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Abstract. The effect of damping on the re-stabilization of statically unstable linear Hamiltonian systems, performed via
parametric excitation, is studied. A general multi-degree-of-freedom mechanical system is considered, close to a divergence
point, at which a mode is incipiently stable and n − 1 modes are (marginally) stable. The asymptotic dynamics of system
is studied via the Multiple Scale Method, which supplies amplitude modulation equations ruling the slow flow. Several
resonances between the excitation and the natural frequencies, of direct 1:1, 1:2, 2:1, or sum and difference combination types,
are studied. The algorithm calls for using integer or fractional asymptotic power expansions and performing nonstandard
steps. It is found that a slight damping is able to increase the performances of the control system, but only far from
resonance. Results relevant to a sample system are compared with numerical findings based on the Floquet theory.
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1. Introduction

When a Hamiltonian system is subject to conservative loads, it can undergo a static bifurcation (diver-
gence, or buckling) at a critical value of a load multiplier. Consequently, its equilibrium path (which can
always be considered trivial by a proper change of variables) becomes unstable at loads higher than the
critical one. The challenge to re-stabilize the equilibrium via a proper control (e.g., by internal moving
masses, or by actuators for retroaction control laws) has attracted the interest of many researchers [1–5].
A simple form of control is offered by parametric excitation, in which a mass, stiffness, or length is peri-
odically varied in time, changing the system from autonomous to non-autonomous and, possibly, making
it stable [6–20]. A celebrated example of re-stabilization via parametric excitation is the Indian magic
rope trick problem [13,14,19].

The beneficial effect of the parametric excitation on otherwise statically unstable systems has been
explained in the literature via the concept of effective mechanical stiffness [16,19,21], which emerges when
the problem is approached by the method of direct separation of motion [12]. A clear explanation of this
phenomenon is given, in the opinion of the authors, by the Multiple Scale Method [22], that they applied
in [23] to study a specific two-dof system, and in [24] to analyze a general multi-dof system. In both papers,
it was proved that a static (zero frequency) forcing term, able to stabilize the system, appears in the
right- hand member of higher-order perturbation equations, as generated by a combination of parametric
and natural frequencies. The implementation of the perturbation scheme was not trivial, since it required
the use of integer or fractional powers expansions, according to the resonance involved, proper ordering
of parameters, higher-order expansions, addition of the homogeneous solutions, and refined technique of
reconstitution.
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Fig. 1. Stability region (shaded area) in the frequency–amplitude plane, close to the principal parametric resonance; black
line static bifurcation, blue line undamped system; red line damped system

However, it was stressed in [17,23] that although the parametric excitation is able to re-stabilize the
statically unstable mode, on the other side, it has a detrimental effect on the otherwise stable modes,
which can destabilize via the classical mechanism described by the Floquet theory. The result is sketched
in Fig. 1, where the stability region close to the principal parametric resonance is plotted in the (Math-
ieu) excitation frequency (Ω)-amplitude (δ) plane. The bottom (black) line denotes the “lower stability
boundary”, at which the system undergoes a static bifurcation. It means that when a sufficiently high-
amplitude excitation is provided, the unstable system regains stability. However, close to the parametric
resonance, re-stabilization cannot occurs; moreover, the (blue) curves delimiting the unstable region con-
stitute “upper stability boundaries” for non-resonant excitation.

The previous results concern undamped mechanical systems. It is therefore worth investigating if
damping can improve, and at which extent, the performances of the parametric excitation. It is hoped,
indeed, that similar to what happens for parametrically excited stable systems, where damping rises
the stability boundary close to the resonance, the same occurs for the unstable systems here dealt with
(red curve in Fig. 1), where a coupling between the static and dynamic instability forms is, in principle,
possible. To this end, the whole analysis carried out in [24] is redeveloped in this paper, with damping
now accounted for.

The paper is organized as follows. In Sect. 2, the equations in the problem are formulated and arranged
in view of the perturbation analysis to be carried out ahead. In Sect. 3, the amplitude modulation
equations governing the slow flow of the dynamical system are derived for non-resonant and several
resonant cases, all handleable by standard integer series expansions. In Sect. 4, the more difficult 1:1
resonant case is treated by nonstandard fractional power series expansions (see, e.g., [25,26]). In Sect. 5,
numerical results concerning a triple pendulum, taken as sample system, are displayed and commented.
Section 6 is devoted to Conclusions. Since damping, as expected, renders the asymptotic treatment
cumbersome, to make the reading easier, many details have been shifted to two Appendixes that close
the paper.

2. Problem position

We consider a damped n-dof linear system, parametrically excited, whose motion is governed by the
following equations:

Mq̈ + γDq̇ +
(
C(p) + δΩ2 cos ΩtB

)
q = 0 (1)
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Here, M = MT is the mass matrix; D = DT is a positive-definite damping matrix, and γ is a damping
multiplier; C = CT is the stiffness matrix, depending on a load parameter p; B is the parametric excitation
matrix; δ and Ω are amplitude and frequency of the parametric excitation, respectively; q are Lagrangian
coordinates, and a dot denotes differentiation with respect the time t.

We assume that the underlying Hamiltonian system (γ = δ = 0) undergoes a static bifurcation
(divergence) at the critical load p = p0, such that the trivial equilibrium q = 0 is stable at p < p0 and
unstable at p > p0. Goal of the analysis is to find how to re-stabilize the system in the postcritical range
via a suitable parametric excitation.

To this end, we put p = p0 + Δp, where Δp > 0 is the incremental load, small with respect to p0;
moreover, we expand the stiffness matrix as C(p) = C0 + ΔpC1 + O(Δp2), where C0 = C(p0). In view of
a perturbation analysis, we introduce the rescaling Δp → ε2Δp, γ → εγ, δ → εδ, where 0 < ε � 1 is a
perturbation parameter. Consequently, Eq. (1) becomes:

Mq̈ + C0q + ε(γDq̇ + δΩ2 cos ΩtBq) + ε2ΔpC1q = 0 (2)

When ε → 0, the system tends to the Hamiltonian system at the critical state, whose associate eigenvalue
problem reads:

(
C0 − ω2

kM
)
u = 0, (3)

This latter admits the eigenfrequencies (0, ω2, . . . , ωn), supposed distinct, and the related real eigenvectors
(u1,u2, . . . ,un).

We will deal Eq. (2) by the Multiple Scale Method (MSM, [22]). As it is well known [27], this method
works as a reduction method, by furnishing few equations governing the so-called slow flow, i.e., the
slow time-evolution of the amplitudes and phases of the harmonic components (including those of zero
frequency, i.e., of static nature), which enter the essential part of the linear solution. Moreover, these
equations appear to be directly in their normal form [28], i.e., deprived of any unessential terms. How-
ever, as discussed in [27], some ’difficult problems’ are encountered in applying MSM; re-stabilization by
parametric excitation is just one of them, as explained in “Appendixes 1, 2”.

