) it is easy to check that

|I8| ≤ C‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H,

for some constant C > 0. Further, using integrating by parts and equation (3.4), we infer

|Re I9| ≤ C

|β|2 ‖U‖2H +
C

|β|2 ‖F‖2H,

for some constant C > 0. Going back to (3.23) and taking its real part, and noting that

supp s′′
1 ⊂ supp s′

1 ⊂ supp s1 ⊂ (l0 − δ/2, l0 + δ/2),
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we obtain
l0+δ/2∫

l0−δ/2

s1|ψx|2 dx ≤ C|β| |bρ1 − kρ2|
l0+δ/2∫

l0−δ/2

s1|ϕx + ψ||Ψ|dx

+ C

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx + C‖U‖H

⎛

⎜
⎝

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx

⎞

⎟
⎠

1/2

+ C‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H +
C

|β|2 ‖U‖2H.

This completes the proof of (3.20).

Proposition 3.5. Under above notations there exists a constant C > 0 such that
l0+δ/2∫

l0−δ/2

s1|Ψ|2 dx ≤ C|β| |bρ1 − kρ2|
l0+δ/2∫

l0−δ/2

s1|ϕx + ψ||Ψ|dx

+ C

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx + C‖U‖H

⎛

⎜
⎝

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx

⎞

⎟
⎠

1/2

(3.24)

+ C‖θx‖L2‖U‖H + C‖U‖H‖F‖H + C‖F‖2H +
C

|β| ‖U‖2H.

Proof. Taking the multiplier −s1ψ in (3.5), performing integration by parts and using (3.4), we obtain

ρ2

l∫

0

s1 |Ψ|2 dx = b

l∫

0

s1 |ψx|2 dx + I10 + I11, (3.25)

where

I10 = − ρ2

l∫

0

s1 Ψf3 dx − ρ2

l∫

0

s1f4ψ dx − m

l∫

0

s1θψ dx,

I11 = k

l∫

0

s1(ϕx + ψ)ψ dx + b

l∫

0

s′
1ψxψ dx.

From equation (3.4) it is easy to see that there exists a constant C > 0 such that

|I10| ≤ C‖θx‖L2‖U‖H + C‖U‖H‖F‖H and |I11| ≤ C

|β| ‖U‖H‖F‖H +
C

|β| ‖U‖2H.

Therefore, inserting these last two estimates in (3.25), using (3.20) and since supp s1 ⊂ (l0−δ/2, l0+δ/2),
we conclude (3.24) as desired.

Corollary 3.6. Under above notations, let us also consider ε > 0.

(i) If χ �= 0 in (1.8), then there exists a constant Cε > 0 such that
l0+δ/3∫

l0−δ/3

(|ψx|2 + |Ψ|2) dx ≤ ε‖U‖2H + Cε|β|4‖F‖2H. (3.26)
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(ii) If χ = 0 in (1.8), then there exists a constant Cε > 0 such that
l0+δ/3∫

l0−δ/3

(|ψx|2 + |Ψ|2) dx ≤ ε‖U‖2H + Cε‖F‖2H. (3.27)

Proof. Adding the estimates (3.20) and (3.24) provided by Propositions 3.4 and 3.5, respectively, using
Young inequality and conditions (3.18)–(3.19) on s1, we get

l0+δ/3∫

l0−δ/3

(|ψx|2 + |Ψ|2) dx ≤ C|β|2 |bρ1 − kρ2|2
l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx + C‖θx‖L2‖U‖H

+ C

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx + C‖U‖H‖F‖H + C‖F‖2H (3.28)

+ C

⎛

⎜
⎝

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx

⎞

⎟
⎠

1/2

‖U‖H +
C

|β| ‖U‖2H,

for some constant C > 0. Thus, we have:
(i) Since χ �= 0, then bρ1 − kρ2 �= 0. From (3.28) with |β| > 1 large enough, Young inequality with ε > 0
and (3.7), we have

l0+δ/3∫

l0−δ/3

(|ψx|2 + |Ψ|2) dx ≤ ε‖U‖2H + Cε‖F‖2H + |β|2
⎛

⎜
⎝Cε

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx

⎞

⎟
⎠ ,

for some constant Cε > 0. In addition, using the estimate (3.10) of Proposition 3.3, proper Young
inequalities with ε > 0 and estimate (3.7), we conclude

Cε

l0+δ/2∫

l0−δ/2

|ϕx + ψ|2 dx ≤ ε

|β|2 ‖U‖2H + Cε|β|2‖F‖2H.

Hence, the conclusion (3.26) follows.
(ii) In this case, χ = 0 implies that bρ1 − kρ2 = 0. Therefore, the desired estimate (3.27) follows from
(3.28) with |β| > 1 large enough, estimates (3.7) and (3.11) of Proposition 3.3 and Young inequality with
ε > 0.