3. Multiple Scale analysis by integer power expansions

According to the MSM, we first introduce independent timescales tj = εjt, j = 0, 1, . . ., so that:

d
dt

=
∞∑

k=0

εkdk,
d2

dt2
=

∞∑

j=0

∞∑

k=0

εk+jdkdj (4)

where dk = ∂/∂tk. Then, we expand the Lagrangian coordinates in series of integer powers of ε:

q = q0 + εq1 + ε2q2 + · · · (5)

and get the following perturbation equations:

ε0 : Md2
0q0 + C0q0 = 0,

ε1 : Md2
0q1 + C0q1 = −2Md0d1q0 − δΩ2

2
(eiΩt0 + e−iΩt0)Bq0 − γDd0q0,

ε2 : Md2
2q2 + C0q2 = −2Md0d1q1 − 2Md0d2q0 − Md2

1q0 − ΔpC1q0

−δΩ2

2
(eiΩt0 + e−iΩt0)Bq1 − γD(d1q0 + d0q1),

. . . (6)
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The solution of the first of Eq. (6) (generating solution) reads:

q0 =
n∑

k=1

Ak(t1, t2, . . .)ukeiωkt0 + c.c., (7)

where i is the imaginary unit and c.c. denotes the complex conjugate of the preceding terms. Here, Ak’s
are complex amplitudes, depending on slow timescales; since ω1 = 0, A1 is real. With Eq. (7), the ε1-order
perturbation equations (6) reads:

Md2
0q1 + C0q1 = −2i

n∑

k=2

ωkd1AkMukeiωkt0 − δΩ2

2

n∑

k=1

Ak(ei(ωk+Ω)t0 + ei(ωk−Ω)t0)Buk

−iγ
n∑

k=2

ωkAkDukeiωkt0 + c.c. (8)

Five different cases will be considered in this Section:
1. non-resonant case Ω �= ωj , 2ωj , ωj/2, ωj ± ωi, i, j = 2, . . .;
2. first-order resonant case Ω = 2ωj ;
3. second-order resonant case Ω = ωj/2;
4. sum combination resonance Ω = ωj + ωi;
5. difference combination resonance Ω = ωj − ωi.

A further case Ω = ωj , requiring a different treatment, will be addressed later.

The non-resonant case. Any combination resonances are excluded, so that Ω �= ωj ± ωi, ∀j, i. By
following the standard steps of the MSM, detailed in Appendix 1 “The non-resonant case”, the following
amplitude modulation equations (AME) are derived for the amplitudes:

Ä1 = α1Ȧ1 + α2A1

Ȧk = α3kAk, k = 2, 3, . . . n,
(9)

where the coefficients α’s depend on the parameters and are defined in Eq. (47) in the Appendix 1 “The
non-resonant case”. In particular, damping enters the coefficients α1,, α3k but not α2.

Since �(α3k) < 0, the latter of Eq. (9) states that all the dynamic components of motion decay.
Therefore, the essential asymptotic dynamics is governed by the first of Eq. (9) in the static component
A1; therefore, the n-dof system reduces to a single-dof system. Since α1 < 0, stability can be lost only via
a static bifurcation, occurring at α2 = 0. This is exactly the stability boundary for the undamped system
(named “lower” in [23,24]). In conclusion, when resonance is absent, damping is unable to increase the
stability performances of the system.

The resonant case Ω = 2ωj . To express the closeness of Ω to 2ωj (2ωj �= ωk∀k), we introduce a
small detuning εσ and let Ω = 2ωj + εσ. Since amplitudes not involved in resonances are inessential in
determining stability (via a mechanism similar to that discussed for the non-resonant case), we limit the
generating solution to:

q0 = A1(t1, t2, . . .)u1 + Aj(t1, t2, . . .)ujeiωjt0 + c.c.. (10)

By applying the standard MSM algorithm (see the Appendix 1 “The resonant case Ω = 2ωj”), we get
the following AME:

Ä1 = α1Ȧ1 + α2A1,

Ȧj = α3Aj + iα4Aj + α5Ajeiσt + iα6Ajeiσt,
(11)

where the coefficients α’s are defined in Eq. (57) of Appendix 1 “The resonant case Ω = 2ωj”. Since A1 is
real and Aj is complex, the asymptotic dynamics occur on a four-dimensional manifold. The first of Eq.
(11) is identical to the first of Eq. (9), governing the static loss of stability and, moreover, is uncoupled
from the second one. Therefore is this latter that rules the (dynamic) loss of stability. To transform it in
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an autonomous form, we let Aj = R eiσt/2 and, to pass to real quantities, R = u + iv. Then, we write the
system of equations for the new variables in the form:

u̇ = (α3 + α5)u + (σ/2 − α4 + α6)v,
v̇ = (−σ/2 + α4 + α6)u + (α3 − α5)v.

(12)

The condition α2
3 − α2

5 = α2
6 − (σ/2 − α4)2 determines the upper boundary of stability.

The resonant case Ω = ωj/2. In this case, we have Ω = ωj/2 + εσ. As it was in previous case, we take
a two-term generating solution, namely Eq. (10). By going to the ε2-order, where resonance manifests
itself for the first time, we obtain the following AME (see Appendix 1 “The resonant case Ω = ωj/2”):

Ä1 = α1Ȧ1 + α2A1 + α3(Aje2iσt + Aje−2iσt),
Ȧj = iα4A1e2iσtAj + α5Aj + iα6Aj ,

(13)

where the α’ s coefficients are defined in the Eq. (59) of Appendix 1 “The resonant case Ω = ωj/2”. The
asymptotic dynamics still occurs on a four-dimensional manifold. However, since the equations are now
coupled, static and dynamic components of motion interact in determining stability.

By letting Aj = R e2iσt, with R = u + iv, we can rewrite the system (13) in the matrix form ẋ = Hx,
where:

x =

⎛

⎜
⎜
⎝

A

Ȧ
u
v

⎞

⎟
⎟
⎠ , H =

⎛

⎜
⎜
⎝

0 1 0 0
α2 α1 2α3 0
0 0 α5 2σ − α6

α4 0 α6 − 2σ α5

⎞

⎟
⎟
⎠ . (14)

The characteristic equation for the characteristic number λ of the matrix H is:

λ4 + k1λ
3 + k2λ

2 + k3λ + k4 = 0, (15)

where:
k1 = −(α1 + 2α5) > 0, k2 = 2α1α5 − α2 + α2

6 + 4σ2 + α2
5 − 4α6σ,

k3 = 2α2α5 − 4σ2α1 − α1α
2
5 + 4α1α6σ − α1α

2
6,

k4 = −4α2σ
2 − α2α

2
5 + 4α2α6σ − α2α

2
6 + 2α3α4α6 − 4α3α4σ.

(16)

The stability conditions are drawn by the Hurwitz’s theorem, which supplies the following stability
conditions:

k2 > 0, k3 > 0, k4 > 0, k1k2k3 − k2
3 − k2

1k4 > 0. (17)

The sum combination resonance Ω = ωj + ωi. In this case we have Ω = ωj + ωi + εσ. The generating
solution involves three components:

q0 = A1(t1, t2, . . .)u1 + Ai(t1, t2, . . .)uieiωit0 + Aj(t1, t2, . . .)ujeiωjt0 + c.c.. (18)

By performing calculations detailed in Appendix 1 “The sum combination resonance Ω = ωj + ωi”, we
get the following AME for the amplitudes:

Ä1 = α1Ȧ1 + α2A1

Ȧi = β1iAi + iβ2iAi + β3iAjeiσt + iβ4iAjeiσt,

Ȧj = β1jAj + iβ2jAj + β3jAieiσt + iβ4jAieiσt,

(19)

where the β’s coefficients are defined in Eq. (67) of the Appendix 1 “The sum combination resonance
Ω = ωj + ωi”. Motion occurs on a six-dimensional manifold. However, the equation for A1 is uncoupled
from the latter and coincides with the first of Eq. (9), holding in the non-resonant regime, so that it does
not add any information on stability.
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By letting Ai = Rieiσt/2 and Aj = Rjeiσt/2, with Ri = ui + ivi and Rj = uj + ivj , we can rewrite the
last two Eq. (19) in the matrix form ẋ = Hx, where:

x =

⎛

⎜
⎜
⎝

ui

vi

uj

vj

⎞

⎟
⎟
⎠ , H =

⎛

⎜
⎜
⎝

β1i σ/2 − β2i β3i β4i

β2i − σ/2 β1i β4i −β3i

β3j β4j β1j σ/2 − β2j

β4j −β3j β2j − σ/2 β1j

⎞

⎟
⎟
⎠ . (20)

The characteristic equation has the form (15) (with α’s replaced by β’s), and stability conditions the
form of inequalities (17).

The difference combination resonance Ω = ωj − ωi. Here the closeness of Ω to the difference of the
natural frequencies is defined by Ω = ωj − ωi + εσ (j > i). By following the procedure of Appendix 1
“The difference combination resonance Ω = ωj − ωi”, the AME are found to assume the form:

Ä1 = α1Ȧ1 + α2A1

Ȧi = β1iAi + iβ2iAi + β3iAje−iσt + iβ4iAje−iσt,

Ȧj = β1jAj + iβ2jAj + β3jAieiσt + iβ4jAieiσt,

(21)

where the β’s coefficients are defined in the Eq. (71) of the Appendix 1 “The difference combination
resonance Ω = ωj − ωi”. As for the sum combination, the dynamics of the static component A1 is
uncoupled from those of the harmonic components Ai, Aj .

By letting Ai = Rie−iσt/2 and Aj = Rjeiσt/2, with Ri = ui + ivi and Rj = uj + ivj , the latter two
equations are rewritten in matrix form, with:

H =

⎛

⎜
⎜
⎝

β1i −σ/2 − β2i β3i −β4i

β2i + σ/2 β1i β4i β3i

β3j −β4j β1j σ/2 − β2j

β4j β3j β2j − σ/2 β1j

⎞

⎟
⎟
⎠ (22)

so that the stability conditions have the form of inequalities (17).

4. Multiple Scale analysis by fractional power expansions

The resonant case Ω = ωj is now addressed. As discussed in [24], this case calls for using fractional power
expansions of ε1/2. Since the procedure is not standard, we will describe it with a major detail.

First, we introduce a fractional expansion for the Lagrangian coordinates:

q(t, ε) = q0(t0, t1, t2, . . .) + ε1/2q1(t0, t1, t2, . . .) + εq2(t0, t1, t2, . . .) + ε3/2q3(t0, t1, t2, . . .) + . . . (23)

where:

t0 = t, t1 = ε1/2t, t2 = εt, . . . (24)

are fractional times, too. The chain rule now reads:

d
dt

=
∞∑

k=0

εk/2dk,
d2

dt2
=

∞∑

j=0

∞∑

k=0

ε(k+j)/2dkdj (25)
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so that the perturbation equations are:

ε0 : Md2
0q0 + C0q0 = 0,

ε1/2 : Md2
0q1 + C0q1 = −2Md0d1q0,

ε1 : Md2
0q2 + C0q2 = −2Md0d2q0 − Md2

1q0 − 2Md0d1q1 − δΩ2

2
Bq0(e

iΩt0 + e−iΩt0)

−γDd0q0,

ε3/2 : Md2
0q3 + C0q3 = −2Md1d2q0 − 2Md0d3q0 − 2Md0d2q1 − Md2

1q1

−2Md0d1q2 − δΩ2

2
Bq1(e

iΩt0 + e−iΩt0) − γD(d1q0 + d0q1),

ε2 : Md2
0q4 + C0q4 = −2Md1d3q0 − Md2

2q0 − 2Md0d4q0 − 2Md0d3q1 − 2Md1d2q1

−2Md0d2q2 − Md2
1q2 − 2Md0d1q3 − ΔpC1q0 − δΩ2

2
Bq2(e

iΩt0 + e−iΩt0)

−γD(d2q0 + d1q1 + d0q2),
. . . (26)

The ε0-order equation admits the generating solution

q0 = A1(t1, t2, . . .)u1 + Aj(t1, y2, . . .)ujeiωjt0 + c.c.. (27)

which substituted in the equations of ε1/2-order furnishes:

Md2
0q1 + C0q1 = −2iωjd1AjMujeiωjt0 + c.c.. (28)

Elimination of secular term requires d1Aj = 0, so that:

q1 = Bj(t1, t2, . . .)ujeiωjt0 + c.c., (29)

where the arbitrary amplitude Bj has been introduced, differently from the usual procedure adopted in
the standard method; in contrast, B1 has been omitted (see [24] for a discussion on this point).

By substituting Ω = ωj + ε1/2σ for the ε1-order equations, we obtain:

Md2
0q2 + C0q2 = −d2

1A1Mu1 − δΩ2

2
AjBujeiσt1 + (−2iωj(d2Aj + d1Bj)Muj

−δΩ2A1Bu1eiσt1 − iγωjDuj

)
eiωjt0 − δΩ2

2
AjBujei(Ω+ωj)t0 + c.c. (30)

By removing secular terms, it follows:

−d2
1A1 − δΩ2

4
(
Aje−iσt1 + Ajeiσt1

)
uT

1 Buj = 0,

−2iωj(d2Aj + d1Bj) − δΩ2A1eiσt1uT
j Bu1 − iγωjAju

T
j Duj = 0,

(31)

Starting from this point, the procedure continues by the usual steps (see “Appendix 2”). In particular,
the solvability condition at the ε3/2-order supplies:

−2d1d2A1 − δΩ2

4
(
Bje−iσt1 + Bjeiσt1

)
uT

1 Buj − γd1A1u
T
1 Du1 = 0,

−2iωj(d3Aj + d2Bj) − d2
1Bj − iγωjBju

T
j Duj = 0,

(32)



69 Page 8 of 22 I. M. Arkhipova and A. Luongo ZAMP

and that at the ε2-order furnishes:

−d2
2A1 − 2d1d3A1 − (ΔpuT

1 C1u1 − δ2Ω4

2
uT

1 Bz1)A1 − γd2A1u
T
1 Du1

+iγ
δΩ2

4
(
(Ω − ωj)uT

1 Dz−
j + ωju

T
1 Bvj

) (
Ajeiσt1 − Aje−iσt1

)
= 0,

−2iωj(d4Aj + d3Bj) − d2
2Aj − 2d1d2Bj − γuT

j Duj(d2Aj + d1Bj) +
δ2Ω4

4
Aju

T
j Bz−

j e2iσt1

+
(

δ2Ω4

4
uT

j B(z+
j + z−

j ) − ΔpuT
j C1uj + γ2ω2

j uT
j Dvj

)
Aj + iγδΩ3uT

j Dz1A1eiσt1 = 0.