In what follows we consider an observability inequality for the homogeneous problem related to Tim-
oshenko systems. Such result was first proved in Muñoz Rivera and Ávila [17] for systems with variable
coefficients. See also Alves et al. [5].

Let us consider the system

iβu − v = g1 in (0, l), (3.29)
iβρ1v − k(ux + w)x = g2 in (0, l), (3.30)

iβw − z = g3 in (0, l), (3.31)
iβρ2z − b wxx + k(ux + w) = g4 in (0, l), (3.32)

where g1, g3 ∈ H1
0 (0, l) (or H1

∗ (0, l)), g2, g4 ∈ L2(0, l). We denote by V and G the vector-valued functions
V = (u, v, w, z)T and G = (g1, g2, g3, g4)T , respectively. Besides, given any a1, a2 ∈ R with 0 ≤ a1 < a2 ≤
l, the notations ‖ · ‖a1,a2 and I(·) stand for
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‖V ‖2a1, a2
:=

a2∫

a1

(|ux + w|2 + |v|2 + |wx|2 + |z|2) dx,

I(aj) := |ux(aj) + w(aj)|2 + |v(aj)|2 + |wx(aj)|2 + |z(aj)|2, j = 1, 2.

Proposition 3.7. Under above notations, let us consider a strong solution V = (u, v, w, z)T of (3.29)-(3.32)
and any 0 ≤ a1 < a2 ≤ l. Then there exist constants C0, C1 > 0 such that

I(aj) ≤ C0‖V ‖2a1, a2
+ C0‖G‖20, l, j = 1, 2, (3.33)

‖V ‖2a1, a2
≤ C1 I(aj) + C1‖G‖20, l, j = 1, 2. (3.34)

Proof. The proof is analogous to [17, Lemma 3.2] and can be done without requiring extra informations
on the boundary conditions. See also [5, Proposition 3.13].

Corollary 3.8. Let V = (u, v, w, z)T be a strong solution of the system (3.29)–(3.32). If for any sub-interval
(a1, a2) ⊂ (0, l) we have

‖V ‖2a1, a2
≤ Λ, (3.35)

then there exists a constant C > 0 such that

‖V ‖20, l ≤ CΛ + C‖G‖20, l. (3.36)

Proof. Indeed, from (3.33) and (3.35), we have

I(aj) ≤ C0Λ + C0‖G‖20, l, j = 1, 2. (3.37)

Using (3.34) with a1 := 0 and (3.37) with j = 2, we obtain
a2∫

0

(
|ux + w|2 + |v|2 + |wx|2 + |z|2

)
dx ≤ C2 Λ + C2‖G‖20, l,

where C2 = C1C0 + C1 > 0. Analogously, using (3.34) with a1 := a2, a2 := l, and (3.37) with j = 1, we
also obtain

l∫

a2

(
|ux + w|2 + |v|2 + |wx|2 + |z|2

)
dx ≤ C2 Λ + C2‖G‖20, l.

Hence, adding the above last two estimates, we conclude (3.36).

4. Main results

The first main result on stability asserts that, in general, the problem (1.1)–(1.5) is polynomially stable
with rates depending on the regularity of the initial data, but independent of the boundary conditions
considered in (1.5).

Theorem 4.1. Under above notations, let us assume that χ �= 0 in (1.8). Then, there exists a constant
Cn > 0 independent of U0 ∈ D(An), n ≥ 1 integer, such that the semigroup solution U(t) = eAtU0 decays
as

‖U(t)‖H ≤ Cn

tn/2
‖U0‖D(An), t → +∞. (4.1)
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Proof. Let ε > 0 be given. From estimates (3.11) of Proposition 3.3 and (3.26) of Corollary 3.6, there
exists a constant Cε > 0 such that

l0+δ/3∫

l0−δ/3

(|ϕx + ψ|2 + |Φ|2 + |ψx|2 + |Ψ|2) dx ≤ ε‖U‖2H + Cε|β|4‖F‖2H := Λ,

for some constant Cε > 0. Since V := (ϕ,Φ, ψ,Ψ)T is a solution of (3.29)-(3.32) with

g1 := f1, g2 := ρ1f2 − m θx, g3 = f3, g4 = ρ2f4 + m θ,

and (3.35) is verified with a1 = l0 − δ/3 and a2 = l0 + δ/3, then Corollary 3.8, Lemma 3.1 and Young
inequality imply

l∫

0

(|ϕx + ψ|2 + |Φ|2 + |ψx|2 + |Ψ|2) dx ≤ εC‖U‖2H + Cε|β|4‖F‖2H, (4.2)

for some constants C, Cε > 0. In addition, from estimates (3.7) and (4.2), we arrive at

‖U‖2H ≤ εC‖U‖2H + Cε|β|4‖F‖2H.