(33)

with the z’s vectors defined in Eq. (73) of “Appendix 2”.
To recombine all the previous results, let us introduce the total amplitude Cj = Aj + ε1/2Bj . Then, by

using the inverse transformations εδ → δ, εγ → γ, ε2Δp → Δp, t1 → ε1/2t, ε1/2σ → σ and reconstruction
of the derivatives as:

Ä1 = εd2
1A1 + ε3/22d1d2A1 + ε2(d2

2A1 + 2d1d3A1),
Ċj = ε(d2Aj + d1Bj) + ε3/2(d3Aj + d2Bj) + ε2(d4Aj + d3Bj)

(34)

we obtain equations in the original (not-rescaled) quantities, having the form:

Ä1 = α1Ȧ1 + α2A1 + α3(Cje−iσt + Cjeiσt) + iα4(Cjeiσt − Cje−iσt),
Ċj = α5Ȧ1eiσt + α6A1eiσt + iα7A1eiσt + iα8Cj + α9Cj + iα10Cje2iσt,

(35)

where the coefficients α’s are defined in Eq. (77) in “Appendix 2”. Since A1is real and Cj is complex, the
motion occurs on a four-dimensional manifold. Since the equations are coupled, the static and dynamic
components interact in determining stability.

By substituting Cj = R eiσt, where R = u+iv, we can recast the system (35) in matrix form, similarly
to the resonant case Ω = ω/2 (for which coupling also occurs). The matrix H now will be:

H =

⎛

⎜
⎜
⎝

0 1 0 0
α2 α1 2α3 2α4

α6 α5 α9 α10 − α8 + σ
α7 0 α10 + α8 − σ α9

⎞

⎟
⎟
⎠ . (36)

The stability conditions have the form of inequalities (17).

5. Sample system analysis

As a sample system we will consider a triple pendulum in its unstable upright equilibrium position (Fig. 2).
The system is made of three hinged rigid rods of equal length l, elastically restrained at the hinges by
linear springs of equal stiffness c, carrying heavy masses m at the hinges. Hinges are damped by linear
viscous devices of equal constants d. The support undergoes a vertical harmonic motion z = a cos Ωt,
with a � l.

By taking the rotations qi (i = 1, 2, 3) as Lagrangian coordinates, the equations of motion were derived
by using Lagrange equations, with F = 1

2d
[
q̇2
1 + (q̇2 − q̇1)

2 + (q̇3 − q̇3)
2
]

the dissipation function. After
linearization around the vertical position qi = 0, and non-dimensionalization, they were found to assume
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Fig. 2. Inverted triple pendulum under harmonic motion of the support

the form (1), where:

M =

⎡

⎣
3 2 1
2 2 1
1 1 1

⎤

⎦ , C0 =

⎡

⎣
−2p0 − 3 p0 0

p0 −2p0 − 2 p0

0 p0 −p0 − 1

⎤

⎦ ,

C1 =

⎡

⎣
−2 1 0
1 −2 1
0 1 −1

⎤

⎦ D =

⎡

⎣
2 −1 0

−1 2 −1
0 −1 1

⎤

⎦ , B =

⎡

⎣
3 0 0
0 2 0
0 0 1

⎤

⎦

(37)

and, moreover,

δ =
a

l
, p = − c

mgl
, Ω∗ = Ω

√
l

g
, γ =

d

ml2

√
l

g
, t∗ =

√
g

l
t (38)

with g the gravity acceleration and t∗ a nondimensional time (star ahead).
The critical load is found to be p0 = −8.1207. Under this load, the eigenfrequencies are ωi =

0, 3.6389, 8.6722. The stability boundaries, as supplied by the asymptotic procedure illustrated above,
were plotted in the amplitude–frequency plane (δ,Ω), and compared with those determined by a pure
numerical approach grounded on the Floquet theory. Results are commented ahead.

Overall view. Figure 3 provides an overall view of the stability regions. The lower curve (plotted in black)
which extends over all the Ω-interval is the locus of static bifurcation (damping independent), on which
just the zero frequency, statically unstable mode, is involved. The solution, determined as non-resonant,
loses validity close to Ω = ω2, ω3, where a first-order resonance in contrast occurs. The lower bound
represents, for each frequency, the lowest amplitude δ able to re-stabilize the equilibrium. Since the curve
decreases with Ω, re-stabilization is easier at high, rather than low, frequency. However, close to other
resonances as Ω = 2ω2, 2ω3, ω2 + ω3, dynamic bifurcations occur, involving the stable modes. In addition
to the previous ones, there exist resonances at Ω = 1

2ω2,
1
2ω3, but they cannot distinguished in the scale

of the figure, so that they will be commented ahead.
Dynamic bifurcations lead to the appearance of instability regions (whose boundaries are plotted

in blue) which prevent re-stabilization at lower amplitude and, moreover, constitute upper bounds just
out of resonance. When damping is added (red curves), the scenario remains almost unchanged almost
everywhere, since modifications are too small to be appreciated on this scale. An exception, however, is
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Fig. 3. Overall view of the stability regions; black curve static bifurcation; blue curve dynamic bifurcation for the undamped
system (γ = 0); red curve dynamic bifurcation for a damped system (γ = 0.01)

(a) (c)(b)

Fig. 4. Stability boundaries around: a, b Ω = 2ω2, c Ω = 2ω3; blue curves undamped system; red γ = 0.01, yellow γ=0.05;
green γ=0.1; solid lines second-order asymptotic solution; dotted lines first-order asymptotic solution; black curve static
bifurcation

represented by the resonance zone close to the sum combination resonance Ω = ω2 + ω3. Here, a small
damping γ = 0.01 produces a contraction of the stability region; thus, in spite of the expected beneficial
effect, damping has a destabilizing effect. This phenomenon is not new, having been observed in some
pioneering papers concerning the combination resonance, as resumed in [29] Sect. 5.4.5. The destabilizing
effect of the damping, moreover, is well known in autonomous non-conservative systems (see [30,31] for
a thorough discussion). Further details on this interesting aspect will be given ahead.

Resonance Ω = 2ωj . An enlargement of the stability boundaries around Ω = 2ω2 = 7.28 and Ω =
2ω3 = 17.34 is plotted in Fig. 4. The asymptotic boundaries evaluated at first-order (dotted lines) and
second-order (continuous lines) are plotted for the undamped system (blue lines) and damped system
(red, yellow, and green lines). It is seen that second-order corrections are significant (more at lower
frequency) and shift on the left the boundary curves. This effect is due to the increment of load Delta
p, which has been scaled at second order. Damping has a beneficial effect (as expected at the principal
parametric zone, see [29], since it shrinks and raises the boundaries, the more the higher it is).

Resonance Ω = 1
2
ωj . The scenario close to Ω = 1

2ω2 = 1.819 is depicted in Fig. 5. Here, as we said,
interaction between static and dynamic bifurcation occurs. When the system is undamped (Fig. 5a), there
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(a) (b) (c)

Fig. 5. Stability region around Ω = 1
2
ω2: a undamped system, γ = 0; b γ = 0.005; c γ = 0.01

(a) (c)(b)

Fig. 6. Stability regions around Ω = 1
2
ω3; a undamped system, γ = 0; b γ = 0.005; c γ = 0.01

is narrow thong of instability; damping (Fig. 5b) reduces and shifts it upward, thus bringing a beneficial
effect.

When the region near Ω = 1
2ω3 = 4.336 is considered (Fig. 6), the behavior is more complex. Indeed,

while damping arises the instability zones, it enlarges them, bringing a partially detrimental effect to the
re-stabilization.

Combination resonance. Combination resonance leads to instability only in the sum (not in the difference)
case, as observed in several cases of literature. The zone close to Ω = ω2 + ω3, already commented in
Fig. 3, is represented in Fig. 7. It appears that damping initially enlarges the instability zone (Fig. 7b),
but, increasing, it also arises it (7c). Therefore, damping is detrimental for small values and beneficial for
larger values (similarly to what happens for autonomous systems, see, e.g., [32]).

Resonance Ω = ωj . The 1:1 resonance case is now addressed that, as we said, also entails a static–
dynamic interaction. Figure 8 refers to the case Ω = ω2. When damping is absent (Fig. 8a), there exist
two regions of instability merging at low amplitude. When a small damping is added, the two regions
initially expand (Fig. 8b), so that damping has a detrimental effect; however, when damping is larger
(8c) the left region raises, so that a partial beneficial effect of damping can be appreciated.

A similar behavior can be observed close to Ω = ω3(see Fig. 9). When the system is undamped (9a),
only a narrow stable tongue separates the wide regions of instability. Very small damping values (not
shown for brevity) make the tongue extremely thin; however, when a larger damping is considered (9b),
the tongue thickens and then merges with the right stable region (9c). As a final result, damping brings an
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(a) (c)(b)

Fig. 7. Stability region around Ω = ω2 + ω3 = 12.311; a undamped system, γ = 0; b γ = 0.05; c γ = 0.1

(a) (c)(b)

Fig. 8. Stability region around Ω = ω2 = 3.639: a undamped system, γ = 0; b γ = 0.01; c γ = 0.1

(a) (c)(b)

Fig. 9. Stability region around Ω = ω3 = 8.672: a undamped system, γ = 0; b γ = 0.05; c γ = 0.1

improvement at lower frequencies and a worsening at higher frequencies, compared with the undamped
case.

Comparison with the Floquet theory. The previously illustrated asymptotic results were validated against
purely numerical results obtained by evaluating the eigenvalues of the monodromy matrix, according to
the Floquet theory. The agreement was found generally good, although less good cases were encountered.
Fig. 10 reports some results. Figure 10a refers to the resonance Ω = 1

2ω2, and it is in excellent agreement
with Fig. 5c. Figure 10b concerns the combination resonance Ω = ω2+ω3, which gives results in reasonable
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(a) (c)(b)

Fig. 10. Stability regions determined via a numerical approach (Floquet theory): a around Ω = ω2/2 (γ = 0.01), b around
Ω = ω2 + ω3 (γ = 0.05), c around Ω = ω2 (γ = 0.01)

agreement with those in Fig. 7b. Finally, Fig. 10c displays the case Ω = ω3, whose results are in good
accordance with those in Fig. 8b.

6. Conclusions

The problem of re-stabilization of statically unstable system via parametric excitation has been addressed.
The paper extends the results of a previous paper by the authors, by including the effect of damping, so
far neglected. The analysis has been carried out via a Multiple Scale analysis, which calls for nonstandard
algorithms to be applied: namely integer and fractional power expansions, introduction of the homoge-
neous solution, reconstitution of amplitude modulation equations of different order, suitable ordering of
the parameters, all needed to avoid inconsistencies of the method. Non-resonant and several resonant cases
have been studied, including combination resonances. In any cases, a proper set of amplitude modulation
equations has been derived, governing the essential dynamics of the multi-degree-of-freedom system, and
constituting a reduced-order model. The asymptotic (long-time) dynamics of the system was found to be
ruled by the following equations:

1. Far from resonances, the bifurcation is of static type, i.e., only the amplitude of the statically
unstable mode is involved, while all the amplitudes of the marginally stable modes, due to the
presence of damping, decay. Since damping cannot influence a static bifurcation, it cannot modify
the non-resonant boundary curve, which therefore coincides with that of the undamped system. The
static bifurcation represents a lower boundary for re-stabilization. It gives the minimum amplitude
of the parametric excitation able to re-stabilize the system.

2. Close to the resonances Ω = 2ωj , ωj ± ωk the dynamics of the unstable mode is uncoupled by
those of the stable modes, and still governed by the non-resonant solution. Here damping enters the
amplitude equations, and its effect has to be numerically evaluated.

3. Close to the resonances Ω = 1
2ωj , ωj the static and dynamics components of motion interacts, since

the relevant equations are coupled. Again, the effect of damping calls for a numerical analysis of the
reduced-order model.

A triple pendulum has been taken as sample system, and the asymptotic results have been used for
drawing the stability boundaries in the excitation amplitude–frequency plane. The following results have
been obtained:

1. Damping not always brings a beneficial contribution to re-stabilization. Sometimes it is definitely
detrimental, sometimes it is detrimental when it is small and beneficial when it exceeds a threshold
value, and sometimes again it brings an improvement on the left side of the resonance but a worsening
on the right side. Thus, no general rules can be drawn at this stage.
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2. Damping, however, is beneficial close to the principal parametric resonance Ω = 2ωj , where the
effects of the dynamic instability are strongest.

3. Generally, the modifications of the stability scenario due to damping are weak, since, as it is know,
damping works better at low amplitudes, where, however, the system is statically unstable. There-
fore, its improvement concerns the upper bounds, which are generally raised.

4. The destabilizing effect of damping on parametric excitation is not new in the literature, since it was
discovered in some pioneering works, although confined to the combination resonance. It seems to
have similarities with the more-known Ziegler paradox, which concerns autonomous nonconservative
systems. The search for possible common aspects between the two phenomenon is an open question
that could deserve some future attention.

The study so far carried out concerns any finite-dimensional system admitting a simple-zero eigenvalue
and therefore suffering static bifurcation. Of course, a wider class of problems could be studied to check
the efficiency of the parametric excitation in restoring stability. In particular, we mention:

1. Lightly damped Hamiltonian systems undergoing multiple (e.g., double)-zero eigenvalues. A proto-
type for this bifurcation is the Augusti model [33] in the theory of elastic buckling. In the framework
of perturbation theory, the relevant treatment is similar to that illustrated here, although quite
more complex, since both buckling modes must be included in the generating solution, leading to a
reduced-order model of higher dimension.

2. Heavily damped systems, or systems subjected to nonconservative forces (namely, follower or aero-
dynamic forces) triggering a double-zero (Takens-Bogdanov) bifurcation. Here, re-stabilization is a
challenging task, since the bifurcation is of dynamic type, while parametric excitation supplies a
constant force and higher harmonics.

3. Nonlinear systems, in which, mainly in the dynamic bifurcation case, the parametric re-stabilization
could reduce the limit-cycle amplitude.