Choosing ε > 0 small enough and observing the resolvent equation (3.1), then

‖(iβId − A)−1F‖H ≤ C |β|2‖F‖H, |β| → ∞, (4.3)

for some constant C > 0. Finally, applying Lemma 3.2 and estimate (4.3), we conclude from [6, Theorem
2.4] that

‖U(t)‖H ≤ C

t1/2
‖U0‖D(A), t → ∞,

for U0 ∈ D(A), which proves (4.1) for N = 1. The remaining decay rates in (4.1) follows by using
induction over N ≥ 2.

Remark 4.2. It is worth pointing out two issues with respect to estimate (4.1):
(i) the polynomial decay rate t−1/2 achieved in (4.1), for U0 ∈ D(A), is independent of the boundary

conditions in (1.5). Therefore, in the particular case of full Dirichlet condition (1.5)a, this achieve-
ment improves the decay t−1/4 obtained in [1, Theorem 5.1];

(ii) the optimality of the decay rate t−1/2 is only ensured for boundary conditions (1.5)b and (1.5)e.
This is proved in [1, Theorem 5.1] for the case (1.5)e. We can also extend such result for (1.5)b with
minor adjustments on the arguments. In particular, the homogeneous thermoelastic Timoshenko
system with boundary condition (1.5)b or (1.5)e is exponential stable if and only if χ = 0, see e.g.
[1, Theorem 3.2]. The same result must be expected for the other boundary conditions (1.5)a,c,d

because they are of conservative nature, although there is no concrete proof of this fact so far.

The second main result states that the system (1.1)–(1.5) is exponentially stable under equal wave
speeds. It reads as follows.

Theorem 4.3. Under above notations, let us assume that χ = 0 in (1.8). Then, there exist constants
C, γ > 0 independent of U0 ∈ H such that the semigroup solution U(t) = eAtU0 decays as

‖U(t)‖H ≤ Ce−γ t‖U0‖H, t > 0. (4.4)

Proof. Let ε > 0 be given. Since χ = 0 we can apply Corollary 3.6-(ii). Thus, from (3.11) and (3.27), we
obtain

l0+δ/3∫

l0−δ/3

(|ϕx + ψ|2 + |Φ|2 + |ψx|2 + |Ψ|2) dx ≤ ε‖U‖2H + Cε‖F‖2H := Λ,
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for some constant Cε > 0. As above, applying Corollary 3.8, Lemma 3.1 and Young inequality, we deduce
l∫

0

(|ϕx + ψ|2 + |Φ|2 + |ψx|2 + |Ψ|2) dx ≤ εC‖U‖2H + Cε‖F‖2H, (4.5)

for some constants C, Cε > 0. Combining (3.7) and (4.5), we get

‖U‖2H ≤ εC‖U‖2H + Cε‖F‖2H.

Taking ε > 0 small enough and regarding the resolvent equation (3.1), we conclude

‖(iβId − A)−1F‖H ≤ C‖F‖H, |β| → ∞. (4.6)

The estimate (4.6) and Lemma 3.2 are enough to conclude (4.4) from the classical result on exponential
stability given e.g. in [15, Theorem 1.3.2].

Remark 4.4. We observe that all local estimates given in Sect. 3 rely on the use of auxiliary cut-off
multipliers which do not require further information on boundary point-wise terms. Therefore, the same
results on stability (Theorems 4.1 and 4.3) can be considered with other boundary conditions. Among
others, we quote:

S(0, t) = S(l, t) = ψx(0, t) = ψx(l, t) = θ(0, t) = θ(l, t) = 0,

S(0, t) = S(l, t) = ψ(0, t) = ψ(l, t) = θx(0, t) = θx(l, t) = 0,

S(0, t) = S(l, t) = ψx(0, t) = ψx(l, t) = θx(0, t) = θx(l, t) = 0,

where S is the shear stress given in (1.7). In addition, mixed boundary condition such as Dirichlet (or
Neumann) on x = 0 and Neumann (or Dirichlet) on x = l are also allowed provided the dissipation
property (2.4) is satisfied.

Remark 4.5. We finally observe that both results on stability can be proved with respect to thermoelastic
system (1.12)–(1.14) with initial-boundary conditions (1.4)–(1.5), excepting for (1.5)e which is replaced
by ϕx = ψ = θx = 0 on x = 0, l. This is not so trivial and requires a substantial number of local estimates
which must be given in a reverse way from the ones provided in Sect. 3.
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Muñoz Rivera was partially supported by CNPq Grant 306615/2010-0. The authors were also supported
by CNPq Grant 402689/2012-7, within the project “Ciências sem Fronteiras”.

References
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