4. Continuous (not discretized) systems, for which the procedure illustrated here can still be followed,
although with a slightly different mathematical apparatus, as for example illustrated in [34,35].

Appendix 1: The integer asymptotic expansions

Here, we will give details on derivation of the AME by integer series expansions.

The non-resonant case

To remove the appearance of secular terms in the solution of Eq. (8), any harmonic terms in the right-
hand members (r.h.m.) of the equation must be rendered orthogonal to the eigenvector of same frequency
(solvability condition). It reads:

2d1Ak + γAkuT
k Duk = 0, k = 2, . . . , n. (39)

while no information is drawn on d1A1. By using this result, Eq. (8) can be rewritten as:

Md2
0q1 + C0q1 = −δΩ2

2

n∑

k=1

Ak(ei(ωk+Ω)t0 + ei(ωk−Ω)t0)Buk + iγ
n∑

k=2

ωkAkVkeiωkt0 + c.c., (40)

where the following position holds:

Vk = Muk(uT
k Duk) − Duk. (41)
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Then, the solution for q1 takes form:

q1 = −δΩ2

2

n∑

k=1

Ak

(
z+
k ei(ωk+Ω)t0 + z−

k ei(ωk−Ω)t0
)

+ iγ
n∑

k=2

ωkAkvkeiωkt0 + c.c., (42)

where z±
k are (unique) solutions to the non-singular algebraic problems:

(
C0 − (ωk ± Ω)2M

)
z±
k = Buk, (43)

and vk are solutions to: (
C0 − ω2

kM
)
vk = Vk, (44)

normalized in such a way uT
k Mvk = 0.

By using Eqs. (7) and (42) in the third of equations (6), we get:

Md2
0q2 + C0q2 =

n∑

k=1

(
−γω2

kd1AkMvk − 2iωkd2AkMuk − d2
1AkMuk − ΔpAkC1uk

+
δ2Ω4

4
AkB(z+

k + z−
k ) − γd1AkDuk + γ2ω2

kAkDvk

)
eiωkt0 + c.c. + NRT,

(45)

where NRT stands for non-resonant terms. To remove secular terms, it needs that frequency-ω1 terms in
the r.h.m. are orthogonal to u1, and frequency-ωk terms (k = 2, . . .) are orthogonal to uk, i.e.:

−d2
1A1 +

(
δ2Ω4

2
uT

1 Bz1 − ΔpuT
1 C1u1

)
A1 − γuT

1 Du1d1A1 = 0, (z1 = z+
1 = z−

1 )

−2iωkd2Ak − d2
1Ak +

(
δ2Ω4

4
uT

k B(z+
k + z−

k ) − ΔpuT
k C1uk + γ2ω2

kuT
k Dvk

)
Ak − γuT

k Dukd1Ak = 0.
(46)

By coming back to the true time and not-rescaled variables εδ → δ, εγ → γ, ε2Δp → Δp, εd1A1 →
Ȧ1, ε2d2

1A1 → Ä1, εd1Ak + ε2d2Ak → Ȧk, we finally obtain the AME (9), where the following
positions hold:

α1 = −γuT
1 Du1, α2 =

δ2Ω4

2
uT

1 Bz1 − ΔpuT
1 C1u1,

α3k = −γ

2
uT

k Duk +
i

2ωk

(
ΔpuT

k C1uk − δ2Ω4

4
uT

k B(z+
k + z−

k ) − γ2

4
(uT

k Duk)2 − γ2ω2
kuT

k Dvk

) (47)

The resonant case Ω = 2ωj

With the generating solution (10), the ε-order perturbation equation (6) reads:

Md2
0q1 + C0q1 = −2iωjd1AjMujeiωjt0 − δΩ2

2
AjBujeiσt1eiωjt0

−δΩ2

2
2A1Bu1eiΩt0 − δΩ2

2
AjBujei(Ω+ωj)t0 − iγωjAjDujeiωjt0 + c.c. (48)

Removing secular terms we obtain:

−2iωjd1Aj − δΩ2

2
uT

j BujAjeiσt1 − iγωju
T
j DujAj = 0, (49)

With this result, Eq. (48) transforms into:

Md2
0q1 + C0q1 = −δΩ2

2

(
2A1Bu1eiΩt0 + AjBujei(Ω+ωj)t0

)

−δΩ2

2
Ajbjei(Ω−ωj)t0 + iγωjAjVje

iωjt0 + c.c., (50)
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where Vj is defined by Eq. (41) and, moreover,

bj = Buj − (uT
j Buj)Muj . (51)

The solution for q1 takes the form:

q1 = −δΩ2

2

(
2A1z1eiΩt0 + Ajz

+
j ei(Ω+ωj)t0 + Ajz

−
j ei(Ω−ωj)t0

)
+ iγωjAjvje

iωjt0 + c.c., (52)

where vj is the solution of Eq. (44), z1 = z+
1 = z−

1 , z+
j are solutions of Eq. (43), and z−

j satisfies the
problem

(
C0 − (Ω − ωj)2M

)
z−
j = bj . (53)

with the arbitrary component of z−
j onto the j-th mode taken as zero.

By substituting solution (52) into the ε2-equations (6), we obtain:

Md2
0q2 + C0q2 = −d2

1A1Mu1 − ΔpA1C1u1 +
δ2Ω4

2
A1Bz1 − γd1A1Du1

+
(

−d2
1AjMuj − 2iωjd2AjMuj − ΔpAjC1uj +

δ2Ω4

4
AjB(z+

j + z−
j )

−γd1AjDuj + γ2ω2
j AjDvj + 2γω2

j d1AjMvj

)
eiωjt0

+
(

iδΩ2(Ω − ωj)d1AjMz−
j + i

δΩ2

2
γ

(
ωjBvj + (Ω − ωj)Dz−

j

)
Aj

)

× eiωjt0eiσt1 + c.c. + NRT.

(54)

Elimination of secular terms leads to:

−d2
1A1 − ΔpA1u

T
1 C1u1 +

δ2Ω4

2
A1u

T
1 Bz1 − γd1A1u

T
1 Du1 = 0,

−d2
1Aj − 2iωjd2Aj − ΔpAju

T
j C1uj +

δ2Ω4

4
Aju

T
j B(z+

j + z−
j ) − γd1Aju

T
j Duj

+γ2ω2
j Aju

T
j Dvj + i

δΩ2

2
γ

(
ωju

T
j Bvj + (Ω − ωj)uT

j Dz−
j

)
Ajeiσt1 = 0.

(55)

To obtain amplitude equations in the real (not-rescaled) quantities, the inverse transformations εδ → δ,
εγ → γ, ε2Δp → Δp, t1 → εt, εσ → σ are used, together with the reconstruction of the derivatives:

Ȧ1 = εd1A1, Ä1 = ε2d2
1A1,

Ȧj = εd1Aj + ε2d2Aj .
(56)

Here, d2
1A1 is given by the first of Eq. (55), d1Aj by Eq. (49), and d2Aj by the second of Eq. (55), once

d2
1Aj has been evaluated by differentiation of Eq. (49), with the help of Eq. (49) itself. Thus, Eq. (11)

are found, where the coefficients α1 and α2 are defined by the first line of equations (47) (holding in the
non-resonant case), and, moreover,

α3 = −γ

2
uT

j Duj ,

α4 =
1

2ωj

(

ΔpuT
j C1uj +

δ2Ω4

16ω2
j

(uT
j Buj)2 − δ2Ω4

4
uT

j B(z+
j + z−

j ) − γ2

4
(uT

j Duj)2 − γ2ω2
j uT

j Dvj

)

,

α5 = γ
δΩ2

4ωj

(
ωju

T
j Bvj + (Ω − ωj)uT

j Dz−
j

)
,

α6 =
δΩ2

4ωj
uT

j Buj

(
1 − σ

2ωj

)
,

(57)
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The resonant case Ω = ωj/2

In this case we have Ω = ωj/2 + εσ. Since this is a second-order resonance, the equations (39) and the
first-order solution Eq. (42) still hold. By substituting these solutions (having only two terms for k = 1
and j) into the ε2-order equations (6), and accounting for the closeness of Ω to ωj/2, we obtain

Md2
0q2 + C0q2 = −d2

1A1Mu1 − ΔpA1C1u1 +
δ2Ω4

2
A1Bz1 − γd1A1Du1 +

δ2Ω4

4
AjBz−

j e2iσt1

+
(

2γω2
j d1AjMvj − 2iωjd2AjMuj − d2

1AjMuj − ΔpAjC1uj +
δ2Ω4

4
AjB(z+

j + z−
j )

−γd1AjDuj + γ2ω2
j AjDvj +

δ2Ω4

2
A1Bz1e2iσt1

)
eiωjt0 + c.c. + NRT. (58)

Removal of secular terms requires the frequency-ω1 terms to be orthogonal to u1, and frequency-
ωj terms to be orthogonal to uj . From this condition, by using the same inverse transformations as in
previous case, we obtain Eq. (13), where:

α1 = −γuT
1 Du1, α2 =

δ2Ω4

2
uT

1 Bz1 − ΔpuT
1 C1u1,

α3 =
δ2Ω4

8
uT

1 Bz−
j , α4 = −δ2Ω4

4ωj
uT

j Bz1, α5 = −γ

2
uT

j Duj ,

α6 =
1

2ωj

(
ΔpuT

j C1uj − δ2Ω4

4
uT

j B1(z+
j + z−

j ) − γ2

4
(uT

j Duj)2 − γ2ω2
j uT

j Dvj

)
.

(59)

The sum combination resonance Ω = ωj + ωi

With the generating solution (18), Eq. (8) reads:

Md2
0q1 + C0q1 = −

(
2iωid1AiMui +

δΩ2

2
AjBujeiσt1 + iγωiAiDui

)
eiωit0

−
(

2iωjd1AjMuj +
δΩ2

2
AiBuieiσt1 + iγωjAjDuj

)
eiωjt0

−δΩ2A1Bu1eiΩt0 − δΩ2

2

∑

k=i,j

AkBukei(ωk+Ω)t0 + c.c. (60)

After removing secular terms:

−2iωid1Ai − δΩ2

2
Aju

T
i Bujeiσt − iγωiAiu

T
i Dui = 0,

−2iωjd1Aj − δΩ2

2
Aiu

T
j Buieiσt − iγωjAju

T
j Duj = 0,

(61)

which, when used in Eq. (60), transforms this latter into:

Md2
0q1 + C0q1 =

∑

k=i,j

(
−δΩ2

2
AkBukei(Ω+ωk)t0 − δΩ2

2
Akbkei(Ω−ωk)t0 + iγωkAkVkeiωkt0

)

−δΩ2A1Bu1eiΩt0 + c.c., (62)

where Vk is defined by Eq. (41) and:

bi = Bui − (uT
j Bui)Muj , bj = Buj − (uT

i Buj)Mui. (63)
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The solution for q1 takes the form:

q1 = −δΩ2

2

∑

k=1,i,j

(
Akz+

k ei(Ω+ωk)t0 + Akz−
k ei(Ω−ωk)t0

)
+ iγ

∑

k=i,j

ωkAkvkeiωkt0 + c.c., (64)

where z1 = z+
1 = z−

1 , z+
j , z+

i are the solutions of equations (43) when k = 1, j, i, respectively; vj , vi are
the solutions of equations (44) when k = j, i; finally z−

i , z−
j are the solutions of the equation (53), where

j is replaced either by i, j.
With these results, the ε2-equations (6) becomes:

Md2
0q2 + C0q2 =

∑

k=1,i,j

(
−d2

1AkMuk − 2iωkd2AkMuk − ΔpAkC1uk +
δ2Ω4

4
AkB(z+

k + z−
k )

−γd1AkDuk + γ2ω2
kAkDvk + 2γω2

kd1AkMvk

)
eiωkt0

+
(

iδΩ2(Ω − ωj)d1AjMz−
j + i

δΩ2

2
γ

(
ωjBvj + (Ω − ωj)Dz−

j

)
Aj

)
eiωit0eiσt1

+
(

iδΩ2(Ω − ωi)d1AiMz−
i + i

δΩ2

2
γ

(
ωiBvi + (Ω − ωi)Dz−

i

)
Ai

)

× eiωjt0eiσt1 + c.c. + NRT. (65)

Elimination of secular terms leads to:

−d2
1Ai − 2iωid2Ai − ΔpAiu

T
i C1ui +

δ2Ω4

4
Aiu

T
i B(z+

i + z−
i ) − γd1Aiu

T
i Dui

+γ2ω2
i Aiu

T
i Dvi + i

δΩ2

2
γ

(
ωju

T
i Bvj + (Ω − ωj)uT

i Dz−
j

)
Ajeiσt1 = 0,

−d2
1Aj − 2iωjd2Aj − ΔpAju

T
j C1uj +

δ2Ω4

4
Aju

T
j B(z+

j + z−
j ) − γd1Aju

T
j Duj

+γ2ω2
j Aju

T
j Dvj + i

δΩ2

2
γ

(
ωiu

T
j Bvi + (Ω − ωi)uT

j Dz−
i

)
Aieiσt1 = 0. (66)

The equation for A1 coincides with the first of equations (55). By using the inverse transformations and
reconstruction (56), we obtain the Eq. (19), where:

β1i = −γ

2
uT

i Dui,

β2i =
1

2ωi

(
ΔpuT

i C1ui +
δ2Ω4

16ωiωj
(uT

i Buj)(uT
j Bui) − δ2Ω4

4
uT

i B(z+
i + z−

i ) − γ2

4
(uT

i Dui)2 − γ2ω2
i uT

i Dvi

)
,

β3i = γ
δΩ2

4ωi

(
ωju

T
i Bvj + (Ω − ωj)uT

i Dz−
j +

1
4ωi

uT
i Buj(uT

j Duj − uT
i Dui)

)
,

β4i =
δΩ2

4ωi
uT

i Buj

(
1 − σ

2ωi

)

(67)
and β1j , β2j , β3j , β4j are defined by replacing the indexes i to j and j to i in Eq. (67).

The difference combination resonance Ω = ωj − ωi

When the generating solution (18) is used into the ε1- order perturbation equation (6), this latter reads:
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Md2
0q1 + C0q1 = −δΩ2

2

(
2A1Bu1eiΩt0 + AiBuie

i(Ω−ωi)t0 + AjBuje
i(Ω+ωj)t0

)

−
(

2iωid1AiMui +
δΩ2

2
AjBuje−iσt1 + iγωiAiDui

)
eiωit0

−
(

2iωjd1AjMuj +
δΩ2

2
AiBuieiσt1 + iγωjAjDuj

)
eiωjt0 + c.c.

(68)

After eliminating the secular terms:

−2iωid1Ai − δΩ2

2
Aju

T
i Buje−iσt − iγωiAiDui = 0,

−2iωjd1Aj − δΩ2

2
Aiu

T
j Buieiσt − iγωjAjDuj = 0,

(69)

The solution for q1 will have the form (64), where z1 = z+
1 = z−

1 , z−
i and z+

j are solutions of equations (43),
vi and vj are the solutions of equations (44) and z+

i and z−
j are the solutions of the following problems:

(
C0 − (Ω + ωi)2M

)
z+
i = bi,

(
C0 − (Ω − ωj)2M

)
z−
j = bj . (70)

Here bi and bj are defined by Eq. (63).
After substitution the expressions for q0 and q1 to ε2-equations (6) and elimination of secular terms,

by using the inverse transformations and reconstruction (56), we finally get Eq. (21), where:

β1i = −γ

2
uT

i Dui, β1j = −γ

2
uT

j Duj ,

β2i =
1

2ωi

(
ΔpuT

i C1ui − δ2Ω4

16ωiωj
(uT

i Buj)(uT
j Bui) − δ2Ω4

4
uT

i B(z+
i + z−

i ) − γ2

4
(uT

i Dui)2 − γ2ω2
i uT

i Dvi

)
,

β2j =
1

2ωj

(
ΔpuT

j C1uj − δ2Ω4

16ωiωj
(uT

i Buj)(uT
j Bui) − δ2Ω4

4
uT

j B(z+
j + z−

j ) − γ2

4
(uT

j Duj)2 − γ2ω2
j uT

j Dvj

)
,

β3i = −γ
δΩ2

4ωi

(
ωju

T
i Bvj + (Ω − ωj)uT

i Dz−
j − 1

4ωi
uT

i Buj(uT
j Duj − uT

i Dui)
)

,

β3j = γ
δΩ2

4ωj

(
−ωiu

T
j Bvi + (Ω + ωi)uT

j Dz+
i − 1

4ωj
uT

j Bui(uT
j Duj − uT

i Dui)
)

,

β4i =
δΩ2

4ωi
uT

i Buj

(
1 +

σ

2ωi

)
, β4j =

δΩ2

4ωj
uT

j Bui

(
1 − σ

2ωj

)
,

(71)

Appendix 2: The fractional asymptotic expansions

Here, we will explain in more detail how to get AME in the fractional expansion case. By solving Eq.
(30) with the help of Eq. (31), we get:

q2 = −δΩ2

2

∑

k=1,j

(
Akz+

k ei(Ω+ωk)t0 + Akz−
k ei(Ω−ωk)t0

)
+ iγωjAjvje

iωjt0 + c.c. (72)

Above, z−
1 = z+

1 = z1 and z−
j are the solutions of the problems:

(
C0 − Ω2M

)
z1 = Bu1 − (uT

j Bu1)Muj ,(
C0 − (Ω − ωj)2M

)
z−
j = Buj − (uT

1 Buj)Mu1
(73)

and z+
j and vj are the solutions of equations (43) and (44). Note that uT

j Mz1 = 0, uT
1 Mz−

j = 0 and
uT

j Mvj = 0.
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In the next step we obtain the equation for q3:

Md2
0q3 + C0q3 = −2d1d2A1Mu1 − δΩ2

2
BjBujeiσt1 − γd1A1Du1 − δΩ2

2
BjBujei(Ω+ωj)t0

+
(−2iωj(d3Aj + d2Bj)Muj − d2

1BjMuj + 2iδΩ3d1A1Mz1eiσt1 − iγωjBjDuj

)

× eiωjt0 + c.c., (74)

from which, by removing secular terms, we get Eq. (32). Then, we have the solution:

q3 = −δΩ2

2

(
Bjz

+
j ei(Ω+ωj)t0 + Bjz

−
j ei(Ω−ωj)t0

)
+ 2iδΩ3d1A1g1e

iΩt0

+iγωjBjvje
iωjt0 + γd1A1v1 + c.c.,

(75)

where g1 is the solution of equation
(
C0 − Ω2M

)
g1 = Mz1 and uT

j Mg1 = 0 and v1 is the solution of
equation C0v1 = (uT

1 Du1)Mu1 − Du1.
The equations of the ε2-order will be treated next:

Md2
0q4 + C0q4 = − (

2d1d3A1 + d2
2A1

)
Mu1 − ΔpA1C1u1 +

δ2Ω4

2
A1Bz1 − γd2A1Du1

+iδΩ2(Ω − ωj)(d2Aj + d1Bj)Mz−
j eiσt1 + iγ

δΩ2

2
(
(Ω − ωj)Dz−

j + ωjBvj

)
Ajeiσt1

+
(

− (
2iωj(d4Aj + d3Bj) + d2

2Aj + 2d1d2Bj

)
Muj − ΔpAjC1uj +

δ2Ω4

4
AjB(z+

j + z−
j )

+
δ2Ω4

4
AjBz−

j e2iσt1 + δΩ2
(
(d2

1A1 + 2iΩd2A1)Mz1 + 4Ω2d2
1A1Mg1

)
eiσt1

+γ(d2Aj + d1Bj)(2ω2
j Mvj − Duj) + iγδΩ3A1Dz1eiσt1 + γ2ω2

j AjDvj

)
eiωjt0

+NRT + c.c. (76)

Elimination of secular terms leads to Eq. (33).
Recombination finally supplies Eq. (35), where the following positions hold:

α1 = −γuT
1 Du1, α2 =

δ2Ω4

2
uT

1 Bz1 − ΔpuT
1 C1u1, α3 = −δΩ2

4
uT

1 Buj ,

α4 = γ
δΩ2

4
(
σuT

1 Dz−
j + ωju

T
1 Bvj

)
, α5 = −δΩ2

4ω2
j

uT
j Bu1

(
1 − σ

ωj

)
,

α6 = γ
δΩ2

2ωj

(

ΩuT
j Dz1 − (uT

j Duj)(uT
j Bu1)

4ωj

)

, α7 =
δΩ2

2ωj
uT

j Bu1

(

1 − σ

2ωj
+

σ2

4ω2
j

)

,

α8 =
1

2ωj

(
δ2Ω4

16ω2
j

(uT
j Bu1)(uT

1 Buj) + ΔpuT
j C1uj − δ2Ω4

4
uT

j B(z+
j + z−

j ) − γ2ω2
j uT

j Dvj − γ2

4
(uT

j Duj)2
)

,

α9 = −γ

2
uT

j Duj , α10 =
δ2Ω4

8ωj

(
1

4ω2
j

(uT
j Bu1)(uT

1 Buj) − uT
j Bz−

j

)

.

(77)
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